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1 Introduction

Condensing operators have been the object of a wide and deep study in nonlinear
functional analysis. This research was started in 1967 by Sadovskii [22]. He introduced
the concept of condensing operator for single-valued functions by using the Kuratowski
measure of noncompactness and proved that a condensing operator from a closed
bounded convex subset of a Banach space into itself has a fixed point, extending the
well known Darbo’s fixed point theorem [13].

Later, the Sadovskii’s result has been improved in different directions: from one hand,
Daher [12] showed that it is still true for countably condensing maps (i.e. condensing
only on countable subsets); from another, Himmelberg, Porter and Van Vleck [17] ex-
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tended the definition of condensing operator to multimaps and provided a multivalued
version of the Sadovskii’s theorem.
More recently, Agarwal and O’Regan [1] established a multivalued version of the Da-
her’s theorem for upper semicontinuous multimaps.

The main purpose of the present paper is to state a Daher type theorem (see The-
orem 3.2) for multimaps having weakly closed graph, which can take some nonconvex
values and are countably condensing.

By countably condensing we mean the following property:

Definition 1.1 Let D be a nonempty subset of a Banach space X and let β be an
abstract measure of noncompactness. A map F : D → P(X) is said to be countably
condensing if

(I) F (D) is bounded;

(II) β(F (B)) < β(B) for all countable bounded subsets B of D with β(B) > 0.

As far as we know, this definition is new and it is an improving of the analogous defi-
nition given by Agarwal and O’Regan. In fact, they say that a multimap is countably
condensing if it satisfies conditions (I), (II) and the further

(III) F is 1-set contractive, i.e. β(F (B)) ≤ β(B) for all countable bounded subsets
B of D

taking β as the Kuratowski measure of noncompactness.
The advantage of our definition is that it is the natural weakening of the classical
definition of condensing multimap (see, e.g. [19]) and, moreover, that in the single-
valued case it comes down to the Daher’s definition of countably condensing function.

To prove our main result, in a preliminary way we provide a new Mönch type
theorem for multimaps having weakly closed graph (cf. Theorem 3.1). The Mönch
type hypothesis we use has been introduced by O’Regan and Precup [21] in order to
extend the Mönch theorems to multimaps. We base our proof on a fixed point theorem
for multimaps having weakly closed graph established in [6].

We wish to note that our theorems strictly contain respectively the quoted Agarwal-
O’Regan’s result [1, Theorem 1.2] and the O’Regan-Precup’s Mönch type theorem [21,
Theorem 3.1] (see Remark 3.1).

Finally, we remark the relevance of the study of the existence of fixed points due
to its applicability in finding the existence of solutions of various kinds of nonlinear
differential equations or inclusions (see, e.g. [2], [4], [5], [7], [8], [9], [11], [15], [20]) and
nonlinear integral equations or inclusions (see, e.g. [10], [21]).

2 Preliminaries

Let X be a locally convex Hausdorff topological linear space and P(X ) be the family
of all nonempty subsets of X .
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We recall (see [16]) that a set A ⊂ X is said to be quasi-convex if for every
balanced convex neighborhood V of zero and for every {a1, . . . , an} ⊂ A there exists
{z1, . . . , zn} ⊂ A such that zi − ai ∈ V , i = 1, . . . , n, co{z1, . . . , zn} ⊂ A.
Moreover, let D be a nonempty subset of X . As in [6], we say that a map G : D →
P(X ) has weakly closed graph in D × X if for every net (xδ)δ in D, xδ → x, x ∈ D,
and for every net (yδ)δ, yδ ∈ G(xδ), yδ → y, then S(x, y)∩G(x) 6= ∅, where S(x, y) =
{x + λ(y − x) : λ ∈ [0, 1]}.

In the sequel we will use the following theorem.

Theorem 2.1 [6, Teorema I] Let X be a locally convex Hausdorff topological linear
space, K be a nonempty compact subset of X and G : K → P(K) be a map taking
nonempty closed values and with the properties

(i) there exists A ⊂ K, A quasi-convex, A = K such that G(x) is convex for every
x ∈ A;

(ii) G has weakly closed graph.

Under these conditions, there exists x ∈ K such that x ∈ G(x).

From now on, X will be a Banach space endowed with the norm ‖ · ‖. We will use
the following notations: Pb(X) = {H ⊂ X : H 6= ∅ , H bounded }; Pk(X) = {H ⊂
X : H 6= ∅ , H compact }.

