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1 Introduction

In this paper, we consider the following p(x)-Laplacian equation in RN

{
−∆p(x)u + V(x)|u|p(x)−2u = f (x, u) in RN ,

u ∈W1,p(x)(RN),
(1.1)

where the p(x)-Laplacian operator is defined by ∆p(x)u = div(|∇u|p(x)−2∇u), p : RN → R

is Lipschitz continuous and 1 < p− := infRN p(x) ≤ supRN p(x) := p+ < N, V is the new
potential function, f obeys some conditions which will be stated later and W1,p(x)(RN) is the
variable exponent Sobolev space.

In recent years, the study of various mathematical problems with p(x)-growth condition
has attracted more and more attention because these problems possess a solid background
in physics and originate from the study on electrorheological fluids (see [1]) and elastic me-
chanics (see [2]). They also have wide applications in different research fields (see e.g. [3–5]
and the references therein) and raise many difficult mathematical problems. In particular,
the presence of the p(x)-Laplacian operator together with the appearance of the potential
function V make its mathematical analysis more difficult than the corresponding p-Laplacian
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equations. Therefore, the mathematical results on the p(x)-Laplacian equations are far from
being perfect.

To go directly to the theme of the present paper, we only review some former results which
are closely related to our main results (a complete literature on p(x)-Laplacian equation is
beyond the scope of this paper, interested authors are referred to [1, 6–21], and the references
therein. When V(x) is radial (for example V(x) ≡ 1), Dai studied the following problem in
[9]: {

−∆p(x)u + |u|p(x)−2u = f (x, u) in RN ,

u ∈W1,p(x)(RN),
(1.2)

by means of a direct variational approach and the theory of variable exponent Sobolev spaces,
sufficient conditions ensuring the existence of infinitely many distinct homoclinic radially
symmetric solutions are established. Based on the theory of variable exponent Sobolev spaces,
Avci in [8] studied the existence of infinitely many solutions of problem (1.2) with Dirichlet
boundary condition in a bounded domain. Fan and Han in [11] discussed the existence and
multiplicity of solutions to problem (1.2). Fu and Zhang in [13] also obtained that problem
(1.2) possesses at least two nontrivial weak solutions.

For p(x) = p, problem (1.1) reduces to{
−∆pu + V(x)|u|p−2u = f (x, u) in RN ,

u ∈W1,p(x)(RN).
(1.3)

The existence of ground states of problem (1.3) with a potential which is periodic or has a
bounded potential well is studied in [21] by Liu. Liu and Zheng in [22] studied problem (1.3)
with sign-changing potential and subcritical p-superlinear nonlinearity, by using the cohomo-
logical linking method for cones, an existence result of nontrivial solution is obtained. Li and
Wang in [23] proved that problem (1.3) has at least a nontrivial solution by using variational
methods combined with perturbation arguments.

Recently, Alves and Liu in [7] established the existence of ground state solution for problem
(1.1) via modern variational methods under some hypotheses on the potential V and the
nonlinear term f , particularly, the nonlinearity is superlinear. However, one of the remaining
cases is that V is nonradial potential and f (x, u) is sublinear at infinity in u and to the best of
our knowledge, no results on this case have been obtained up to now. Based on the above fact
and motivated by techniques used in [24, 25], the main purpose of this paper is devoted to
investigate the existence of infinitely many solutions for problem (1.1) when the nonlinearity
is sublinear in u at infinity. Our analysis is based on the variable exponent Lebesgue–Sobolev
space theory and variational methods.

We are now in a position to state our main results.

Theorem 1.1. Suppose that the following conditions are satisfied.

(H1) V ∈ C(RN) satisfies inf
x∈RN

V(x) > 0 and for all M > 0, µ
(
V−1(−∞, M]

)
< ∞, where µ

denotes the Lebesgue measure on RN .

