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Abstract

Stability and stabilization of time delay systems (even of the linear
ones) is again in the mainstream of the research. A most recent example
is the stability analysis of feedback control loops containing a first order
controlled object with pure delay and a standard PID controller, thus gen-
erating a system with a second degree quasi-polynomial as characteristic
equation. Since the classical memoir of Čebotarev and Meiman (1949) up
to the more recent monographs by Stepan (1989) and Górecki et al (1989)
several approaches to this problem have been given, aiming to find the
most complete Routh–Hurwitz type conditions for this case. In fact the
main problem is here a missing case in the original memoir of Čebotarev
and Meiman and its significance within the framework of the most recent
analysis of Górecki et al. The present paper aims to a fairly complete
analysis of the problem combined with some hints for the nonlinear case
(Aizerman problem).

State feedback stabilization based on Artstein reduction of a system
with input delay to a system without delay is also considered.
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1 State of the art

One of the most widely used linear model in process control is that described by
the transfer function H(s) exp(−τs) , where H(s) is a strictly proper rational
function. If a state representation of it is taken then we obtain the system

ẋ = Ax+ bu(t− τ)
(1)

y = c ∗ x

or, equivalently

ẋ = Ax+ bu(t)
(2)

y = c ∗ x(t− τ)

The control problems for such systems are obviously affected by the time
delay. Along many decades of control applications several approaches have
been proposed, analyzed, tested and implemented in industry. We may cite two
types of approaches:

a) the use of classical standard PID controllers; such controllers were intro-
duced for delayless processes and the main problem to be solved is how to cope
with the de–stabilizing effects of the delay;

b) compensator design using “modern” (i.e. state space oriented) or “neo–
classical” (i.e. frequency domain oriented) methods; we may cite here the design
of the stabilizing state feedback (combined with a suitable state observer) or the
H∞ design.

The first approach is obviously connected to the problem of Routh and
Hurwitz for quasi–polynomials. Starting from the classical results of Pontryagin
(1942) and Čebotarev and Meiman (1949) many attempts have been performed
to obtain simple conditions of stability, as closed as possible to the necessary and
sufficient ones, allowing a quick parameter choice. The results on this direction
are enclosed in such books as the ones of Górecki (1970), Stépân (1989), Górecki
et al (1989). Worth mentioning that the problem is still actual: a group of most
recent engineering papers (G. J. Silva et al, 2001,2002, 2003) offer an algorithmic
approach to the parameter choice for the simplest, first order system (1) i.e
with H(s) = K(Ts+ 1)−1 combined in a “negative” feedback loop with a PID
controller with the transfer function Hc(s) = KR(1 + 1/(Tis) + Tds). This
structure leads to the following characteristic equation

KKR(
1

Ti
+ s+ Tds

2)e−τs + s(1 + Ts) = 0 (3)

for which the stability conditions may be found in the books cited above; as
mentioned, the papers of Silva et al offer a feasible approach based on the very
first results due to Pontryagin (1942).
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The second approach is only natural in the context of most recent devel-
opment in mathematics of control. Within this approach we shall mention a
single one which becomes more and more popular (see e.g. the papers of the
CNRS–NSF Workshop “Advances in Time Delay Systems” held in Paris, Jan-
uary 2003). This approach is somehow inspired by the Smith predictor but its
mathematical fundamentals are more recent. A rather simple transformation
due to Artstein (1982) reduces many control problems for systems with input
delays to the same problems for delayless systems. Stability may be ensured
from the start by solving a finite dimensional assignment problem. The price to
be paid is the infinite dimensional structure of the compensator which require
an approximate implementation. As follows from several recent papers (see the
recent Workshop mentioned above), standard implementations lead to NFDE
(Neutral Functional Differential Equations) involving an essential spectrum be-
longing to the difference operator associated to the equation (Hale and Verduyn
Lunel, 1993); since the design was not meant to have the essential spectrum in
the left half plane, the implementation is often de-stabilizing.

The present paper deals with both these approaches. First the systems
having (3) as characteristic equation are considered; the problem is to find
stability domains allowing simple choice of the parameters KR, Ti, Td in both
cases T > 0 and T < 0 (stable and unstable controlled process). We follow the
line of [1] combined with the results of [5]. This kind of results gives a hint to
the so–called Aizerman problem in the nonlinear case; in the case of systems
with delay this problem is less studied (Răsvan, 2002)[11].

Second, stabilization using the transform due to Artstein is implemented us-
ing the technique of hybrid control (Halanay and Răsvan, 1977; Drăgan and Ha-
lanay, 1999) : by using piecewise constant control, a discrete finite dimensional
system is associated; it is this system which is stabilized and destabilization by
implementation is thus avoided. The resulting hybrid system is stable provided
the discretization step is small enough.

