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Abstract. In this paper, stability of impulsive fractional-order systems is investigated.
By Lyapunov’s direct method and comparison principle, results about asymptotic sta-
bility are given. To this end, comparison principles are first generalized to impulsive
fractional order systems, through which a fractional inequality is derived for the linear
impulsive system. Then sufficient conditions for the Mittag-Leffler stability, which is a
special case of algebraic stability, of impulsive fractional-order systems are established.
An example is given to show the effectiveness of the results.
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1 Introduction

In the past two decades, fractional-order systems have been intensively studied due to their
wide applications to various fields, such as viscoelastic systems, dielectric polarization, elec-
tromagnetic waves, heat conduction, robotics, biological systems, finance, and so on, see, for
example, [1, 2, 3]. As we know, practical applications heavily depend on the dynamical behav-
ior, especially on the stability, of models. So the stability of fractional differential equations
(FDEs) has become one of the most active areas of research, and has attracted increasing in-
terests from many scientists and engineers, see, for example, [4, 5] and [6] for a survey of the
stability of FDEs.

Impulsive dynamical systems, which can be viewed as a subclass of hybrid systems, have
not only played an important role in modeling physical phenomena subject to abrupt changes,
but also from the control point of view provided a powerful tool for stabilization and syn-
chronization of chaotic systems [7]. For the theory of impulsive dynamical systems and its
applications, refer to [8, 9] and references therein.

Recently, impulsive fractional differential equations (IFDEs) have attracted considerable in-
terests amongst researchers since their potential applications in some modeling of dynamical
systems which involve hereditary phenomena and abrupt changes. There are some valuable
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results on IFDEs, but it is worth mentioning that Fečkan et al. [10] introduced a formula for
solutions of the Cauchy problem of IFDEs and gave a counterexample to show that the pre-
vious results were incorrect. The related existence, uniqueness and data dependence results
were presented in [11]. In [12], some necessary and sufficient conditions of controllability and
observability for the impulsive fractional linear time-invariant system have been given. A pi-
oneering work on the Hyers–Ulam–Rassias stability for nonlinear IFDEs has been reported by
Wang et al. [13]. In applications, stability is one of the main concerns of IFDEs. For example,
stability and stabilization of fractional order linear systems with uncertainties was considered
in [14]; the stability result of fractional order systems with noncommensurate order was given
in [15]; almost sure stability of fractional order Black–Scholes model was treated in [16].

However, to the best of our knowledge, the asymptotic stability and Mittag-Leffler stability
of IFDEs have not yet been established now. Note that in [17, 18, 19] results about asymp-
totic stability of fractional order systems have been obtained by means of Lyapunov’s direct
method. Here the asymptotic stability of the impulsive models will be studied. First com-
parison principles of the impulsive fractional order models are established. Then by virtue of
Lyapunov’s direct method and comparison principles, results about asymptotic stability are
given.

The rest of this paper is organized as follows. In Section 2, we give some notations and
recall some concepts and preliminary results. In Section 3, the Mittag-Leffler stability and
asymptotic stability of impulsive fractional order systems are investigated by Lyapunov’s di-
rect method. In Section 4, an example is given to demonstrate the effectiveness of the main
results.

2 Preliminaries

First, several definitions and terminologies are recalled. Generally speaking, there are three
commonly used definitions of fractional derivatives, i.e., Grünwald–Letnikov fractional deriva-
tive, Riemann–Liouville fractional derivative and Caputo fractional derivative. The last one is
frequently adopted by applied scientists, since it is more convenient in the setting of the initial
conditions.

Definition 2.1 ([3]). The Riemann–Liouville derivative of function f (t) with fractional order
q ∈ (0, 1) is given by

RLDq
t0

f (t) =
1

Γ(1− q)
d
dt

∫ t

t0

(t− s)−q f (s) ds.

The Caputo fractional derivative of function f (t) with fractional order q ∈ (0, 1) is defined
as:

Dq
t0

f (t) = J1−q
t0

f ′(t),

where Jq
t0

is the Riemann–Liouville integral operator of order q, which is expressed as:

Jq
t0

f (t) =
1

Γ(q)

∫ t

t0

(t− s)q−1 f (s) ds, q > 0.