We recall (see, e.g. [3], [19]) that a function β : Pb(X) → IR+
0 is said to be a

measure of noncompactness (MNC, for short) if

β(co(Ω)) = β(Ω) , for every Ω ∈ Pb(X) . (1)

In the sequel, we consider a measure of noncompactness β verifying the following
properties:

(β1) regularity: β(Ω) = 0 if and only if Ω is compact;

(β2) monotonicity: Ω1 ⊂ Ω2 implies β(Ω1) ≤ β(Ω2);

(β3) semiadditivity: β(Ω1 ∪ Ω2) = max{β(Ω1), β(Ω2)};

where Ω, Ω1, Ω2 ∈ Pb(X).

As examples of measures of noncompactness which satisfy all the previous properties,
we recall the Hausdorff and the Kuratowski measures of noncompactness.

Remark 2.1 We note that if β is a regular MNC, property (II) of Definition 1.1 can
be equivalently formulated as

(II)’ for every countable bounded subset B of D the relation β(B) ≤ β(F (B)) implies
that B is compact.

In the single-valued case, this is the definition of countably condensing map sometimes
adopted in the literature.
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3 The fixed point theorems

In this section, we will provide a Daher type theorem for multimaps. In a preliminary
way, we give a fixed point theorem for multimaps by using a Mönch type assumption
which has been introduced by O’Regan and Precup [21] in order to extend the classical
Mönch theorem to set-valued maps.

Theorem 3.1 Let D be a closed convex subset of a Banach space X and F : D →
Pk(D) be a map such that

(i) there exists A ⊂ D, A quasi-convex, A = D such that F (x) is convex for every
x ∈ A;

(ii) F has weakly closed graph;

(iii) F maps compact sets into relatively compact sets;

(M) there exists x0 ∈ D such that

M ⊂ D, M = co({x0} ∪ F (M))
and M = C with C ⊂ M countable

}

⇒ M is compact.

Then there exists x ∈ D such that x ∈ F (x).

Proof. Let x0 ∈ D be as by hypothesis (M). We consider the iterative sequence
(Mn)n∈IN of sets:

M0 = {x0} ; Mn = co({x0} ∪ F (Mn−1)) , n ∈ IN+ .

Clearly,

Mn ⊂ D , n ∈ IN . (2)

Let us prove by induction that Mn, n ∈ IN+, is relatively compact.
First, the Mazur Theorem (see, e.g. [18, Theorem A.3.68]) implies that co({x0} ∪
F (M0)) is compact. So, M1 = co({x0} ∪ F (M0)) is relatively compact.
Now, suppose that Mn−1 is relatively compact, n ≥ 2. Of course Mn ⊂ co({x0} ∪

F (Mn−1)) (see (2)). By (iii) and the Mazur’s theorem, we can say that also Mn is
relatively compact.
By induction again, we can say that

Mn−1 ⊂ Mn , n ∈ IN+ . (3)

Now, for every n ∈ IN , let us consider the space (Mn, d), where d is the metric induced
on Mn by the metric generated by ‖ · ‖. The compactness of Mn implies that (Mn, d)
is a separable space (cf., e.g. Corollary 1.4.29 and Corollary 1.4.12 in [14]). Hence,
there exists a countable set Cn ⊂ Mn such that

Cn

(Mn,d)
= Mn . (4)
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Let us consider the subset of D defined as

M = ∪n∈INMn (5)

and its countable subset

C = ∪n∈INCn . (6)

First of all, it is easy to show that

C = ∪n∈INCn . (7)

Now, being Cn a subset of Mn, we have

Cn = Cn

(Mn,d)

and so, from (7), we deduce

C = ∪n∈INCn

(Mn,d)
. (8)

Therefore, by (5), (4) and (8), we can say that

M = C . (9)

Further, some easy considerations, which make use of (3) and (5), lead us to write
that

M = co({x0} ∪ F (M)) . (10)

Since M is a set verifying the property of hypothesis (M), we can claim that the set

M is compact . (11)

Now, we consider the map G : M → P(M ) defined by

G(x) = F (x) ∩ M , x ∈ M .

