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Abstract. First we prove that an n× n complex linear system is Hyers–Ulam stable if
and only if it is dichotomic (i.e. its associated matrix has no eigenvalues on the imagi-
nary axis iR). Also we show that the scalar differential equation of order n,

x(n)(t) = a1x(n−1)(t) + · · ·+ an−1x′(t) + anx(t), t ∈ R+ := [0, ∞),

is Hyers–Ulam stable if and only if the algebraic equation

zn = a1zn−1 + · · ·+ an−1z + an

has no roots on the imaginary axis.
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1 Introduction

In 1940 S. M. Ulam posed some open problems, see [28] and [29]. One of these problems refers
to the stability of a certain functional equation. The first answer to this problem was given by
D. H. Hyers in 1941, see [10]. After that, this was called the Hyers–Ulam problem and its study
became a widely studied subject for many mathematicians. It seems that M. Obłoza [21] was
the first author who proved a result concerning Hyers–Ulam stability of differential equations.
C. Alsina and R. Ger, [1], investigated Hyers–Ulam stability of first order linear differential
equations, and, after that, their results were generalized by S. E. Takahasi, H. Takagi, T. Miura
and S. Miyajima in [27], L. Sun and S.-M. Jung, in [11], [12] and [13] and G. Wang, M. Zhou
in [30]. For comprehensive information we refer readers to the two recent expository papers
by N. Brillouët-Belluot, J. Brzdȩk, K. Ciepliński [2] and by Z. Moszner [20]. The Hyers–Ulam
problems for second order differential equations were studied by Y. Li, J. Huang in [18], Y. Li,
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Y. Shen [16], Y. Li in [17] and P. Găvruţă, S.-M. Jung, Y. Li in [6]. Also M. N. Qarawani, [25],
studied Hyers–Ulam stability for linear and nonlinear second order differential equations.

In [15], Y. Li and Y. Shen characterized the Hyers–Ulam stability of linear differential
equation of order two, under the assumption that its associated characteristic equation has
two different positive roots.

M. Obłoza, [22], has connected Hyers–Ulam and Lyapunov stability for ordinary differen-
tial equations. See also the papers of J. Brzdȩk and S.-M. Jung [14], and of D. Popa and I. Raşa
[23] and [24] for further interesting details concerning this subject.

Over the past decades, the Hyers–Ulam stability of operator equations has been widely
discussed. In [19] the authors describe the results on Hyers–Ulam stability for n-th order
linear differential operator p(D), p being a complex valued polynomial of degree n and D a
differential operator. They prove that the differential operator equation p(D) f = 0 is Hyers–
Ulam stable if and only if the algebraic equation p(z) = 0 has no pure imaginary solutions.

In the very recent paper [7], the authors investigate a special case of Hyers–Ulam stability
for linear differential equations by using the Laplace transform method. Instead of uniform
distance between solutions they estimate the pointwise distance.

In this paper we prove that a linear differential systems (driven by a n × n matrix A) is
Hyers–Ulam stable if and only if it is dichotomic, that is spectrum of A does not intersect the
imaginary axis. Thus we provide a spectral criteria for Hyers–Ulam stability. Our method uses
only elementary settings. Nevertheless, the idea that Hyers–Ulam stability and exponential
dichotomy are equivalent seems to be new and it can enlarge the area of investigations on
Hyers–Ulam stability. As a special case, we also show that the scalar differential equation of
order n,

x(n)(t) = a1x(n−1)(t) + · · ·+ an−1x′(t) + anx(t), t ∈ R+ := [0, ∞),

is Hyers–Ulam stable if and only if its associated algebraic equation

zn = a1zn−1 + · · ·+ an−1z + an,

has no roots on the imaginary axis.
Now we outline the Hyers–Ulam problem for a matrix A.
Let R+ be the set of all nonnegative real numbers, and let A be an n× n complex matrix,

n being a positive integer. Consider the system

x′(t) = Ax(t), t ∈ R+ := [0, ∞). (A)

Let ε be a positive real number. A Cn-valued function y is called an ε-approximate solution
for (A) if

‖y′(t)− Ay(t)‖ ≤ ε, ∀t ∈ R+,

where ‖ · ‖ denotes the Euclidean norm on Cn, i.e. for

x = (ξ1, . . . , ξn)
T ∈ Cn, ‖x‖2 =

n

∑
k=0
|ξk|2.