2 Stability inequalities for PID controllers

Consider the characteristic equation (3) for which the Routh–Hurwitz problem
(i.e. localization of its roots in the half plane <(s) < 0) is analyzed. The roots
of (3) coincide with the roots of

KKR(
1

Ti
+ s+ Tds

2) exp(−τs/2) + s(1 + Ts) exp(τs/2) =

[

KKR

Ti
+ (1 +KKR)s+ (KKRTd + T )s2

]

cosh(τs/2) +

[

−
KKR

Ti
+ (1 −KKR)s+ (T −KKRTd)s

2

]

sinh(τs/2) = 0 (4)

Introducing the new variable z = τs/2 the characteristic equation becomes
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[

KKR

Ti
+

2

τ
(1 +KKR)z +

4

τ2
(KKRTd + T )z2

]

cosh z +

[

−
KKR

Ti
+

2

τ
(1 −KKR)z +

4

τ2
(T −KKRTd)z

2

]

sinh z = 0 (5)

With the notations

γp = KKR , γi =
T

Ti
, γd =

Td

T
, δ =

2T

τ
(6)

the characteristic equation becomes

[γpγi + δ(1 + γp)z + δ2(1 + γpγd)z
2] cosh z +

[−γpγi + δ(1 − γp)z + δ2(1 − γpγd)z
2] sinh z = 0 (7)

with the left hand side belonging to the class of quasi-polynomials

p(z) = (a2z
2 + a1z + a0) cosh z + (b2z

2 + b1z + b0) sinh z (8)

which were considered in the memoir of Čebotarev and Meiman[1] from the
point of view of the Routh–Hurwitz problem.

It is a well known fact that for polynomials the Routh–Hurwitz conditions
are expressed through a finite set of inequalities and this was shown to be true
for quasi-polynomials also, in the sense that the solution is obtained after a
procedure with a finite number of steps. With respect to this we would like to
mention that in the cited above papers of Silva et al [6, 7, 8] the number of the
inequalities to be checked is infinite but it is claimed that one can reduce this
number to a finite one and the procedure is somehow convergent. We shall not
discuss the matter here but rather focuse on the quasi-polynomial (8). To fix the
ideas let a0 > 0. Then the following inequalities are necessary for localization
of the roots of (8) in the half plane <(s) < 0 :

a1 + b0 > 0 , a2 +
a0

2
+ b1 > 0 , a2 > 0 , b2 > 0 (9)

Further necessary and sufficient conditions are obtained for solving the Routh–
Hurwitz problem. In [1] this is done using the Sturm approach. The analysis is
much simplified using the following results

Proposition 1. (Theorem 5 in [1]) If all the zeros of

V (z) = a2(cos z)z2 + b1(cos z)z − a0 sin z

are real, then a0 and a2 have the same sign.

Proposition 2. (Theorem 5a in [1]) If all the zeros of

V1(z) = −b2(sin z)z
2 + a1(cos z)z + b0 sin z

are real, then b0 and b2 have the same sign.
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These results are used to eliminate some sign combinations of the coefficients
of (8); since we fixed a0 > 0 we have 25 = 32 sign combinations but after taking
into account the two propositions above only 4 of them are left as able to give
the required results. These are the so–called Cases I – IV of [1]

I : b0 > 0 ; a1 > 0 , b1 > 0 ; II : b0 > 0 ; a1 < 0 , b1 < 0 ;
(10)

III : b0 > 0 ; a1 > 0 , b1 < 0 ; IV : b0 > 0 ; a1 < 0 , b1 > 0 .

On the other hand the quasi-polynomial (7) does not fit these cases since
a0 and b0 have opposite signs. The natural question would be : is always the
feedback system composed of a first order “plant” with time delay and a PID
controller unstable? The answer is negative since other methods of analyzing
stability say so and we may send the reader to various references including the
cited papers [6, 7, 8]. What then about the classical memoir [1] ? An answer
will be given in the next section.

3 The forgotten cases

A. Let us remark that Proposition 1 does not give anything new but an already
known necessary condition a2 > 0 (since a0 > 0 had been fixed from the begin-
ning). Proposition 2 gives more but is false. We are going to prove this assertion
by contradiction. Our main tool will be as in most studies on quasi-polynomials
a result due to Pontryagin that we cite after Bellman and Cooke(1963)

Theorem 1. Let f(z, u, v) be a polynomial in z, u, v with real coefficients

f(z, u, v) =
r
∑

m=0

s
∑

n=0

zmϕ(n)
m (u, v) (11)

where ϕ
(n)
m (u, v) are homogeneous polynomials of degree n with respect to u and

v, with zrϕ
(s)
r (u, v) the principal term and let

Φ(s)(z) =

s
∑

n=0

ϕ(n)
r (cos z, sin z) (12)

If ε is such Φ(s)(ε + ıω) 6= 0, ∀ω ∈ R then f(z, cos z, sin z) has only real roots
iff for sufficiently large integers k it has exactly 4sk + r zeros within the band
−2kπ + ε ≤ <(z) ≤ 2kπ + ε .