As a matter of fact, the multimap G has nonempty values. In fact, fixed x ∈ M ,
there exists a sequence (xn)n∈IN in M such that xn → x. Let us consider a sequence
(yn)n∈IN , yn ∈ F (xn), n ∈ IN . By (10), {yn}n∈IN is included in the compact set M (see
(11)). Therefore, w.l.o.g., we can say that yn → y ∈ M . So, by applying hypothesis
(ii), S(x, y) ∩ F (x) 6= ∅; by the convexity of M , we have S(x, y) ⊂ M . Therefore
G(x) = F (x) ∩ M 6= ∅.
Now, let us prove that G has weakly closed graph in M × X. We fix a sequence
(xn)n∈IN in M converging to a point x̄ and a sequence (yn)n∈IN , yn ∈ G(xn), n ∈ IN ,
converging to a point ȳ. By hypothesis (ii) and by the fact that S(x̄, ȳ) ⊂ M , we can
conclude that ∅ 6= S(x̄, ȳ) ∩ F (x̄) = S(x̄, ȳ) ∩ F (x̄) ∩ M = S(x̄, ȳ) ∩ G(x̄).
Finally, F takes closed values and satisfies hypothesis (i), so we can conclude that
the map G verifies all the assumptions of Theorem 2.1. Therefore, there exists x ∈ D

such that x ∈ G(x) ⊂ F (x) . 2

Now, we can provide our fixed point theorem for Daher type multimaps.
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Theorem 3.2 Let D be a closed, convex subset of a Banach space X and F : D →
Pk(D) be a map verifying hypotheses (i), (ii), (iii) of Theorem 3.1 and the following

(c) F is countably condensing.

Then there exists x ∈ D with x ∈ F (x).

Proof. We prove that the multimap F satisfies hypothesis (M) of Theorem 3.1.
Let us fix x0 ∈ D and let M be a subset of D such that M = co({x0} ∪ F (M))

and

M = C , (12)

with C countable subset of M .
Being C ⊂ co({x0} ∪ F (M)), every point of C can be written as a finite combination
of points belonging to the set {x0} ∪ F (M). Therefore, there exists a countable set
M ⊂ M such that

C ⊂ co({x0} ∪ F (M)) . (13)

By hypothesis (c), F (D) is bounded, then also sets M , C and M are bounded.
Let us prove that β(C) = 0. First of all, by using (13), (1), (β2) and (β3), we have

β(C) ≤ β(co({x0} ∪ F (M))) = β({x0} ∪ F (M)) = β(F (M)) . (14)

Now, suppose that β(M) 6= 0. Then, hypothesis (c) yields

β(F (M)) < β(M) . (15)

Combining (14) with (15), by (β2), (1) and (12), we obtain

β(C) < β(M) ≤ β(M) = β(M) = β(C) = β(C) , (16)

that is a contradiction.
Hence, it must be β(M) = 0. So, by the regularity of β, M is compact. Thus,
assumption (iii) provides that

β(F (M)) = 0 .

Then, since F (M) ⊂ F (M) and by using (β2), we have

β(F (M)) = 0 . (17)

Therefore, by (14) and (17), we can conclude

β(C) = 0 .

Now, thanks to the definition of β and by (12), we can write

β(M) = β(M) = β(C) = β(C) = 0
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and so β(M) = 0 too. Therefore, the set M is compact. Hence, hypothesis (M) of
Theorem 3.1 is verified.

Consequently, by applying Theorem 3.1, we can conclude that there exists a fixed
point for F in D. 2

Remark 3.1 We note that our Theorem 3.1 and Theorem 3.2 strictly contain re-
spectively Theorem 3.1 in [21] and Theorem 1.2 in [1]. In fact, let us consider the
map

F : [0, 2] → P([0, 2]) defined by F (x) =

{

{1} , x ∈ [0, 2[
{2} , x = 2 .

It is easy to check that F satisfies either all the assumptions of Theorems 3.1 and 3.2,
but it has not closed graph. Therefore, it is not possible to apply to F neither Theorem
3.1 in [21] nor Theorem 1.2 in [1].

Remark 3.2 We wish to observe that if we strengthen of Definition 1.1 by the fol-
lowing

Definition 3.1 Let D be a nonempty subset of X. For k ∈ [0, 1[, we say that a map
F : D → P(X) is countably k-condensing if F (D) is bounded and β(F (B)) ≤ kβ(B)
for all countable bounded subsets B of D .

then an immediate consequence of Theorem 3.2 is the next Darbo type result:

Corollary 3.1 Let D be a closed, convex subset of a Banach space X and F : D →
Pk(D) be a map verifying hypotheses (i), (ii), (iii) of Theorem 3.1 and the following

(c)’ F is countably k-condensing, for k ∈ [0, 1[.

Then there exists x ∈ D with x ∈ F (x).
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