Let n and m be two positive integers. The set of all n×m matrices having complex entries
is denoted by Cn×m. The spaces Cn and Cn×1 are identified by the usual way. The space Cn×n

becomes a Banach algebra when we endow it with the operatorial norm

L 7→ ‖L‖ := sup
‖x‖≤1

‖Lx‖ : Cn×n → R+.
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In the following we denote by [M]ij the element of the matrix M located at the intersection
of the i-th row and the j-th column. The matrix A is said to be Hyers–Ulam stable if there
exists a nonnegative absolute constant L such that for every ε-approximate solution φ of (A),
there exists an exact solution θ of (A) such that

sup
t∈R+

‖φ(t)− θ(t)‖ ≤ Lε.

2 Notations and some results

Throughout the paper, A stands for an n × n complex matrix while PA(z) := det(zI − A)

denotes its characteristic polynomial. I denotes the identity matrix of order n. The set σ(A) :=
{λ1, λ2, . . . , λk}, consisting of all roots of PA, is called the spectrum of A. As is well-known,

PA(z) = (z− λ1)
m1 · · · (z− λk)

mk ,

where m1, m2, . . . , mk are the algebraic multiplicities of the eigenvalues λ1, . . . , λk, respectively.
Then, m1 + · · ·+ mk = n and

Cn = ker(A− λ1 I)m1 ⊕ · · · ⊕ ker(A− λk I)mk . (2.1)

We also mention that the dimension of ker(A − λj I)mj is mj. For every integer j with
1 ≤ j ≤ k and every t ∈ R, the subspace ker(A − λj I)mj is etA-invariant. Indeed, let

FN(t) := ∑N
j=0

(tA)j

j! , N being a positive integer. As is well-known, the sequence of functions
(FN) converges uniformly on real compact intervals to the map t 7→ etA. On the other hand,

FN(·)(A− λj I)mj = (A− λj I)mj FN(·),

and we get the assertion by passing to the limit for N → ∞. As a consequence of (2.1), for
each x ∈ Cn there exists xj ∈ ker(A− λj I)mj such that

etAx = etAx0 + etAx1 + · · ·+ etAxk, t ∈ R+.

Moreover, etAxj belongs to ker(A− λj I)mj for all t ∈ R and there exists a Cn-valued poly-
nomial pjx(t) of degree at most mj − 1 such that

xj(t) := etAxj = eλjt pjx(t), t ∈ R, 1 ≤ j ≤ k. (2.2)

This is well-known from properties of the generalized eigenspace. See [8, pp. 104–107] for
further details.

The decomposition (2.1) yields

Cn = Xs(A)⊕X0(A)⊕Xu(A),

where

Xs(A) =
k⊕

j=1, Re (λj)<0

ker(A− λj I)mj ,

X0(A) =
k⊕

j=1, Re (λj)=0

ker(A− λj I)mj
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and

Xu(A) =
k⊕

j=1, Re (λj)>0

ker(A− λj I)mj .

The subspaces Xs(A) and Xu(A) are called the stable and respectively the unstable subspace
of A.

The circle and closed disk of radius r which are centered on the eigenvalue λj = σ(A), are
respectively:

Cr(λj) = {z ∈ C : |z− λj| = r}

and

Dr(λj) = {z ∈ C : |z− λj| ≤ r}

where r is a positive real number, small enough such that σ(A) ∩ Dr(λj) = {λj}. Recall that
an n× n complex matrix P, verifying P2 = P, is called a projection. Let 1 ≤ j ≤ k. From (2.1)
it follows that

I = Eλ1 + Eλ2 + · · ·+ Eλk ,

where Eλj := Ej : Cn → Cn is defined by Ejx := xj. Obviously, Ej (1 ≤ j ≤ k) are projections
which are called spectral projections associated to the matrix A. It is well-known [4, Chapter
7] that

Ej =
1

2πi

∮
Cr(λj)

(zI − A)−1 dz. (2.3)

The equation (2.3) will be used in the proof of Lemma 4.4 below.
The first result of this paper reads as follows.