Proof. Consider now the polynomial in Proposition 2 namely

g(z, u, v) = −b2vz
2 + a1uz + b0v

hence r = 2, s = 1 . Assume that b0 and b2 have opposite signs i.e. b0 < 0 since
we know from the necessary conditions that b2 > 0. Were Proposition 2 true we
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should find at least one combination of the coefficients of V1(z) such that this
quasi-polynomial had non-real roots. We write V1(z) = 0 as follows

(b0 − b2z
2) sin z + (a1 cos z)z = 0 (13)

At its turn this equation may be written as

tan z −
a1z

|b0| + b2z2
= 0 (14)

without loosing roots. Indeed we might have lost the imaginary roots ±ı
√

|b0|/b2
but these are not roots since cos(±ı

√

|b0|/b2) = − cosh(
√

|b0|/b2) 6= 0 . We
might have lost also the real roots νπ + π/2 of cos z = 0 but these also are not
roots of (13) since sin(νπ + π/2) = (−1)ν 6= 0 . It follows that the roots of (13)
and (14) coincide.

Let a1 > 0 to fix the ideas; the LHS (left hand side) of (14) is odd hence the
analysis for z > 0 is sufficient; if a1 < 0 then we may consider the case z < 0
and use the change of variable a1z = ζ > 0 . Denoting by ψ(z) the rational
function a1z/(|b0| + b2z

2) we find the properties

ψ(0) = 0 ; lim
z→∞

ψ(z) = 0 ; ψ′(z) =
a1(|b0| − b2z

2)

(|b0| + b2z2)2

hence ψ(z) has a maximum corresponding to zM =
√

|b0|/b2 namely

ψ(zM ) =
a1

√

b2|b0| + b2
> 0

Consider now some interval (νπ, (ν + 1)π), ν ≥ 1; within such an interval one
may find a single root of (14) located between νπ and νπ + π/2, the sub-
interval where tan z > 0. Since tan z is monotonically increasing and ψ(z) is
monotonically decreasing for z > zM , the root will be given by νπ + δν where
{δν}ν is a positive bounded sequence tending monotonically to 0. We deduce
that there are always 2k − 1 roots of (14) within the interval [π, 2kπ] hence
there are other 2k − 1 ones within the symmetric interval [−2kπ,−π]. Within
the central interval [−π, π] one may find the root z = 0 and possibly 2 other
ones, located between (0, π/2] and [−π/2, 0) respectively. For the existence of
these roots we need to show that −ψ(z) > 0 in the neighborhood of 0, z > 0; this
will follow from −ψ′(0) > 0 ; but −ψ′(0) = a1/|b0|−1 > 0 provided a1 + b0 > 0;
this last inequality has been assumed since it is a necessary condition for the
location of the roots of (8) in C− – see (9).

It follows that if the necessary conditions hold then there are exactly 4k+ 1
roots within the interval [−2kπ, 2kπ] whatever k > 0 would be. Let us consider
now the shifted interval [−2kπ + ε, 2kπ + ε] with ε > 0. Obviously if ε > 0 is
small enough all 4k+1 roots still lie within this interval also. Let now k > 0 be
large enough, in order that δk < ε; in this way the root of (14) from the interval
(2kπ, (2k+ 1)π) will be “caught” within the shifted interval [−2kπ+ ε, 2kπ+ ε]
for sufficiently large k > 0 . Applying the result of Pontryagin i.e. Theorem 1
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we deduce that (14) hence (13) has only real roots in spite of our assumption
that b0 and b2 have opposite signs. The assertion on falsity of Proposition 2 is
proved.

We deduce now that the cases with b0 < 0 cannot be eliminated from the
stability analysis. If we take into account the sign combinations for a1 and b1
we obtain four additional cases. But the cases corresponding to b0 < 0, a1 < 0
have to be eliminated according to the necessary condition a1 + b0 > 0 which
does not hold in these cases. We deduce that we have to consider additionally
the following two cases

V : b0 < 0 , a1 > 0 ; b1 > 0 ; V I : b0 < 0 , a1 > 0 ; b1 < 0 . (15)

which are exactly the cases mentioned in [5]. We shall analyze them separately.
B. Any analysis is based on counting the sign changes in the Sturm sequence

whose number has to be according to the results of Čebotarev and Meiman,
also 4k + 2. First of all we count those sign changes that are independent of
the analyzed case hence independent of the fact that now b0 < 0. Substituting
z = ±2νπ+ε and neglecting the higher order terms with respect to ε we obtain,
as in the case of the cited memoir [1]

V (±2νπ + ε) ≈ a2(2νπ)2 > 0 ; V1(±2νπ + ε) ≈ −b2(2νπ)2ε > 0

V2(±2νπ + ε) ≈ ∓a1a2b2(2νπ)ε ; V3(±2νπ + ε) ≈ −b2a
2
1a2a0ε

3 < 0

We deduce that the number of the sign losses on [−2kπ + ε, 2kπ + ε] where
k > 0 is large and kε > 0 also large will be

P (−2kπ + ε) − P (2kπ + ε) = 2sgn a1 (16)

We compute now the sign losses `iν when crossing the zeros νπ of sin z ,
the multiplier of V3(z) where i = 1, 2 according to the type of the root: i = 1
when the root is of the first type and introduces a sign gain (`iν = 1) and i = 2
when the root is of the second type and introduces a sign loss (`iν = −1). This
analysis is also independent of b0 hence we keep the result of [1]

P (−2kπ + ε) − P (2kπ + ε) −
∑

i

∑

ν

`iν = 4k + 2sgn a1 (17)