Here Γ(·) is the well-known Euler Gamma function.
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Remark 2.2 ([17]). If f (t0) ≥ 0, then one has Dq
t0

f (t) ≤RL Dq
t0

f (t). If f (t0) > 0, then one has
Dq

t0
f (t) <RL Dq

t0
f (t).

Definition 2.3 ([20]). The Mittag-Leffler function is defined as

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
,

where α > 0 and z ∈ C.
The two-parameter Mittag-Leffler function also appears frequently and has the form

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + 1)
,

where α > 0, β > 0 and z ∈ C. When β = 1, one has Eα(z) = Eα,1(z), further, E1,1(z) = ez.

Now consider the following impulsive fractional order system
Dq

0x(t) = f (t, x), t 6= tk,

∆x(tk) := x(t+k )− x(tk) = Ik(x(tk)), k ∈ N+,

x(0) = x0,

(2.1)

where Dq
0 is the Caputo derivative, 0 ≡ t0 < t1 < t2 < · · · < tk < · · · , tk → ∞ as k → ∞,

f : J × PC1 → Rn is Lebesgue measurable with respect to t and f (t, x) is continuous with
respect to x on PC1, Ik : Rn → Rn are continuous, and Ik(0) = 0; PC1 denotes the space of
functions with piecewise continuous derivatives from R to Rn; x0 ∈ Rn. Throughout the paper,
‖ · ‖ is assumed to be a suitable complete norm in Rn.

The existence and uniqueness result of system (2.1) is presented in [11]. The constant x0 is
an equilibrium point of system (2.1) if f (t, x0) = 0. Without loss of generality, assume system
(2.1) admits zero solution. Stability is one of main concerns with system (2.1). Here we will
investigate the Mittag-Leffler stability [17] of system (2.1), which is defined as follows.

Definition 2.4. The zero solution of (2.1) is said to be Mittag-Leffler stable if

‖x(t)‖ ≤ {m(x0)Eα(−λtα)}b, t ∈ R+, (2.2)

where α ∈ (0, 1), λ ≥ 0, b > 0, m(0) = 0, m(x) ≥ 0, and m(x) is locally Lipschitz in the
domain B ∈ Rn containing the origin with Lipschitz constant m0.

Definition 2.5. The zero solution is said to be generalized Mittag-Leffler stable if

‖x(t)‖ ≤ {m(x0)t−γEα,1−γ(−λtα)}b, (2.3)

where α ∈ (0, 1), −α < γ ≤ 1− α, λ ≥ 0, b > 0, m(0) = 0, m(x) ≥ 0, and m(x) is locally
Lipschitz in the domain B ∈ Rn containing the origin with Lipschitz constant m0.

Remark 2.6. The ordinary and generalized Mittag-Leffler functions interpolate between a
purely exponential law and power-law-like behavior of phenomena. So Mittag-Leffler and
generalized Mittag-Leffler stability imply asymptotic stability. When b = 1, α = 1, γ = 0,
they reduce to the exponential stability, commonly used in stability analysis of integer-order
systems.



4 R. Wu, X. Hei

Definition 2.7 ([21]). A continuous function α : [0, t)→ [0, ∞) is said to belong to class-κ if it
is strictly increasing and α(0) = 0.

Definition 2.8 ([22]). The class-κ functions α(r) and β(r) are said to be with local growth
momentum at the same level if there exist s1 > 0, k1, k2 > 0 such that k1(s) ≥ β(s) ≥ k2α(s)
for all r ∈ [0, s1]. The class-κ functions α(s) and β(s) are said to be with global growth
momentum at the same level if there exist k1, k2 > 0 such that k1α(s) ≥ β(s) ≥ k2α(s) for all
s ≥ 0.

Definition 2.9 ([23]). A function f is locally left Hölder continuous in x if there are nonnegative
constants C, v, δ such that | f (x)− f (y)| ≤ C(x− y)v for all y ∈ (x− δ, x] in the domain of f .
The constant v is called the Hölder exponent.

3 Main results

First, the comparison principle [24] of fractional systems is extended to the impulsive case.