Theorem 2.1. The matrix A is Hyers–Ulam stable if and only if it is dichotomic.

For the proof of the Theorem 2.1, we need the following proposition, which contains
equivalent characterizations for exponential dichotomy. This result is certainly known but
we include it and its proof here for the sake of completeness. Further details about different
characterizations of dichotomy can be found in the book of W. A. Coppel, see [3, Chapter 3].

Proposition 2.2. The following three statements concerning the matrix A are equivalent.

(α) A is dichotomic.

(β) There exists a projection P, commuting with A, and there exist positive constants N1, N2, ν1, ν2

such that

(β1)
∥∥etAPx

∥∥ ≤ N1e−ν1t‖Px‖, for all x ∈ Cn, for every t ≥ 0,

(β2)
∥∥etA(I − P)x

∥∥ ≤ N2eν2t‖(I − P)x‖, for all x ∈ Cn and for all t ≤ 0.

(γ) For each continuous and bounded function f : R+ → Cn, there exists a unique bounded solution,
starting from the unstable subspace of A (i.e. with the initial conditions belonging to Xu(A)), of
the equation

y′(t) = Ay(t) + f (t), t ≥ 0. (A, f )
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Proof. (α) ⇒ (β). A is dichotomic, so X0(A) = {0} and then Cn = Xs(A) ⊕ Xu(A). Every
x ∈ Cn can be written as x = xs + xu with xs ∈ Xs(A) and xu ∈ Xu(A). Let P := Cn → Cn

defined by Px := xs. It is obvious that the matrix P is a projection. Moreover, using (2.2) it can
be seen that (β1) and (β2) are fulfilled for certain positive constants N1, N2, ν1, ν2.

(β) ⇒ (α). Suppose that there exists λ ∈ σ(A) with Re(λ) = 0. Then there is x0 6= 0,
x0 ∈ Cn such that Ax0 = λx0 and thus etAPx0 = etλPx0 for all t ∈ R, where the fact that P
commutes with A (and then with etA) was used. If Px0 6= 0, then (β1) yields∥∥∥etAPx0

∥∥∥ =
∥∥∥etλPx0

∥∥∥ = ‖Px0‖ ≤ N1e−ν1t‖Px0‖, ∀t ≥ 0,

which is a contradiction. If Px0 = 0, then (I − P)x0 6= 0 and (β2) gives∥∥∥etA(I − P)x0

∥∥∥ =
∥∥∥etλ(I − P)x0

∥∥∥ = ‖(I − P)x0‖ ≤ N2eν2t‖(I − P)x0‖, ∀t ≤ 0,

which is also a contradiction.
(α)⇒ (γ). Since the matrix A is dichotomic, the map

t 7→ y(t) :=
∫ t

0
e(t−s)AP f (s) ds−

∫ ∞

t
e(t−s)A(I − P) f (s) ds,

is a solution of (A, f ). See [3, Chapter 3] for more details. Indeed, the second integral is well
defined because, from (β2), we have∫ ∞

t

∥∥∥e(t−s)A(I − P) f (s)
∥∥∥ ds ≤

∫ ∞

t
N2eν2(t−s)‖I − P‖‖ f ‖∞ ds

=
N2

ν2
‖I − P‖‖ f ‖∞.

Also from (β), the solution y(·) is bounded on R+, since

sup
t≥0
|y(t)| ≤

(
N1

ν1
‖P‖+ N2

ν2
‖I − P‖

)
sup
t≥0
| f (t)|.

Moreover, y(0) = −
∫ ∞

0 e−sA(I − P) f (s) ds ∈ Xu(A) because Xu(A) is a closed subspace
and it is invariant under any exponential of A.