C. The next multiplier in the Sturm sequence is given by

Ω(z) = A cos4 z +B sin2 z cos2 z + C sin4 z (18)

and its zeros count in the sign losses provided they are real. Here

A = a0a
2
1a2 > 0 , B = a1b1(a0b2 + a2b0) − (a0b2 − a2b0)

2 , C = b0b
2
1b2 < 0

The zeros of the multiplier are real provided the zeros of Aλ2 +Bλ+C are real.
Since we discuss the case b0 < 0 and C < 0 this polynomial has always two real
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roots of opposite sign. Since only the positive root counts we deduce that (18)
has two real roots (mod π). Following [1] we use instead (18) the equation

C tan4 z +B tan2 z +A = 0 (19)

with C < 0, A > 0 . The biquadratic equation

Cλ4 +Bλ2 +A = 0

has two real roots corresponding to the positive real root of the associated second
degree equation

λ1,2 = ±

√

√

√

√

B

2|C|
+

√

(

B

2|C|

)2

+
A

|C|

to which there correspond the roots of (19) namely

z1,ν = νπ + τ1 , z2,ν = νπ − τ1 , ν = 0,±1, ±2, . . . (20)

and

τ1 = arctan

√

√

√

√

B

2|C|
+

√

(

B

2|C|

)2

+
A

|C|
, 0 < τ1 < π/2 (21)

Denoting τ2 = π − τ1 it follows that in each interval (νπ, (ν + 1)π) we find 2
roots of (19) – or (18) – namely z1,ν = νπ + τ1 such that νπ < z1,ν < νπ + π/2
and z2,ν = (ν + 1)π − τ1 = νπ + τ2 such that νπ + π/2 < z2,ν < (ν + 1)π .

Generally speaking these values are not zeros of the quasi-polynomials V, V1, V2

of the Sturm sequence constructed according to [1] ; this happens only if the
coefficients of (8) are subject to some very special equalities – which clearly are
“non-robust” and called “limit cases”.

D. In the general cases the sign losses `iν are determined by the behavior of
the ratio V2/V3 given by

V2(z)

V3(z)
=

(a1a2 + b1b2 tan2 z)z − (a0b2 − a2b0) tan z

cos2 z sin2 z(C tan4 z +B tan2 z +A)
(22)

when ziν = νπ − τi, i = 1, 2 , ν = 0,±1, . . . If this ratio changes from − to
+ then `iν = +1 and ziν is called a root of V3 of 1st type; if the ratio changes
from + to − then `iν = −1 and ziν is called a root of 2nd type of V3 .

Consider first the sign changes of the ratio’s denominator. Usual continuity
arguments show that when crossing z1ν the sign changes from + to − and when
crossing z2ν the change is from − to + .

As known from [1], the behavior of the numerator V2(z) depends on each
analyzed case.

Case V (b0 < 0 , a1 > 0 ; b1 > 0) . This case is somehow alike Case I already
analyzed in [1] : the coefficient of z in the numerator is positive for all z and the
free term of the numerator namely −(a0b2 −a2b0) tan z = −(a0b2 +a2|b0|) tan z
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is negative for z1ν = νπ + τ1 and positive for z2ν = νπ + τ2 . We deduce the
following

a) for the roots z2ν = νπ + τ2 the numerator is positive for all ν ≥ 0 and
ν < 0 of modulus sufficiently small; if |ν| for ν < 0 increases, the term in z
decreases and the numerator becomes negative; a k2 < 0 may be defined from
the change of the sign as satisfying the inequalities

(a1a2 + b1b2 tan2(k2π + τ2))(k2π + τ2)

−(a0b2 − a2b0) tan(k2π + τ2) > 0,

(a1a2 + b1b2 tan2((k2 − 1)π + τ2))((k2 − 1)π + τ2)

−(a0b2 − a2b0) tan((k2 − 1)π + τ2) < 0

which lead after some simple manipulation to

k2 −
τ1
π

+
1

π
·
(a0b2 − a2b0) tan τ1
a1a2 + b1b2 tan2 τ1

< 0 <

k2 + 1 −
τ1
π

+
1

π
·
(a0b2 − a2b0) tan τ1
a1a2 + b1b2 tan2 τ1

hence

k2 =

[

τ1
π

−
1

π
·
(a0b2 − a2b0) tan τ1
a1a2 + b1b2 tan2 τ1

]

e

(23)

b) for the roots z1ν = νπ+ τ1 the numerator is positive for ν > 0 sufficiently
large and negative for ν < 0 and ν ≥ 0 sufficiently small; a k1 > 0 may be
defined from the change of the sign, finally given by

k1 =

[

−
τ1
π

+
1

π
·
(a0b2 − a2b0) tan τ1
a1a2 + b1b2 tan2 τ1

]

e

+ 1 (24)

In the following we shall count
∑

i

∑

ν `iν as follows. We consider an interval
[−2kπ + ε, 2kπ + ε] with k > 0 sufficiently large i.e. larger than max{k1,−k2}
and also than that k for which we showed that Proposition 2 was false; ε > 0 is
such that kε is still very large e.g. ε = k−1/7.