Lemma 3.1. Let u(t), v(t) : [0, T]→ R (T ≤ +∞) be locally left Hölder continuous, and

(i)
Dq

0v(t) ≤ f (t, v(t));

(ii)
Dq

0w(t) ≥ f (t, w(t)),

for all t 6= tk (k ∈ N+);

(iii)
v(t+k ) = (1 + dk)v(tk), w(t+k ) = (1 + dk)w(tk) (k ∈ N+),

where dk ≥ 0, and ∏∞
k=1(1 + dk) converges, and let d = ∏∞

k=1(1 + dk); 0 ≤ t0 < t1 < t2 < · · ·
· · · < tk < · · · , tk → T, as k→ +∞;

(iv)

f (t, x)− f (t, y) ≤ L
1 + tq (x− y),

whenever x ≥ y and
L < Γ(q + 1). (3.1)

Then
v(0) < w(0) (3.2)

implies
v(t) ≤ w(t), 0 ≤ t ≤ T. (3.3)

Proof. Case 1. Suppose that the inequality in (ii) is strict, then we have

v(t) < w(t), 0 ≤ t ≤ T. (3.4)

If (3.4) is not true, then because of the continuity of the function on every (tn, tn+1]

(t0 = 0, n ∈ N), (iii) and (3.2), it follows that there exists a t∗ such that 0 < t∗ < T and

v(t∗) = w(t∗), v(t) < w(t), 0 < t < t∗.
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Then, setting m(t) = w(t) − v(t), 0 ≤ t ≤ t∗, we find m(t) ≥ 0 for 0 ≤ t ≤ t∗ and
m(t∗) = 0.

Then
Dq

0m(t∗) ≤RL Dq
0m(t∗) ≤ 0. (3.5)

In fact,
RLDq

0m(t) =
1

Γ(p)
d
dt

∫ t

0
(t− s)p−1m(s) ds, (3.6)

where p = 1− q. Let H(t) =
∫ t

0 (t-s)
p−1m(s) ds, take h > 0,

H(t∗)− H(t∗ − h) =
∫ t∗−h

0

[
(t∗ − s)p−1 − (t1 − h− s)p−1

]
m(s) ds

+
∫ t∗

t∗−h
(t∗ − s)p−1m(s) ds = I1 + I2,

where

I1 =
∫ t∗−h

0

[
(t∗ − s)p−1 − (t∗ − h− s)p−1

]
m(s) ds,

I2 =
∫ t∗

t∗−h
(t∗ − s)p−1m(s) ds.

Since [
(t∗ − s)p−1 − (t∗ − h− s)p−1

]
< 0,

and m(s) ≥ 0 for 0 ≤ s ≤ t∗ − h, we have I1 ≤ 0.
Since m(t) is locally left Hölder continuous and m(t∗) = 0, there exists a constant K(t∗) > 0

such that for t∗ − h ≤ s ≤ t∗,

m(s) ≤ K(t∗)(t∗ − s)λ,

where λ > 0 and λ + p− 1 > 0. We then get

I2 ≤ K(t∗)
∫ t∗

t∗−h
(t∗ − s)p−1+λ ds =

K(t∗)
p + λ

hp+λ.

Then

H(t∗)− H(t∗ − h)− K(t∗)
p + λ

hp+λ ≤ 0,

for sufficiently small h > 0.
Letting h → 0, we obtain H′(t∗) ≤ 0, which implies RLDq

0m(t∗) ≤ 0. From Remark 2.2, it
follows that

Dq
0m(t∗) ≤RL Dq

0m(t∗).

Then we have Dq
0m(t∗) ≤ 0. Together with (i) and (ii), we have

f (t, w(t∗) < Dq
0w(t∗) ≤ Dq

0v(t∗) ≤ f (t, v(t∗)).