It remains to show that we have uniqueness. Suppose that there exist two bounded solu-
tions on R+ of (A, f ), denoted by y1(·) and y2(·). Then

y1(t) = etAz1 +
∫ t

0
e(t−s)A f (s) ds, t ≥ 0

and

y2(t) = etAz2 +
∫ t

0
e(t−s)A f (s) ds, t ≥ 0,

with z1, z2 ∈ Xu(A).
Since y1(t) − y2(t) = etA(z1 − z2), y1(·) − y2(·) is bounded on R+ and because A is di-

chotomic it follows that z1 − z2 ∈ Xs(A). On the other hand, by the assumption, we have that
z1, z2 ∈ Xu(A). This yields z1 − z2 ∈ Xu(A). But Xs(A) ∩ Xu(A) = {0} and therefore z1 = z2.

(γ) ⇒ (α). Suppose that there exists λ ∈ σ(A), with Re(λ) = 0. Then there exists x0 6= 0
such that Ax0 = λx0, and therefore etAx0 = eλtx0, for all t ∈ R.
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Let f (t) := eλtx0 for t ≥ 0. Obviously, f is a bounded and continuous function and from
the hypothesis, there exists a unique z0 ∈ Xu(A) such that the map

t 7→ etAz0 +
∫ t

0
e(t−s)Aeλsx0 ds

is bounded on R+. But

etAz0 +
∫ t

0
e(t−s)Aeλsx0 ds = etAz0 +

∫ t

0
e(t−s)λeλsx0 ds

= etAz0 +
∫ t

0
eλtx0 ds

= etAz0 + teλtx0.

If z0 = 0, obviously we arrive at a contradiction, since the map t 7→ teλtx0 is unbounded. If
z0 6= 0, from the spectral decomposition theorem there are two positive constants N and ν

such that ‖etAz0‖ ≥ Neνt for all t ≥ 0, and a contradiction arises again.

3 Hyers–Ulam stability and exponential dichotomy for linear
differential systems

We can see an ε-approximate solution of (A) as an exact solution of (A, ρ) corresponding to a
forced term ρ(·) which is bounded by ε.

Remark 3.1. Let ε be an arbitrary positive number. The matrix A (or the system (A)) is Hyers–
Ulam stable if and only if there exists a nonnegative constant L such that for every Cn-valued
continuous map ρ = ρ(t) bounded by ε on R+, and every x ∈ Cn, there exists x0 ∈ Cn such
that

sup
t≥0

∥∥∥∥etA(x− x0) +
∫ t

0
e(t−s)Aρ(s) ds

∥∥∥∥ ≤ Lε.

Proof. Let ε > 0. Assume that the system (A) is Hyers–Ulam stable. Let ρ(·) be a Cn-valued
continuous function on R+ and let x ∈ Cn. We prove that the map

t 7→ φ(t) := etAx +
∫ t

0
e(t−s)Aρ(s) ds : R+ → Cn (3.1)

is an ε-approximative solution for (A). Indeed, the derivative of φ is given by

φ′(t) = AetAx +

(
etA

∫ t

0
e−sAρ(s) ds

)′
= AetAx + AetA

∫ t

0
e−sAρ(s) ds + etAe−tAρ(t)

= Aφ(t) + ρ(t), ∀t ≥ 0.

Therefore, ‖φ′(t)− Aφ(t)‖ = ‖ρ(t)‖ ≤ ε. Let now L be as in the definition of Hyers–Ulam
stability and θ(·) an exact solution of (A) such that ‖φ− θ‖∞ ≤ Lε. This inequality yields

sup
t≥0

∥∥∥∥etA(x− x0) +
∫ t

0
e(t−s)Aρ(s) ds

∥∥∥∥ ≤ Lε, (3.2)

where x0 := θ(0).
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To prove the converse statement, let ε > 0 and φ be an ε-approximative solution of (A).
Then the map t 7→ ρ(t) := φ′(t)− Aφ(t) is continuous on R+ and ‖ρ‖∞ ≤ ε. Let L ≥ 0 as in
the assumption and for x = φ(0) let choose x0 ∈ Cn such that (3.2) holds. Set θ(t) := etAx0. To
finish the proof it is enough to show that

e−tAφ(t) = x +
∫ t

0
e−sAρ(s) ds.