Now for the intervals (νπ, (ν + 1)π) with ν ≤ k2 − 1 we find easily that
`1ν = +1, `2ν = −1 hence the sum is 0. For the intervals with k2 ≤ ν ≤ k1 − 1
we deduce `iν = 1, ν = 1, 2 hence

∑k1−1
k2

∑

i `iν = 2(k1 − k2). For ν ≥ k1 we
deduce again that the sum is zero. Therefore the real roots of (18) introduce
now 2(k1 − k2) sign changes and since a1 > 0 the overall number of the sign
changes will be

N1 −N2 = 4k + 2 − 2(k1 − k2)

while the Pontryagin type result requires N1 − N2 ≥ 4k + 2 . Therefore the
necessary and sufficient condition will be k1 − k2 = 0 i.e. k1 = k2. Using (23)
and (24) we deduce the necessary and sufficient condition
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[

−
τ1
π

+
1

π
·
(a0b2 − a2b0) tan τ1
a1a2 + b1b2 tan2 τ1

]

e

+1 =

[

τ1
π

−
1

π
·
(a0b2 − a2b0) tan τ1
a1a2 + b1b2 tan2 τ1

]

e

(25)

or

[

−
τ1
π

+
1

π
·
(a0b2 − a2b0) tan τ1
a1a2 + b1b2 tan2 τ1

]

e

=

[

−
τ2
π

+
1

π
·
(a0b2 − a2b0) tan τ2
a1a2 + b1b2 tan2 τ2

]

e

(26)

Equality (26) is exactly the one given without proof by Górecki [5].
Case VI (b0 < 0 , a1 > 0 ; b1 < 0) In this case the coefficient of z in the

numerator is positive for small z > 0 and decreases on (0, π/2) since b1 < 0 .
To see the sign for z = τ1 we compare tan2 τ1 which corresponds to the positive
root of the second degree equation associated to (19) and −(a1a2)/(b1b2) which
makes the coefficient 0. We deduce easily that

|C|

(

−
a1a2

b1b2

)2

+B
a1a2

b1b2
−A = −

a1a2

b1b2
(a0b2 − a2b0)

2 > 0

hence −(a1a2)/(b1b2) > tan2 τ1 . The coefficient of z in the numerator is thus
positive in some neighborhood of the root ziν where the sign change is counted.
The free term of the numerator is as previously. We deduce that the analysis
coincides with the previous one, k1 and k2 are determined as previously and the
stability conditions are as previously (25) and (26).

It follows that in this case the formulae of Górecki [5], given without proof,
are not correct ; one may suppose that they have been obtained from a supposed
analogy of Case VI and Case III .

To end this section we shall consider (25) in some detail. From the well
known equality

[x]e + [−x]e = −1

valid for non-entire x we obtain for (25)
[

τ1
π

−
1

π
·
(a0b2 − a2b0) tan τ1
a1a2 + b1b2 tan2 τ1

]

e

= 0

hence

−1 < −
τ1
π

+
1

π
·
(a0b2 − a2b0) tan τ1
a1a2 + b1b2 tan2 τ1

< 0

or

−π + τ1 <
(a0b2 − a2b0) tan τ1
a1a2 + b1b2 tan2 τ1

< τ1

But we already showed that the denominator of the ratio above is positive, as
well as the numerator, while −π + τ1 < 0 since 0 < τ1 < π/2. It follows that
(25) is fulfilled provided

(a0b2 − a2b0) tan τ1
a1a2 + b1b2 tan2 τ1

< τ1 (27)
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4 Application to the case of PID controllers and

the first order object with time lag

As already mentioned, the problem of the stability inequalities in this applica-
tion, while classical, is again under research[6, 7, 8]. A countable set of inequal-
ities is obtained, possibly converging to some finite domain in the parameter
space; the theoretical basis of this approach is given by the original paper of
Pontryagin[4] combined with some interesting remarks on decoupling the con-
troller parameters within the set of inequalities.

Our approach will be the application of the inequalities of Čebotarev and
Meiman[1] from the complete set of cases, as done by Górecki[5]; additionally
we shall consider the case of the unstable object, as Silva et al [6, 7, 8] did.

A. Assume first that the simplest case of the controlled object – the stable
case, when the following conditions are true : K > 0, τ > 0, T > 0 – holds. If
we turn to the notations of (6) and (7) we deduce δ > 0, γi > 0, γd > 0 . By
forcing γpγi in (7) we obtain the characteristic equation

[

1 +
δ

γi

(

1 +
1

γp

)

z +
δ2

γi
(1/γp + γd)z

2

]

cosh z +

[

−1 +
δ

γi

(

1 −
1

γp

)

z +
δ2

γi
(1/γp − γd)z

2

]

sinh z = 0 (28)

Obviously a0 = 1 > 0 but b0 = −1 < 0 hence the only cases to be applied
are V and VI, corresponding to b0 < 0 and just analyzed above. We start by
writing down the necessary conditions as given by (9)

δ

γi
(1 +

1

γp
) − 1 > 0 ;

δ2

γi
+

1

2
+

δ

γi
(1 −

1

γp
) > 0 ;

(29)
δ2

γi
(1/γp + γd) > 0 ;

δ2

γi
(1/γp − γd) > 0 .