This is a contradiction since v(t∗) = w(t∗). Hence (3.4) is valid.
Case 2. Suppose that the inequality in (ii) is nonstrict. Set

wε(t) = w(t) +
n

∏
k=1

(1 + dk)ε(1 + tq),
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for small ε > 0 and t ∈ (tn, tn+1]. Then we have

wε(t+n ) = (1 + dn)wε(tn), wε(0) = w(0) + ε > w(0),

and
wε(t) > w(t),

for t ∈ [0, T].
Note that

Dq
0wε(t) = Dq

0w(t) + Dq
0

[
n

∏
k=1

(1 + dk)ε(1 + tq)

]

≥ f (t, w(t)) + εΓ(q + 1)
n

∏
k=1

(1 + dk)

≥ f (t, wε(t))−
n

∏
k=1

(1 + dk)ε[L− Γ(q + 1)]

> f (t, wε(t)).

Here we used condition (iv), (3.1) and (3.2). Now after applying the discussions in Case
1 to v(t) and wε(t), we can get v(t) < wε(t), 0 ≤ t ≤ T. Since ε > 0 is arbitary, then (3.3) is
true.

From Lemma 3.1, the comparison principle for linear impulsive fractional systems follows
immediately.

Lemma 3.2. Let u(t), v(t) : [0, T]→ R (T ≤ +∞) be locally left Hölder continuous, and

(i)
Dq

0v(t) ≤ −λv;

(ii)
Dq

0w(t) ≥ −λw,

for all t 6= tk (k ∈ N+);

(iii)
v(t+k ) = (1 + dk)v(tk), w(t+k ) = (1 + dk)w(tk) (k ∈ N+),

where dk ≥ 0, and ∏∞
k=1(1 + dk) converges, and let d = ∏∞

k=1(1 + dk) .

Then
v(0) < w(0)

implies
v(t) ≤ w(t), 0 ≤ t ≤ T.

Now consider the following one dimensional linear impulsive fractional system
Dq

0u(t) = −λu, t 6= tk

u(0) = u0,

∆u(tk) := u(t+k )− u(tk) = dku(tk), k ∈ N+,

(3.7)
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where 0 ≤ t0 < t1 < t2 < · · · < tk < · · · , tk → T, as k → +∞; λ > 0, dk > 0, u0 are real
constants; ∏+∞

k=1(1 + dk) converges, and let d = ∏+∞
k=1(1 + dk).

Case 1. u0 > 0.
Let u(t) be the solution of system (3.7). From Lemma 3.1, u(t) ≥ 0. For t ∈ [0, t1), by the

formula of the solution of linear fractional equations [3], one can have

u(t) = u0Eq(−λtq). (3.8)

Then we have
u(t+1 ) = (1 + d1)u(t−1 ) = (1 + d1)u0Eq(−λtq

1). (3.9)

Define ũ1(t) = [(1 + d1)u0 + ε]Eq(−λtq), ε > 0, t ∈ [0, t2), then u(t+1 ) ≤ ũ1(t1) and{
Dq

0ũ1(t) = −λũ1,

ũ1(0) = (1 + d1)u0 + ε.
(3.10)

For t ∈ (t1, t2], it will be proved that

u(t) ≤ ũ1(t). (3.11)

In fact, if (3.11) is not true, then there exist t∗ ∈ (t1, t2], such that,

u(t∗) = ũ1(t∗), (3.12)

and
u(t) ≤ ũ1(t),

for t ∈ [0, t∗).
Denote

m(t) = ũ1(t)− u(t),

then m(t) ≥ 0 for [0, t∗).
Since m(0) > 0, from Remark 2.2 we have

Dq
0m(t) < RLDq

0m(t) =
1

Γ(1− q)
d
dt

∫ t

0
(t− s)p−1m(t) ds,

for t ∈ [0, t2), where p = 1− q. Denote H(t) =
∫ t

0 (t− s)p−1m(t) ds. Then for small h > 0,

H(t∗)− H(t∗ − h) =
∫ t∗−h

0

[
(t∗ − s)p−1 − (t∗ − h− s)p−1

]
m(t) ds

+
∫ t∗

t∗−h
(t∗ − s)p−1m(t) ds = I1 + I2,

where

I1 =
∫ t∗−h

0

[
(t∗ − s)p−1 − (t∗ − h− s)p−1

]
m(t) ds,

I2 =
∫ t∗

t∗−h
(t∗ − s)p−1m(t) ds = I1 + I2.