This is an elementary fact and the details are omitted.

Proof of Theorem 2.1.

Necessity. Suppose that A is not dichotomic, i.e. X0(A) 6= {0}. Then, there exists λj in σ(A),
with λj = iµj, µj ∈ R. Let ε > 0 be fixed and set ρ(t) := eiµjtu0, with ‖u0‖ ≤ ε. Obviously,
the function ρ is continuous and bounded by ε. By assumption, the matrix A is Hyers–Ulam
stable. Hence, the solution

y(t) = etA(x− x0) +
∫ t

0
e(t−s)Aρ(s) ds, x, x0 ∈ Cn,

of the Cauchy problem {
y′(t) = Ay(t) + ρ(t), t ≥ 0

y(0) = x− x0,
(A, ρ)

is bounded by Lε. By using the spectral decomposition theorem, (see also Lemma 4.3 below,
[9, Theorem 2], [5, p. 510] or [26, p. 308]), there exists an n× n matrix-valued polynomial Pj(t)
having the degree at most mj − 1, such that

EjetA = eiµjtPj(t), ∀t ≥ 0. (3.3)

Then the map

t 7→ Ej

[
etA(x− x0) +

∫ t

0
e(t−s)Aρ(s) ds

]
, x, x0 ∈ Cn,

should also be bounded by Lε.
On the other hand,

Ej

[
etA(x− x0) +

∫ t

0
e(t−s)Aρ(s) ds

]
= eiµjtPj(t)(x− x0) +

∫ t

0
Ej(e(t−s)Aρ(s)) ds,

and ∫ t

0
Eje(t−s)Aρ(s) ds =

∫ t

0
Eje(t−s)Aeiµjsu0 ds

=
∫ t

0
eiµjse(t−s)iµj Pj(t− s)u0 ds

= eiµjt
∫ t

0
Pj(t− s)u0 ds = eiµjtqj(t),

where

qj(t) =
∫ t

0
Pj(t− s)u0 ds,
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is a polynomial, as well. Now by choosing an appropriate vector u0 6= 0,

deg[Pj(t)(x− x0)] ≤ deg[Pj(t)] = deg[Pj(t)u0] < 1 + deg[Pj(t)] = deg[qj(t)].

Therefore, the solution y(t) = eiµjt
[
Pj(t)(x− x0) + qj(t)

]
is unbounded and we have a contra-

diction.
Sufficiency. The absolute constant L will be chosen later.

Let ρ : R+ → Cn be a continuous function, with ‖ρ‖∞ ≤ ε and let x ∈ Cn. By Proposition
2.2, there exists a unique bounded solution y(·) of (A, ρ) starting from the subspace Xu(A).
Set u0 := y(0) ∈ Xu(A). Since A is dichotomic, the map

t 7→
∫ t

0
e(t−s)APρ(s) ds−

∫ ∞

t
e(t−s)A(I − P)ρ(s) ds

is a bounded solution on R+ of (A, f ). Then,

‖y(t)‖ =
∥∥∥∥etAu0 +

∫ t

0
e(t−s)Aρ(s) ds

∥∥∥∥
=

∥∥∥∥∫ t

0
e(t−s)APρ(s) ds−

∫ ∞

t
e(t−s)A(I − P)ρ(s) ds

∥∥∥∥
≤
(

N1

ν1
‖P‖+ N2

ν2
‖I − P‖

)
ε,

The desired assertion follows by choosing L =
(

N1
ν1
‖P‖+ N2

ν2
‖I − P‖

)
and setting x0 = x− u0.