To these conditions we have to add other necessary conditions that are more
engineering–like : stability for the delay free system which ensures stability for
small delays. We deduce from (7) or (28)

δ

γi
(1 +

1

γp
) > 0 ;

δ2

γi
(1/γp + γd) > 0 (30)

But we have already mentioned that δ > 0, γi > 0, γd > 0 . These conditions
combined with (30) will give

1 + 1/γp > 0 , 1/γp + γd > 0 ,

but the fourth inequality in (29) implies them both i.e.
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1/γp > γd > 0 > −min{γd, 1} (31)

Remark that (31) imply fulfilment of the third inequality of (29) which is nothing
more but second inequality of (30). We have to discuss the first two inequalities
of (29).

The first one will give γi < δ(1 + 1/γp) while the second one will require to
consider two cases : 1/γp ≤ 1+δ when it is automatically fulfilled and 1/γp1+δ.

Summarizing we obtain under the assumption of positive parameters for the
controller that the following conditions are necessary for the location of the
roots of the characteristic equation in the LHS of C−

γd < 1/γp ; max{0, 2δ(1/γp − 1 − δ) < γi < δ(1 + 1/γp) (32)

The expressions connected with (27) could be rather complicated from ana-
lytical point of view. We give a single example. If γd = 0 is assumed – i.e. a PI
controller having only two parameters to be chosen – then (27) reads as

δ

γi
·

2 tan τ1
1 + 1/γp + (1 − 1/γp) tan2 τ1

< τ1 (33)

where

tan τ1 =
1

|1 − 1/γp|

√

√

√

√

−
2γi

γp
+

√

(

2γi

γp

)2

+ (1 − 1/γ2
p) (34)

It is interesting to remark that τ1 is not dependent of the delay; in fact the
only parameter to incorporate the delay is just δ. Therefore an estimate of the
delay for stability purposes is easy to perform; moreover an optimization could
be tried i.e. to find such a choice of γp and γi in order to maximize the upper
bound for δ.

B. We shall consider now the unstable controlled object i.e. K > 0, τ > 0,
T < 0; we deduce δ < 0, γi < 0, γd < 0.

For the necessary conditions we refer again to (28), where a0 and b0 remain
the same. Since γi < 0 we need 1/γp + γd < 0, 1/γp − γd < 0 which are con-
tradictory unless γp < 0; this last condition would require introducing “positive
reaction” in the system; this will make the structure non-robust i.e. sensible to
parameter perturbations. In fact this is one of the drawbacks of the classical
PID structure; in the papers of Silva et al [6, 7, 8] these aspects seem to be
neglected. The discussion being of pure engineering (technological) interest, we
do not insist on this subject any longer. Worth mentioning nevertheless that
exactly such drawbacks lead the researchers to the advanced techniques that we
summarized next.
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5 A nonlinear intermezzo: the Aizerman

problem

This problem has a more than 60 years long history and it would be senseless to
present it here. Following Răsvan(2002) [11] we shall state it for systems with
delay as follows, starting from the simplest case. Given the time delay equation

ẋ+ a0x(t) + a1x(t− τ) = 0, τ > 0 (35)

the exponential stability is ensured provided the following inequalities hold:

1 + a0τ > 0, −a0τ < a1τ < ψ(a0τ) (36)

where ψ(ξ) is obtained by eliminating the parameter λ between the two equali-
ties below

ξ = −
λ

tanλ
, ψ =

λ

sinλ
(37)

Since these conditions contain the time delay τ such property is called delay-
dependent stability. If one is interested in exponential stability conditions that
hold for any delay τ > 0, this property, called delay-independent stability is
ensured provided the simple inequalities

a0 > 0, |a1| < a0 (38)

are fulfilled. It can be shown [15] that ψ(ξ) > ξ for ξ > 0 hence the fulfilment
of (38) implies the fulfilment of (36).

As already mentioned previously Čebotarev and Meiman pointed out that,
according to Sturm theory, the Routh-Hurwitz conditions for quasi-polynomials
have to be expressed as a finite number of inequalities that might be transcen-
dental. The detailed analysis performed in their memoir for the 1st and 2nd
degree quasi-polynomials showed two types of inequalities: one of them con-
tained only algebraic inequalities while the other contained also transcendental
inequalities; the first ones correspond to stability for arbitrary values of the
delay τ while the second ones put some limitations on the values of τ > 0 for
which exponential stability of the linear system e.g. (35) holds. This system and
conditions (36), (37) and (38) are good illustrations of this. The aspect is quite
transparent in the examples analysis performed throughout author’s book [16]
as well as throughout the book of Stepan [2]. We may see here the difference op-
erated between what will be called later delay-independent and delay-dependent
stability.