Note that
(t∗ − s)p−1 − (t∗ − h− s)p−1 ≤ 0, m(t) ≥ 0,



8 R. Wu, X. Hei

for s ∈ [0, t∗ − h], so I1 ≤ 0.
Since m(t) is locally left Hölder continuous and m(t∗)= 0, there exists a constant K(t∗) > 0,

such that for t∗ − h ≤ s ≤ t∗,
m(s) ≤ K(t∗)(t∗ − s)λ,

where λ > 0 and λ + p− 1 > 0. Then one gets

I2 ≤ K(t∗)
∫ t∗

t∗−h
(t∗ − s)λ+p−1 ds =

K(t∗)
(p + λ)

hp+λ.

Then

H(t∗)− H(t∗ − h)− K(t∗)
(p + λ)

hp+λ ≤ 0,

for sufficiently small h > 0.
Letting h→ 0, one has

H′(t∗) ≤ 0,

which implies RLDq
0m(t∗) ≤ 0.

Then we have
Dq

0m(t∗) < RLDq
0m(t∗) ≤ 0,

which gives
−λũ1(t∗) = Dq

0ũ1(t∗) < Dq
0u(t∗) = −λu(t∗).

This contradicts with (3.12). Then (3.11) is valid. Since ε > 0 is arbitrary, then we have

u(t) ≤ (1 + d1)u0Eq(−λtq),

for t ∈ (t1, t2].
Inductively, we can easily deduce that the solution u(t) of system (3.7) satisfy

u(t) ≤ u0

n

∏
k=1

(1 + dk)Eq(−λtq), t ∈ (tn, tn+1]. (3.13)

That is,
0 ≤ u(t) ≤ u0dEq(−λtq), t ≥ 0. (3.14)

Case 2. u0 < 0.
Let v(t) = −u(t), then we have

Dq
0v(t) = −λv, t 6= tk,

v(0) = −u0 > 0,

∆v(tk) := v(t+k )− v(tk) = dkv(tk), k ∈ N+.

(3.15)

From the analysis in Case 1, we have

0 ≤ v(t) ≤ −u0dEq(−λtq), t ≥ 0, (3.16)

which gives
0 ≥ u(t) ≥ u0dEq(−λtq).

Based on the discussions in both Case 1 and Case 2, one arrives at

|u(t)| ≤ |u0|dEq(−λtq), (3.17)

which implies the following theorem.
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Theorem 3.3. The one dimensional linear impulsive fractional-order system (3.7) is Mittag-Leffler
stable.

Theorem 3.4. Suppose ∏∞
k=1(1 + dk) converges, dk > 0, and let d = ∏∞

k=1(1 + dk), α1, α2, a, b
and β are positive constants. Let V(t, x) be a locally left Hölder continuous function. If the following
conditions are satisfied

(i)
α1‖x‖a ≤ V(t, x(t)) ≤ α2‖x‖ab, (3.18)

for all t ≥ 0;

(ii)
Dγ

0 V(t, x(t)) ≤ −α3‖x‖ab, (3.19)

for all t ≥ 0 and t 6= tk, k ∈ N+, γ ∈ (0, 1];

(iii)
∆V(t, x(t)) := V(t+, x(t+))−V(t, x(t)) = dk(V(t, x(t))) (3.20)

for t = tk, k ∈ N+,

then system (2.1) is Mittag-Leffler stable.

Proof. Given any x0 ∈ Rn, (3.18), (3.19), (3.20) imply that{
Dγ

0 V(t, x(t)) ≤ − α3
α2

V(t, x(t)), t 6= tk,

4V(tk, x(tk)) = dk(V(tk, x(tk))), k ∈ N+.
(3.21)

From Lemma 3.2 and (3.17), we have

V(t, x(t)) ≤ V(0, x(0))
+∞

∏
k=1

(1 + dk)Eγ

(
−α3

α2
tγ

)
, (3.22)

for t ≥ 0.
From (3.18), one has

α1‖x‖|a ≤ V(t, x(t)) ≤ V(0, x(0))
+∞

∏
k=1

(1 + dk)Eγ

(
−α3

α2
tγ

)
≤ α2‖x0‖ab

+∞

∏
k=1

(1 + dk)Eγ

(
−α3

α2
tγ

)
, (3.23)

that is,

‖x(t)‖ ≤ ‖x0‖b

[
α2

α1

+∞

∏
k=1

(1 + dk)Eγ

(
−α3

α2
tγ

)] 1
a

≤ ‖x0‖b
[

α2

α1
dEγ

(
−α3

α2
tγ

)] 1
a

, (3.24)

which implies the Mittag-Leffler stability of system (2.1).

