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1 Introduction

Infectious diseases have long been recognized as a major cause of mortality in human and
other populations. The spread of an infectious disease involves not only disease-related factors
such as the infectious agent, mode of transmission, latent period, infectious period, but also
social, demographic and geographic factors [18]. Most of the work in the literature in model-
ing infectious disease epidemics is mathematically inspired and based on integro-differential
systems [15].

Classical topics in the qualitative theory of integro-differential equations are asymptotic
equivalence and asymptotic behavior of systems [7, 12]. Two systems of integro-differential
equations are said to be asymptotically equivalent if, corresponding to each solution of one
system, there exists a solution of the other system such that the difference between these two
solutions tends to zero. If we know that two systems are asymptotically equivalent, and if we
also know the asymptotic behavior of the solutions of one of the system, then we can obtain
information about the asymptotic behavior of the solutions of the other system.

Morchalo [21] and Nohal [22] established asymptotic equivalence between linear integro-
differential systems and their perturbations by using the dominated convergence theorem and
the Hölder inequality. In [10] Choi et al. studied the asymptotic property of linear integro-
differential systems by means of the resolvent matrices and useful equivalent systems. For
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asymptotic properties of linear Volterra difference systems we refer the reader to [8, 9]. The
uniform asymptotic stability of recurrent neural networks (RNNs) is analyzed by comparing
RNNs to linear Volterra integro-differential systems in [19] and discrete analogs for a class
of continuous-time recurrent neural networks are discussed in [20]. The results in this paper
generalize some known properties concerning asymptotic equilibrium from the continuous
and discrete cases [8–10] to the time scale situation.

Time scales theory was introduced by Hilger [14] to unify discrete and continuous differen-
tial calculus; see the books [4,5]. We refer the reader to [1–3,16,17] for results on Volterra and
Fredholm type equations (both integral and integro-dynamic) on time scales. For example in
[3] Adivar discusses the principle matrix and a variation of parameter formula. Lupulescu et
al. [17] discussed the resolvent asymptotic stability, boundedness and show that the principle
matrix and resolvent are equivalent for certain linear problems on time scales.

In this paper we assume the reader is familiar with the basic calculus of time scales. Let
Rn be the space of n-dimensional column vectors x = col(x1, x2, ...xn) with a norm ‖ · ‖.
We will use the same symbol ‖ · ‖ to denote the corresponding matrix norm in the space
Mn(R) of n × n matrices. We recall that ‖A‖ := sup{‖Ax‖; ‖x‖ ≤ 1} and the following
inequality ‖Ax‖ ≤ ‖A‖‖x‖ holds for all A ∈ Mn(R) and x ∈ Rn. A time scale, denoted
by T, is an arbitrary, nonempty and closed subset of real numbers. The operator σ : T → T

called the forward jump operator is defined by σ(t) := inf{s ∈ T, s > t}. The step size
function µ : T → R+ is given by µ(t) := σ(t) − t. We say a point t ∈ T is right dense if
µ(t) = 0, and right scattered if µ(t) > 0. Furthermore, a point t ∈ T is said to be left dense if
ρ(t) := sup{s ∈ T, s < t} = t and left scattered if ρ(t) < t. If T has a right-scattered minimum
m, then Tk = T −{m}; otherwise set Tk = T. If T has a left-scattered maximum M, then Tk

= T −{M}; otherwise set Tk = T. Throughout this work, we assume that sup T = ∞ with
bounded graininess, i.e., µ(t) < ∞. Moreover, the delta derivative of a function f : T → R at
a point t ∈ Tk is defined by

f ∆(t) = lim
s→t

s 6=σ(t)

f (σ(t))− f (s)
σ(t)− s

.

A function f is called rd-continuous provided that it is continuous at right dense points in T,
and has finite limit at left-dense points, and the set of rd-continuous functions are denoted
by Crd(T, R). The set of functions C1

rd(T, R) includes the functions f whose derivative is in
Crd(T, R) too. For s, t ∈ T and a function f ∈ Crd(T, R), the ∆-integral is defined to be

∫ t

s
f (τ)∆τ = F(t)− F(s),

where F ∈ C1
rd(T, R) is an anti-derivative of f , i.e., F∆ = f on Tk. It should be noted that the

∆-integral by means of the Riemann sum is also introduced in [13].
Let E ⊆ T be a ∆-measurable set and let p ∈ R be such that p ≥ 1 and let f : E→ Rn be a

∆-measurable function. We say f belongs to Lp(E) provided that
∫

E ‖ f (t)‖p ∆t < ∞.
For more details concerning Lp spaces we refer the reader to [23].
A function f ∈ Crd(T, R) is called regressive if 1 + µ(t) f (t) 6= 0 for all t ∈ Tk, and

f ∈ Crd(T, R) is called positively regressive if 1 + µ(t) f (t) > 0 on Tk. The set of regressive
functions and the set of positively regressive functions are denoted byR(T, R) andR+(T, R),
respectively.