Let us follow the way of Barbashin [17] to introduce a stability problem in the
nonlinear case: given system (35) for a0 > 0, if we replace a0x by ϕ(x) where
ϕ(x)x > 0, the equilibrium at the origin of the nonlinear time delay system
should be globally asymptotically stable provided

ϕ(σ)

σ
> |a1| (39)
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for the delay-independent stability, or provided

ϕ(σ)

σ
> max

{

−a1,
1

τ
ψ−1(a1τ)

}

(40)

in the delay-dependent case.
We may view the above problem in a more general setting and state it as

follows
Problem Given the delay-(in)dependent exponential stability conditions for

some time delay linearized system, are they valid in the case when the nonlinear
system with a sector restricted nonlinearity i. e. satisfying

ϕσ2 < ϕ(σ)σ < ϕσ2 (41)

is considered instead of the linear one, or have they to be strengthened?
It is clear that we have gathered here both the delay-independent and delay-

dependent cases, thus defining a stability problem in two different cases. This
problem is called Aizerman problem, stated here as delay dependent (Aizerman
problem) and delay independent (Aizerman problem).

Consider, for instance, the delay independent Aizerman problem defined
above, for system (35) replaced by

ẋ+ a1x(t− τ) + ϕ (x(t)) = 0 (42)

where ϕ(σ)σ > 0. Taking into account that (38) suggests ϕ(σ) > |a1|σ we
introduce a new nonlinear function

f(σ) = ϕ(σ) − |a1|σ

and obtain the transformed system (via a sector rotation):

ẋ+ |a1|x(t) + a1x(t− τ) + f (x(t)) = 0 (43)

For this system we apply the frequency domain inequality of Popov for ϕ =
+∞ i.e. the inequality

Re(1 + ıωβ)H(ıω) > 0, ∀ω ≥ 0 (44)

Here

H(s) =
1

s+ |a1| + a1e−sτ
(45)

and the frequency domain inequality reduces to

βω2 − (βa1 sinωτ)ω + |a1| + a1 cosωτ ≥ 0 (46)

which is fulfilled provided the free Popov parameter β is chosen from

0 < β |a1| < 2 (47)
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(more details concerning manipulation of the frequency domain inequality for
time delay systems may be found in author’s book [16]).

It follows that (43) is absolutely stable for the nonlinearities satisfying
f(σ)σ > 0 i.e. ϕ(σ)σ > |a1|σ

2: the just stated delay-independent Aizerman
problem for (35) and (42) has been answered positively.

We have introduced this section in order to suggest how the rather sophis-
ticated stability conditions from the linear cases with delay could be used in
interaction with Popov frequency domain inequality aiming to obtain results
concerning the problems of Aizerman for systems with delay - an interesting
and useful sharpness measure for the sufficient stability conditions in the non-
linear case.

6 Stabilization by state feedback

In this section we turn back to system (1) which we want to stabilize by linear
state feedback. Our main tool will be a state–control transform due to Artstein
(1982)[9] that reduces 1 to a finite dimensional one. In this case the transform
is

z(t) = x(t) +

∫ 0

−τ

e−A(θ+τ)bu(t+ θ)dθ (48)

and leads to the system

ż = Az + e−Aτbu(t) (49)

The following equivalence is valid

Proposition 3. Let (x(t), u(t); t > 0) be a solution (admissible pair) for (1),
defined by some initial condition (x0, u0(·)). Then (z(t), u(t); t > 0) with z(t)
defined by (48) is a solution (admissible pair) for the system (49) with the initial
condition z0 = z(0). Conversely, let (z(t), u(t); t > 0) be a solution of (49)
defined by some initial condition z0. Then, given some u0(·) defined on (−τ, 0)
and taking

x0 = z0 −

∫ 0

−τ

e−A(θ+τ)bu0(θ)dθ (50)

the solution of (1) defined by these initial conditions and by u(t), t > 0 is given
by

x(t) = z(t) −

∫ 0

−τ

e−A(θ+τ)bu(t+ θ)dθ (51)

The proof of this result is straightforward. Further we may apply various
control techniques to (49) and see their correspondent when the inverse trans-
form (51) is applied[18, 19, 20, 21, 22]. We shall give below some of these results.
Let f be a feedback vector such that the control function u = f ∗z is stabilizing
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for (49) i.e. the matrix A+e−Aτbf∗ has its eigenvalues with negative real parts.
Since

ż = (A+ e−Aτbf∗)z (52)

is exponentially stable, the closed loop feedback system

ẋ(t) = Ax(t) + bu(t− τ)
(53)

u(t) −

∫ 0

−τ

f∗e−A(θ+τ)B1u(t+ θ)dθ = f∗x(t)

is also exponentially stable via the properties of (48). Remark nevertheless that
the compensator described by the second equation of (53) contains an integral
that has to be realized either as a device or as a programme. The standard
technique used in many papers (e.g. the CNRS–NSF Workshop “Advances in
Time Delay Systems” held in Paris, January 2003, mentioned previously) was
to approximate the integral. The result was a compensator described by a
difference equation with a finite number of lumped time delays what gives to
the resulting feedback model a neutral character (i.e. the equations have the
properties of the Neutral Functional Differential Equations NFDE). Their main
feature is the essential spectrum – the spectrum of the difference operator. If
this spectrum is not inside the unit disk of the complex plane, the system could
be destabilized if perturbations of the delay are allowed – the system is non-
robust and fragile. Note that the discretization is not connected to the essential
spectrum and de-stabilization may be very possible. The role of the essential
spectrum has been pointed out by J. K. Hale at the above mentioned Workshop
and several solutions have been proposed. our approach is somehow different
and will be presented in brief.