(H2) F(x, u) = b(x)|u|q(x), where F(x, u) =
∫ u

0 f (x, t)dt, b : RN → R+ is a positive continuous

function such that b ∈ L
s(x)

s(x)−q(x) (RN) and 1 < q− ≤ q+ < p−, where p(x) ≤ s(x) � p∗(x),
p∗(x) = Np(x)

N−p(x) , and s(x)� p∗(x) means that ess inf
x∈RN

(p∗(x)− s(x)) > 0.
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Then problem (1.1) possesses infinitely many solutions {uk} satisfying∫
RN

1
p(x)

(
|∇uk|p(x) + V(x)|uk|p(x)

)
dx−

∫
RN

F(x, uk) dx → 0−, as k→ ∞.

Remark 1.2. From the variational viewpoint, the main difficulty in treating problem (1.1) in
RN arises from the lack of compactness of the Sobolev embeddings which prevents from
checking directly that the energy functional associated with problem (1.1) satisfies the Palais–
Smale condition. To overcome this difficulty, we use a Bartsch–Wang type compact embedding
theorem for variable exponent spaces established by Alves and Liu in [7].

Remark 1.3. In this paper, we consider the case that the nonlinearity is sublinear and ob-
tain infinitely many small negative-energy solutions of problem (1.1), which complement and
extend previously known results in [7, 8, 11, 13, 21, 22].

The structure of this paper is outlined as follows. In Section 2, some preliminary results
and the variational tools we used are presented. In Section 3, the proof of the main result is
given.

Notations: Throughout this paper, we denote a generic positive constant by C which may
vary from line to line. If the dependence needs to be explicitly pointed out, then the notations
Ci (i ∈ Z+) are used.

2 Preliminaries

In this section, we first recall some preliminary results about Lebesgue and Sobolev variable
exponent spaces, which are useful for discussing problem (1.1). We refer the reader to [26–29]
and the references therein for a more detailed account on this topic.

Set
C+(R

N) =
{

p ∈ C(RN) ∩ L∞(RN) : p(x) > 1 for all x ∈ RN
}

.

In this paper, for any p ∈ C+(RN), we will denote

p− = ess inf
x∈RN

p(x), p+ = ess sup
x∈RN

p(x)

and denote by p1 � p2 the fact that ess infx∈RN (p2(x)− p1(x)) > 0.
Denote by S(RN) the set of all measurable real-valued functions defined on RN . Note that

two measurable functions in S(RN) are considered as the same element of S(RN) when they
are equal almost everywhere.

Let p ∈ C+(RN), the variable exponent Lebesgue space is defined by

Lp(x)(RN) =

{
u ∈ S(RN) :

∫
RN
|u|p(x) < ∞

}
furnished with the Luxemburg norm

|u|Lp(x)(RN) = |u|p(x) = inf
{

λ > 0 :
∫

RN

∣∣∣u
λ

∣∣∣p(x)
dx ≤ 1

}
,

and the variable exponent Sobolev space is defined by

W1,p(x)(RN) =
{

u ∈ Lp(x)(RN) : |∇u| ∈ Lp(x)(RN)
}
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equipped with the norm

‖u‖1,p(x) = ‖u‖W1,p(x)(RN) = |u|p(x) + |∇u|p(x).

Proposition 2.1 ([27]). The spaces Lp(x)(RN) and W1,p(x)(RN) are separable and reflexive Banach
spaces.

Now, let us introduce the modular of the space Lp(x)(RN) as the functional ρp(x)(u) :
Lp(x)(RN)→ R defined by

ρp(x)(u) =
∫

RN
|u|p(x)dx

for all u ∈ Lp(x)(RN). The relation between modular and Luxemburg norm is clarified by the
following propositions.

Proposition 2.2 ([12]). Let u ∈ Lp(x)(RN) and let {um} be a sequence in Lp(x)(RN), then

(1) For u 6= 0, |u|p(x) = λ⇔ ρp(x)(
u
λ ) = 1;

(2) |u|p(x) < 1 (= 1;> 1)⇔ ρp(x)(u) < 1 (= 1;> 1);

(3) If |u|p(x) > 1, then |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|
p+

p(x);

(4) If |u|p(x) < 1, then |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|
p−

p(x);

(5) lim
m→∞

|um − u|p(x) ⇔ ρp(x)(um − u) = 0.

Let

E =

{
u ∈W1,p(x)(RN) :

∫
RN

(
|∇u|p(x) + V(x)|u|p(x)) dx < ∞

}
,

we equip it with the norm

‖u‖ = ‖u‖E = inf
{

λ > 0 :
∫

RN

(∣∣∇u
λ

∣∣p(x)
+ V(x)

∣∣u
λ

∣∣p(x)
)

dx ≤ 1
}

.