4 Hyers–Ulam stability and exponential dichotomy for scalar
differential equations of higher order

Let us consider the following differential equations for t ∈ R+

x(n)(t) = a1x(n−1)(t) + · · ·+ an−1x′(t) + anx(t) (4.1)

and
x(n)(t) = a1x(n−1)(t) + · · ·+ anx(t) + θ(t), (4.2)

where θ : R+ → C is a continuous function and aj ∈ C, 1 ≤ j ≤ n.
To the differential equation (4.2) we associate the system

X′(t) = AX(t) + Θ(t), X(t), Θ(t) ∈ Cn,

where
X(t) =

(
x(t), x′(t), . . . , x(n−1)(t)

)T
,

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
an an−1 an−2 · · · a1


is an n× n matrix and

Θ(t) = (0, . . . , 0, θ(t))T .
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Remark 4.1. Let ε be an arbitrary positive number. The differential equation (4.1) is Hyers–
Ulam stable if and only if there exists a nonnegative constant L such that for every C-valued
continuous map θ = θ(t) bounded by ε on R+, and every x ∈ Cn, there exists x0 ∈ Cn such
that

sup
t≥0

∣∣∣∣[etA(x− x0) +
∫ t

0
e(t−s)AΘ(s) ds

]
11

∣∣∣∣ ≤ Lε.

For every z ∈ C, consider the n× n matrix

zI − A =


z −1 0 · · · 0
0 z −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1
−an −an−1 −an−2 · · · z− a1

 .

If z ∈ ρ(A) := C \ σ(A), this matrix is invertible and it is obvious to see that the n-th column
of its inverse is given by

coln[(zI − A)−1] =
1

PA(z)
·


1
z
...

zn−1

 .

Theorem 4.2. The following statements are equivalent:

(α) The differential equation (4.1) is Hyers–Ulam stable.

(β) The matrix A is dichotomic.

(γ) The characteristic equation

λn − a1λn−1 − an−2λn−2 − · · · − an = 0 (4.3)

has no roots on the imaginary axis.

Proof. The statements (β) and (γ) are equivalent since the spectrum of A is equal to the set of
all roots of (4.3).

(α)⇒ (β). Suppose that A is not dichotomic. Then, there exists λj in σ(A), with λj = iµj,
µj ∈ R. Let ε > 0 and set Θ(t) := eiµjtu0, where

u0 = (0, . . . , 0, v0)
T ∈ Cn (4.4)

and v0 is a nonzero complex scalar satisfying |v0| ≤ ε. Clearly, the function Θ is continuous
and bounded by ε. The differential equation (4.1) is Hyers–Ulam stable, so

sup
t≥0

∣∣∣∣[etA(x− x0) +
∫ t

0
e(t−s)AΘ(s) ds

]
11

∣∣∣∣ ≤ Lε.

Then the map t 7→
[

Ej(etA(x− x0) +
∫ t

0 e(t−s)AΘ(s) ds)
]

11
is bounded on R+ by Lε, as well.

On the other hand, in view of (3.3), one has[
Ej

(
etA(x− x0) +

∫ t

0
e(t−s)AΘ(s) ds

)]
11

=
[
eiµjtPj(t)(x− x0)

]
11
+

[∫ t

0
Eje(t−s)AΘ(s) ds)

]
11

.
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We already know from the proof of Theorem 2.1 that the degree of the scalar-valued
polynomial in t, [

[
Pj(t)(x− x0)

]
]11, is less than or equal to mj − 1. In the following we prove

that

ρj(t) := e−iµjt
[∫ t

0
Eje(t−s)AΘ(s) ds)

]
11

is a polynomial in t of degree mj. More exactly, we show that ρj(t) = cjtmj where cj is a certain
nonzero constant which will be settled later.

We need two lemmas.

Lemma 4.3. With the above notations, we have

e−iµjtetAEj =
mj−1

∑
k=0

(A− iµk In)k

k!
Ejtk =: QjA(t). (4.5)

Proof. For every x ∈ ker(A − iµj I)mj and any integer p ≥ mj one has (A − iµj I)px = 0.
Therefore,

(A− iµj I)pEj = 0, for all p ≥ mj.

Thus,

e−iµjtetAEj = e(A−iµj I)tEj =
∞

∑
r=0

(A− iµj I)r

r!
Ejtr =

mj−1

∑
r=0

(A− iµj I)r

r!
Ejtr.