Theorem 3.5. Suppose dk ≥ 0 and ∏∞
k=1(1 + dk) converges. Let d = ∏∞

k=1(1 + dk) and V(t, x) be a
locally left Hölder continuous function. Assume
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(i) there exist class-κ functions αi, i = 1, 2, 3, having global growth momentum at the same level
and satisfying

α1(‖x‖) ≤ V(t, x(t)) ≤ α2(‖x‖), (3.25)

for all t ≥ 0;

(ii)
Dγ

0 V(t, x(t)) ≤ −α3(‖x‖), (3.26)

for all t ≥ 0 and t 6= tk , γ ∈ (0, 1];

(iii)
∆V(t, x(t)) = dk(V(t, x(t))) (3.27)

for t = tk, k =∈ N+;

(iv) there exists a > 0 such that α1(r) and ra have global growth momentum at the same level.

Then system (2.1) is Mittag-Leffler stable.

Proof. It follows from Conditions (i) and (ii) that there exists k1 > 0 such that

Dγ
0 V(t, x(t)) ≤ −α3(||x||)

≤ −k1α2||x|| ≤ −k1V(t, x(t)). (3.28)

Using (3.25), (3.28) and Lemma 3.2, we obtain

α1(||x||) ≤ V(t, x(t)) ≤ V(0)dEγ(−k1tγ). (3.29)

In addition, using Condition (iv), one gets

(k2‖x‖)a ≤ α1(‖x‖), (3.30)

where k2 > 0.
Substituting (3.30) into (3.29), we finally get

‖x(t)‖ ≤
{

V(0)
ka

2
dEγ(−k1tγ)

}1/a

, (3.31)

which implies that system (2.1) is Mittag-Leffler stable.

4 An illustrative example

For the impulsive fractional-order system

Dq|x1(t)| = −2|x1(t)| − 3|x2(t)| − 4|x3(t)|, t 6= tk,

Dq|x2(t)| = −2
√

x2
1(t) + x2

2(t) + x2
3(t), t 6= tk,

Dq|x3(t)| = −6
√

x4
1(t) + x4

2(t) + x4
3(t), t 6= tk,

∆x1(t) = dkx1(t+), t = tk,

∆x1(t) = dkx1(t+), t = tk,

∆x1(t) = dkx1(t+), t = tk,

(4.1)
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where x(t) ≡ (x1(t), x2(t), x3(t)) ∈ R3, dk ≥ 0, and ∏∞
k=1(1 + dk) converges and let d =

∏∞
k=1(1 + dk).

Consider the Lyapunov function candidate V(t, x(t)) = |x1|+ |x2|+ |x3|, then{
Dq

0V ≤ −6‖x‖, t 6= tk,

V(t, x(t)) = (1 + dk)V(t+, x(t+)), t = tk.
(4.2)

Let γ = q, a = b = 1, α2 = 1, α2 =
√

3, α3 = 6 , then

α1‖x‖ ≤ V(t, x(t)) ≤ α2‖x‖.

From Theorem 3.4, it gives

‖x(t)‖ ≤ ‖x(0)‖
√

3
+∞

∏
k=1

dkEq(−2
√

3tq)

≤ ‖x(0)‖
√

3dEq(−2
√

3tq), (4.3)

which means system (4.1) is Mittag-Leffler stable.

5 Conclusions

Impulsive fractional order systems, which appear in several areas of science and engineer-
ing, involve hereditary phenomena and abrupt changes. The combined use of the fractional
derivative and impulsive system may lead to a better description of systems in applications.
By comparison principles and Lyapunov’s direction method, results about the Mittag-Leffler
stability of such systems are obtained, in the presence of Caputo fractional derivative.
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