Then (E, ‖ · ‖) is continuously embedded into W1,p(x)(RN) as a closed subspace. There-
fore, (E, ‖u‖) is also a separable reflexive Banach space. In addition, defining the modular
ρp(x),V(u) : E→ R associated with E as

ρp(x),V(u) =
∫

RN

(
|∇u|p(x) + V(x)|u|p(x)

)
dx

for all u ∈ E, in a similar way to Proposition 2.2, the following proposition holds.

Proposition 2.3. Let u ∈ E and let {um} be a sequence in E, then

(1) For u 6= 0, ||u|| = λ⇔ ρp(x),V(
u
λ ) = 1;

(2) ||u|| < 1(= 1;> 1)⇔ ρp(x),V(u) < 1(= 1;> 1);

(3) If ||u|| > 1, then ||u||p− ≤ ρp(x),V(u) ≤ ||u||p
+

;

(4) If ||u|| < 1, then ||u||p+ ≤ ρp(x),V(u) ≤ ||u||p
−

;
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(5) lim
m→∞

‖um − u‖ ⇔ ρp(x),V(um − u) = 0.

Lemma 2.4 (Hölder-type inequality [12]). The conjugate space of Lp(x)(RN) is Lq(x)(RN), where
1

p(x) +
1

q(x) = 1. For any u ∈ Lp(x)(RN) and v ∈ Lq(x)(RN), we have∣∣∣∣ ∫
RN

uv dx
∣∣∣∣ ≤ ( 1

p−
+

1
q−

)
|u|p(x)|v|q(x) ≤ 2|u|p(x)|v|q(x).

Remark 2.5. Likewise, if 1
p(x) +

1
q(x) +

1
r(x) = 1, then for any u ∈ Lp(x)(RN), v ∈ Lq(x)(RN),

w ∈ Lr(x)(RN), we have∣∣∣∣ ∫
RN

uvw dx
∣∣∣∣ ≤ ( 1

p−
+

1
q−

+
1

r−

)
|u|p(x)|v|q(x)|w|r(x) ≤ 3|u|p(x)|v|q(x)|w|r(x).

Lemma 2.6 ([6,11]). Let q, s ∈ C+(RN) with q(x) ≤ s(x) for all x ∈ RN and u ∈ Ls(x)(RN). Then,

|u(x)|q(x) ∈ L
s(x)
q(x) (RN) and ∣∣|u|q(x)∣∣ s(x)

q(x)
≤ |u|q

+

s(x) + |u|
q−

s(x), (2.1)

or there exists a number q̃ ∈ [q−, q+] such that∣∣|u|q(x)∣∣ s(x)
q(x)

= |u|q̃s(x). (2.2)

The following Bartsch–Wang type compact embedding will play a crucial role in our sub-
sequent arguments.

Lemma 2.7 ([7, Lemma 2.6]). If V satisfies (H1), then

(i) we have a compact embedding E ↪→ Lp(x)(RN), 1 < p− ≤ p+ < N;

(ii) for any measurable function s(x) : RN → R with p < s � p∗, we have a compact embedding
E ↪→ Ls(x)(RN).

Remark 2.8. By virtue of Lemma 2.7, we know that there exists a constant C1 > 0 such that

|u|p(x) ≤ C1‖u‖ for any u ∈ E. (2.3)

Remark 2.9. The case p(x) = 2 is due to Bartsch and Wang [30]. If V satisfies

(H′1) V ∈ C(RN) satisfies inf
x∈RN

V(x) > 0 and there exists r > 0 such that for all M > 0,

µ
({

x ∈ RN : V(x) ≤ M}
⋂

Br(y)
)
= 0,

where µ denotes the Lebesgue measure on RN ,

then a similar compact embedding has been established by Ge et al. in [14].

In the following, we present the variational tools named the variant fountain theorem
established by Zou [31], which will be used to get our result.