Lemma 4.4. The degree of the scalar polynomial [QjA(t)]1n, given in (4.5), is equal to mj − 1.

Proof. Let us consider the scalar polynomial qj(z) := PA(z)
(z−λj)

mj . Clearly, the map z 7→ 1
qj(z)

is

analytic on Dr(λj). By (2.3) and (4.5) it is enough to prove that

a
(mj−1)
1n :=

1
2πi

∮
Cr(λj)

[
(A− λj I)mj−1

(mj − 1)!
R(z, A)

]
1n

dz

is a nonzero scalar.
We analyse two particular cases and then the general case arises naturally.
For mj = 1, [QjA(t)]1n = [Ej]1n and therefore

a(0)1n =
1

2πi

∮
Cr(λj)

1
PA(z)

dz =
1

2πi

∮
Cr(λj)

1
qj(z)

z− λj
dz =

1
qj(λj)

6= 0,

where the Cauchy integral formula was used.
For mj = 2, we have

[
A− λj I

1!
R(z, A)

]
1n

=
1

PA(z)
(
−λj 1 0 · · · 0

)
·


1
z
...

zn−1


=

z− λj

PA(z)
=

1
qj(z)

z− λj
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which yields

a(1)1n =
1

2πi

∮
Cr(λj)

[
A− λj I

1!
R(z, A)]

]
1n

dz =
1

2πi

∮
Cr(λj)

1
qj(z)

z− λj
dz =

1
qj(λj)

6= 0.

By continuing in this way, we obtain:[
(A− λj I)(mj−1)

(mj − 1)!
R(z, A)

]
11

=
1

PA(z)(mj − 1)!
·
(

C0
mj−1(−λj)

mj−1 · · · C
mj−1
mj−1(−λj)

0
)
·


1
z
...

zn−1


=

∑
mj−1
k=o Ck

mj−1zk(−λj)
mj−1−k

(mj − 1)!PA(z)

=
(z− λj)

mj−1

(mj − 1)!PA(z)
=

1
qj(z)

(mj − 1)!(z− λj)

and by applying again the Cauchy theorem, we get

a
(mj−1)
1n =

1
2πi

∮
Cr(λj)

[
(A− λj I)(mj−1)

(mj − 1)!
R(z, A)

]
11

dz

=
1

(mj − 1)!qj(λj)

which is a nonzero scalar and we get the desired assertion.

Remark 4.5. A similar argument allows us to state that

a(k)1n :=

[
1

2πi

∮
Cr(λj)

(A− λj I)k

k!
R(z, A) dz

]
1n

= 0

whenever mj > 1 and k < mj − 1.

Returning to the proof of the theorem, note that in view of (4.5):[∫ t

0
Eje(t−s)AΘ(s) ds

]
11

=

t∫
0

eiµj(t−s)
[
e−iµj(t−s)Eje(t−s)Aeiµjsu0

]
11

ds

= eiµjt
t∫

0

[QjA]1n(t− s)v0 ds

= eiµjt
∫ t

0

[
Ej

mj−1

∑
k=0

(A− λj I)k

k!
(t− s)k

]
1n

v0 ds

= eiµjt
∫ t

0

1
(mj − 1)!qj(λj)

(t− s)mj−1v0 ds

= eiµjt 1
mj!qj(λj)

tmj v0,
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v0 being the scalar defined in (4.4).
Then

e−iµjt
[

Ej

(
etA(x− x0) +

∫ t

0
e(t−s)AΘ(s) ds

)]
11

= [Pj(t)(x− x0)]11 + ρj(t)

is a polynomial in t of degree mj ≥ 1, since it is the sum of a polynomial of degree mj with a
polynomial of degree at most mj − 1. This contradicts the fact that the map

t 7→
[

Ej

(
etA(x− x0) +

∫ t

0
e(t−s)AΘ(s) ds

)]
11

is bounded on R+.
(β)⇒ (α). The assertion follows via the proof of the second part of the Theorem 2.1.
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