The implementation of the designed compensator requires memorizing of
a trajectory segment i.e. a set of data that has infinite size. The practical
implementation is finite and based on a suitable discretization. Following the
line of the paper of Halanay and Răsvan (1977)[12] and of the book of Drăgan
and Halanay (1999)[13] we shall use piecewise constant control signals, defined
as follows

u(t) = uk, kδ ≤ t < (k + 1)δ, k = 0, 1, 2, · · · (54)

where δ = τ/N . For the system (1) we associate the discrete time system

xk+1 = A(δ)xk + b(δ)uk−N (55)

where

A(δ) = eAδ, b(δ) =

(

∫ δ

0

eAθdθ

)

b, i = 0, 1 (56)

Let (x0, u0(·)) be the initial condition associated with (1). Since the discretized
system is satisfied by xk = x(kδ), x(·) being the solution of (1) with piecewise

EJQTDE, Proc. 7th Coll. QTDE, 2004 No. 18, p. 16



constant control, it is only natural to choose the discretized initial condition
(x0;u

0
−i = u0(−iδ), i = 0, N). We may define

zk = xk +

−1
∑

−N

A(δ)−(N+j+1)b(δ)uk+j (57)

which is the discrete analogue of Artstein transform and find the associate sys-
tem

zk+1 = A(δ)zk + A(δ)−Nb(δ)uk (58)

It is worth mentioning that (57) might be obtained by writing (48) at t = kδ
and computing the integral for piecewise constant control signals.

Let f be a stabilizing feedback for (58), i.e. is such that A(δ)+A(δ)−Nb(δ)f∗

has its eigenvalues inside the unit disk. We deduce that the compensator

uk = f∗xk +

−1
∑

−N

f∗A(δ)−(N+j+1)b(δ)uk+j (59)

is stabilizing for (58). On the other hand, if we consider the closed loop system

xk+1 = A(δ)xk + b(δ)uk−N
(60)

uk = f∗xk +
−1
∑

−N

f∗A(δ)−(N+j+1)b(δ)uk+j

one may see that this is a feedback system with an augmented dynamics:

xk+1 = A(δ)xk + b(δ)vk

vk+1 = w1
k

· · ·
(61)

wN−1
k+1 = uk

uk = f∗[xk + A(δ)−1b(δ)vk + · · ·

+A(δ)−(N−1)b(δ)wN−2
k + A(δ)−Nb(δ)wN−1

k ]

Since wN−1
k = uk−1 the corresponding initial condition is wN−1

0 = u−1 =

u0(−δ); further, wN−2
0 = u−2 = u0(−2δ), · · ·, w1

0 = u0(−(N − 1)δ), v0 =
u0(−Nδ). Obviously (61) is exponentially stable. This follows from the fact
that u = f∗z is exponentially stabilizing system (58) and making use of (57).
The result may be obtained also spectrally, as in [18].

The specific issue of the approach lies exactly in the choice of f as a stabiliz-
ing feedback for the discrete-time system; it is as the basic system is discretized,
transformed via the discrete analogue of the Artstein transform and stabilized;
the stabilization is performed over the discrete time system and, according to
[12, 13], the property holds for the hybrid system composed of the continuous
time controlled system and the discrete compensator that generates piecewise
constant control signals using discrete-time state measurements (samples), pro-
vided the sampling step is small enough. Obviously the size of the sampling
step is still object of theoretical estimates and simulation experiments.
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7 Concluding remarks

We would like to point out a single but most important feature of our ap-
proach, feature that was confirmed also by simulation (nevertheless the proofs
are rigorous and on a sound basis – see again [12, 13]). Most implementation
approaches are based on the discretization of the integral what leads to contin-
uous time compensators described by difference equations hence to systems of
neutral type with an essential spectrum. Stability of such systems require this
spectrum to be inside the unit disk which is not automatically ensured even by
a refined(with the step small enough) discretization; consequently such systems
often de-stabilize being either non-robust or fragile. The introduction of a Low
Pass Filter changes the system into one of delayed type and may re-stabilize,
the price paid being another dimension augmentation.

The method of this paper makes a difference in the sense that a specific con-
trol is used – the piecewise constant control. in this way a discrete-time system
is associated and it is this system that is stabilized; its augmented dynamics re-
places the discretized integral term. Under these circumstances the closed loop
system (which is hybrid since it contains a continuous-time controlled plant and
a sampled data compensator) is always stable provided the sampling step δ is
small enough [12, 13]. The small sampling step is helpful in stabilization from
another point of view also [12]: let f(δ) be the stabilizing feedback for the
discretized system. Using the asymptotic expansions [12] it is easily found that

f(δ) = f + f1δ + o(δ)

where f is a stabilizing feedback for the continuous time system; one may use
for implementation with piecewise constant control the gain f instead of f(δ)
and the stability is preserved provided δ is small enough.
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