Let E be a Banach space with the norm ‖ · ‖ and E = ⊕j∈NXj with dim Xj < ∞ for any
j ∈N. Set

Yk = ⊕k
j=0Xj, Zk = ⊕∞

j=k+1Xj. (2.4)
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Consider the following C1 functional Iλ : E→ R defined by

Iλ(u) = A(u)− λB(u), λ ∈ [1, 2],

where A, B : E→ R are two functionals.

Theorem 2.10 ([31, Theorem 2.2]). Suppose that the functional Iλ defined above satisfies the following
conditions:

(C1) Iλ maps bounded sets to bounded sets uniformly for λ ∈ [1, 2]. Furthermore, Iλ(−u) = Iλ(u)
for all (λ, u) ∈ [1, 2]× E.

(C2) B(u) ≥ 0; B(u)→ ∞ as ‖u‖ → ∞ on any finite dimensional subspace of E.

(C3) There exist ρk > rk > 0 such that ak(λ) := inf
u∈Zk ,‖u‖=ρk

Iλ(u) ≥ 0 > bk(λ) := max
u∈Yk ,‖u‖=rk

Iλ(u)

for λ ∈ [1, 2], dk(λ) := inf
u∈Zk ,‖u‖≤ρk

Iλ(u)→ 0 as k→ ∞ uniformly for λ ∈ [1, 2].

Then there exist λn → 1, u(λn) ∈ Yn such that I ′λn
|Yn(u(λn)) = 0, Iλn(u(λn))→ ck ∈ [dk(2), dk(1)]

as n → ∞. In particular, if {u(λn)} has a convergent subsequence for every k, then I1 has infinitely
many nontrivial critical points {uk} ⊂ E \ {0} satisfying I1(uk)→ 0− as k→ ∞.

In order to discuss the problem 1.1, we need to consider the energy functional I : E → R

defined by

I(u) =
∫

RN

1
p(x)

(
|∇u|p(x) + V(x)|u|p(x)

)
dx−

∫
RN

F(x, u)dx.

Under our conditions, it follows from Hölder-type inequality and Sobolev embedding theo-
rem that the energy functional I is well-defined. It is well known that I ∈ C1(E, R) and its
derivative is given by

〈I′(u), v〉 =
∫

RN

(
|∇u|p(x)−2∇u · ∇v + V(x)|u(x)|p(x)−2uv− f (x, u)v

)
dx (2.5)

for each u ∈ E. It is standard to verify that the weak solutions of problem (1.1) correspond to
the critical points of the functional I.

3 Proof of main result

In order to apply Theorem 2.10, we define the functionals A, B and Iλ on the working space E
by

A(u) =
∫

RN

1
p(x)

(
|∇u|p(x) + V(x)|u|p(x)

)
dx, B(u) =

∫
RN

F(x, u) dx,

and

Iλ(u) =
∫

RN

1
p(x)

(
|∇u|p(x) + V(x)|u|p(x)

)
dx− λ

∫
RN

F(x, u) dx

for all u ∈ E and λ ∈ [1, 2]. Clearly, Iλ(u) ∈ C1(E, R) for all λ ∈ [1, 2]. We choose a completely
orthogonal basis {ej} of E and define Xj := Rej, and Zk, Yk defined as (2.4).

Now, we show that Iλ has the geometric property needed by Theorem 2.10.
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Lemma 3.1. Under the assumptions of Theorem 1.1, then B(u) ≥ 0. Moreover, B(u) → ∞ as
‖u‖ → ∞ on any finite dimensional subspace of E.

Proof. It is obvious that B(u) ≥ 0 from the definition of the functional B and (H2).
Next, we claim that

B(u)→ ∞ as ‖u‖ → ∞

on any finite dimensional subspace of E. First, for any finite dimensional subspace F ⊂ E,
there exists δ > 0 such that

µ
{

x ∈ RN : b(x)|u(x)|q(x) ≥ δ‖u‖q(x)
}
≥ δ for all u ∈ F \ {0}. (3.1)

Otherwise, for any positive integer n, there exists un ∈ F \ {0} such that

µ

{
x ∈ RN : b(x)|un(x)|q(x) ≥ 1

n
‖un‖q(x)

}
<

1
n

.

Set

vn(x) :=
un(x)
‖un‖

∈ F \ {0},

then
‖vn‖ = 1 for all n ∈N

and

µ

{
x ∈ RN : b(x)|vn(x)|q(x) ≥ 1

n

}
<

1
n

. (3.2)

Since dim F < ∞, we know from the compactness of the unit sphere of F that there exists a
subsequence, say {vn}, such that

vn → v0 in F,

and hence
‖v0‖ = 1. (3.3)

In view of the equivalence of the norms on the finite dimensional space F, we obtain

vn → v0 in Ls(x)(RN), p(x) ≤ s(x)� p∗(x)

that is
|vn − v0|s(x) → 0 as n→ ∞. (3.4)

By Lemma 2.4, (2.1) and (3.4), we have∫
RN

b(x)|vn − v0|q(x) dx

≤ 2|b(x)| s(x)
s(x)−q(x)

∣∣|vn − v0|q(x)∣∣ s(x)
q(x)

≤ 2|b(x)| s(x)
s(x)−q(x)

(
|vn − v0|q

+

s(x) + |vn − v0|q
−

s(x)

)
→ 0 as n→ ∞.

(3.5)

Then there exist α1, α2 > 0 such that

µ
{

x ∈ RN : b(x)|v0(x)|q(x) ≥ α1
}
≥ α2. (3.6)
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If this is not true, then, for all positive integer n, one has

µ

{
x ∈ RN : b(x)|v0(x)|q(x) ≥ 1

n

}
= 0,

which, together with (2.3), implies that

0 ≤
∫

RN
b(x)|v0|q(x)+s(x)dx <

1
n

∫
RN
|v0|s(x)dx

≤ 1
n
(
|v0|s

+

s(x) + |v0|s
−

s(x)
)
≤ C

n
(
‖v0‖s+ + ‖v0‖s−)→ 0 as n→ ∞,

and hence one easily checks that ‖v0‖ = 0. This is a contradiction with (3.3) and therefore
(3.6) holds.

Now let

Ω0 =
{

x ∈ Rn : b(x)|v0(x)|q(x) ≥ α1

}
, Ωn =

{
x ∈ Rn : b(x)|v0(x)|q(x) <

1
n

}
and

Ωc
n = RN \Ωn =

{
x ∈ Rn : b(x)|v0(x)|q(x) ≥ 1

n

}
.

From (3.2) and (3.6), we have

µ(Ωn ∩Ω0) = µ(Ω0 \ (Ωc
n ∩Ω0))

≥ µ(Ω0)− µ(Ωc
n ∩Ω0)

≥ α2 −
1
n

for all positive integer n. Let n be large enough such that

α2 −
1
n
≥ 1

2
α2

and
1

2(q+−1)
α1 −

1
n
≥ 1

2q+ α1.

Then we have∫
RN

b(x)|vn − v0|q(x) dx ≥
∫

Ωn∩Ω0

b(x)|vn − v0|q(x) dx

≥ 1
2(q+−1)

∫
Ωn∩Ω0

b(x)|v0|q(x) dx−
∫

Ωn∩Ω0

b(x)|vn|q(x) dx

≥
(

1
2(q+−1)

α1 −
1
n

)
µ(Ωn ∩Ω0)

≥ 1
2q+ α1 ·

1
2

α2

=
α1α2

2(q++1)
> 0

for all sufficiently large n, which is a contradiction to (3.5). Therefore, (3.1) holds. Second, for
the δ given in (3.1), let

Ωu = {x ∈ RN : b(x)|u(x)|q(x) ≥ δ‖u‖q(x)} for all u ∈ F \ {0}. (3.7)
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Then by (3.1),
µ(Ωu) ≥ δ for all u ∈ F \ {0}. (3.8)

Combining (H2) and (3.8), for any u ∈ F \ {0}, we have

B(u) =
∫

RN
F(x, u) dx =

∫
RN

b(x)|u(x)|q(x) dx

≥
∫

Ωu

b(x)|u(x)|q(x) dx ≥ δ‖u‖q(x)µ(Ωu)

≥ δ2‖u‖q(x),

which implies that
B(u)→ ∞ as ‖u‖ → ∞

on any finite dimensional subspace of E. The proof is completed.

Lemma 3.2. Under the assumptions of Theorem 1.1, there exists a sequence ρk → 0+ as k → ∞ such
that

ak(λ) := inf
u∈Zk ,‖u‖=ρk

Iλ(u) ≥ 0,

and
dk(λ) := inf

u∈Zk ,‖u‖≤ρk

Iλ(u)→ 0

as k→ ∞ uniformly for λ ∈ [1, 2], where Zk = ⊕∞
j=kXj = span{ek, . . . } for all k ∈N.

Proof. Set βk := sup
u∈Zk ,‖u‖=1

|u|s(x), then βk → 0 as k → ∞ (see [11]). By (H2), Proposition 2.3,

Lemma 2.4 and Lemma 2.6, we have

Iλ(u) =
∫

RN

1
p(x)

(|∇u|p(x) + V(x)|u|p(x)) dx− λ
∫

RN
F(x, u) dx

≥ 1
p+

min
{
‖u‖p+ , ‖u‖p−}− 2

∫
RN

b(x)|u|q(x) dx

≥ 1
p+

min
{
‖u‖p+ , ‖u‖p−}− 4|b| s(x)

s(x)−q(x)

∣∣|u|q(x)∣∣ s(x)
q(x)

=
1

p+
min

{
‖u‖p+ , ‖u‖p−}− 4|b| s(x)

s(x)−q(x)
|u|q̃(‖u‖)s(x)

≥ 1
p+

min
{
‖u‖p+ , ‖u‖p−}− 4β

q̃
k|b| s(x)

s(x)−q(x)
‖u‖q̃(‖u‖),

(3.9)

where q̃(‖u‖) ∈ [q−, q+], and q̃(‖u‖) is a constant which is dependent on ‖u‖.
Let

ρk = min

{(
8p+β

q̃(‖u‖)
k |b| s(x)

s(x)−q(x)

) 1
p+−q̃(‖u‖)

,
(

8p+β
q̃(‖u‖)
k |b| s(x)

s(x)−q(x)

) 1
p−−q̃(‖u‖)

}
.

Obviously, ρk → 0 as k → ∞. Combining this with (3.9), straightforward computation shows
that

ak(λ) := inf
u∈Zk ,‖u‖=ρk

Iλ(u) ≥
1

2p+
min

{
ρ

p+

k , ρ
p−

k

}
> 0.
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Furthermore, by (3.9), for any u ∈ Zk with ‖u‖ ≤ ρk, we have

Iλ(u) ≥ −4β
q̃(‖u‖)
k |b| p(x)

p(x)−q(x)
‖u‖q̃(‖u‖),

and therefore
0 ≥ inf

u∈Zk ,‖u‖≤ρk

Iλ(u) ≥ −4β
q̃(‖u‖)
k |b| s(x)

s(x)−q(x)
‖u‖q̃(‖u‖). (3.10)

Since βk, ρk → 0, k→ ∞, we derive from (3.10) that

dk(λ) := inf
u∈Zk ,‖u‖≤ρk

Iλ(u)→ 0 as k→ ∞ uniformly for λ ∈ [1, 2].

The proof is completed.

Lemma 3.3. Under the assumptions of Theorem 1.1, for the sequence {ρk}k∈N obtained in Lemma 3.2,
there exist 0 < rk < ρk for all k ∈N such that

bk(λ) := max
u∈Yk ,‖u‖=rk

Iλ(u) < 0, for all λ ∈ [1, 2],

where Yk = ⊕k
j=1Xj = span{e1, . . . , ek} for all k ∈N.

Proof. For any u ∈ Yk and λ ∈ [1, 2], one can deduce from (H2), Proposition 2.3, (3.7) and (3.8)
that

Iλ(u) =
∫

RN

1
p(x)

(|∇u|p(x) + V(x)|u|p(x))dx− λ
∫

RN
F(x, u) dx

≤ 1
p−

max
{
‖u‖p+ , ‖u‖p−}− ∫

Ωu

b(x)|u(x)|q(x) dx

≤ 1
p−

max
{
‖u‖p+ , ‖u‖p−}− δ2 min

{
‖u‖q+ , ‖u‖q−},

which, together with 1 < q− ≤ q+ < p−, leads to

bk(λ) := max
u∈Yk ,‖u‖=rk

Iλ(u) < 0, for all k ∈N,

for ‖u‖ = rk < ρk sufficiently small. The proof is completed.

Now we are in a position to prove Theorem 1.1. In our proof of Theorem 1.1, we will
consider A as a functional on (E, ‖ · ‖). We say that an operator L : E → E∗ is of (S+) type if
un ⇀ u and

lim
n→∞
〈L(un)− L(u), un − u〉 ≤ 0

imply un → u in E.

Proof of Theorem 1.1. Obviously, condition (C1) in Theorem 2.10 holds. By Lemmas 3.1, 3.2
and 3.3, conditions (C2) and (C3) in Theorem 2.10 are also satisfied. Therefore, we know from
Theorem 2.10 that there exist λn → 1, u(λn) ∈ Yn such that

I′λn
|Yn(u(λn)) = 0, Iλn(u(λn))→ ck ∈ [dk(2), bk(1)] as n→ ∞. (3.11)



Infinitely many solutions for a class of p(x)-Laplacian equations in RN 11

For simplicity, we denote u(λn) by un for all n ∈N. We will show that {un} is bounded in E.
To verify this, thanks to (H2) and Lemmas 2.4, 2.6 and (2.3), one has

1
p+

min
{
‖u‖p+ , ‖u‖p−} ≤ Iλn(un) + λn

∫
RN

b(x)|un(x)|q(x) dx

≤ M1 + 4|b| s(x)
s(x)−q(x)

∣∣|un|q(x)∣∣ s(x)
q(x)

≤ M1 + 4|b| s(x)
s(x)−q(x)

(
|un|q

+

s(x) + |un|q
−

s(x)

)
≤ M1 + 4C|b| s(x)

s(x)−q(x)

(
‖un‖q+ + ‖un‖q−)

(3.12)

for some M1 > 0. Since 1 < q− ≤ q+ < p−, (3.12) implies that {un} is bounded in E.
Finally, we show that there is a strongly convergent subsequence of {un} in E. Indeed, in

view of the boundedness of {un}, passing to a subsequence if necessary, still denoted by {un},
we may assume that

un ⇀ u0 in E,

in view of Lemma 2.7, we have

un → u0 in Ls(x)(RN), p(x) ≤ s(x)� p∗. (3.13)

Moreover, by (2.5), direct calculation produces

〈A′(un)− A′u0), un − u0〉 = 〈I′λn
(un)− I′1(u0), un − u0〉

+
∫

RN

(
λn f (x, un)− f (x, u0)

)
(un − u0) dx.

(3.14)

It is clear that

〈I′λn
(un)− I′1(u0), un − u0〉 = 〈I′λn

(un), un − u0〉+ 〈I′1(u0), un − u0〉
→ 0.

(3.15)

By virtue of (H2), Remark 2.8, Lemma 2.6 and (3.13), one can deduce that∫
RN

(
λn f (x, un)− f (x, u0)

)
(un − u0) dx

≤ q+
∫

RN
b(x)(λn|un|q(x)−1 + |u0|q(x)−1)|un − u0| dx

= q+
{

λn

∫
RN

b(x)|un|q(x)−1|un − u0| dx +
∫

RN
b(x)|u0|q(x)−1|un − u0| dx

}
≤ q+

{
6
∣∣b(x)

∣∣ s(x)
s(x)−q(x)

∣∣|un|q(x)−1∣∣ s(x)
q(x)−1
|un − u0|s(x)

+ 3
∣∣b(x)

∣∣ s(x)
s(x)−q(x)

∣∣|u0|q(x)−1∣∣ s(x)
q(x)−1
|un − u0|s(x)

}
→ 0, as n→ ∞.

(3.16)

Together (3.15) with (3.16), one deduces from (3.14) that

〈A′(un)− A′(u0), un − u0〉 → 0 as n→ ∞.

Since A is of (S+) type (see [7, 11]), we obtain un → u in E.
Now from the last assertion of Theorem 2.10, we know that I = I1 has infinitely many non-

trivial critical points. Therefore, problem (1.1) possesses infinitely many nontrivial solutions.
The proof of Theorem 1.1 is completed.
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