Let f ∈ R(T, R) and s ∈ T, then the generalized exponential function e f (·, s) on a time
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scale T is defined to be the unique solution of the following initial value problem{
x∆(t) = f (t)x(t)

x(s) = 1.

For h ∈ R+, set Ch := {z ∈ C : z 6= −1/h}, Zh := {z ∈ C : −π/h < Im(z) ≤ π/h}, and
C0 := Z0 := C. For h ∈ R+

0 and z ∈ Ch, the cylinder transformation ξh : Ch → Zh is defined
by

ξh(z) :=

{
z, h = 0
1
h Log(1 + zh), h > 0,

and the exponential function can also be written in the form

e f (t, s) := exp
{∫ t

s
ξµ(τ)( f (τ))∆τ

}
for s, t ∈ T.

For f ∈ Crd(T, R) and µ f 2 ∈ R(T, R), the trigonometric functions cos f and sin f are defined
by

cos f (t, s) =
ei f (t, s) + e−i f (t, s)

2
and sin f (t, s) =

ei f (t, s)− e−i f (t, s)
i2

.

For further details about these notions we refer the reader to [4, 5].
Let T1 and T2 be two given time scales and put T1×T2 = {(x, y) : x ∈ T1, y ∈ T2}, which

is a complete metric space with the metric (distance) d defined by

d((x1, y1), (x2, y2)) =

√
(x1 − x2)

2 + (y1 − y2)
2 for (x1, y1), (x2, y2) ∈ T1 ×T2.

A function f : T1 × T2 → R is said to be continuous at (x, y) ∈ T1 × T2, if for every
ε > 0 there exists δ > 0 such that ‖ f (x, y)− f (x0, y0)‖ < ε for all (x0, y0) ∈ T1 ×T2 satisfying
d((x, y), (x0, y0)) < δ. If (x, y) is an isolated point of T1 × T2, then the definition implies
that every function f : T1 × T2 → R is continuous at (x, y). In particular, every function
f : Z×Z→ R is continuous at each point of Z×Z.

Let Crd(T1 × T2, R) denote the set of functions f (x, y) on T1 × T2 with the following
properties:

(i) f is rd-continuous in x for fixed y;

(ii) f is rd-continuous in y for fixed x;

(iii) if (x0, y0) ∈ T1×T2 with x0 right-dense or maximal and y0 right-dense or maximal, then
f is continuous at (x0, y0);

(iv) if x0 and y0 are both left-dense, then the limit of f (x, y) exists (finite) as (x, y) approaches
(x0, y0) along any path in {(x, y) ∈ T1 ×T2 : x < x0, y < y0}.

A brief introduction into the two-variable time scales calculus can be found in [6].
Let us consider the Volterra integro-dynamic equation

y∆(t) = A(t)y(t) +
∫ t

t0

K(t, s)y(s)∆s + f (t), y(t0) = y0 (1.1)
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and the corresponding homogeneous equation

x∆(t) = A(t)x(t) +
∫ t

t0

K(t, s)x(s)∆s, x(t0) = x0, (1.2)

where A is an n× n matrix function, f is a n-vector function, which are continuous on T0 :=
T∩ [0, ∞), and K is an n× n matrix function, which is continuous on Ω := {(t, s) ∈ T0 ×T0 :
t0 ≤ s ≤ t < ∞}.

Definition 1.1. The principle matrix solution of (1.2) is the n×n matrix function Z(t, s) defined
by

Z(t, s) := [x1(t, s), x2(t, s), . . . , xn(t, s)],

where xi(t, s)(i = 1, 2, . . . , n) are the linearly independent solutions of (1.2). The principle
matrix Z(t, s) is called the transition matrix if Z(τ, τ) = I.

Therefore, the transition matrix of (1.2) at initial time τ is the unique solution of the matrix
initial value problem Y∆(t) = A(t)Y(t) +

∫ t

τ
K(t, s)Y(s)∆s

Y(τ) = I,
(1.3)

and x(t) = Z(t, τ)x0 is the unique solution of system (1.2).
The principle matrix is the unique solution of

∆tZ(t, s) = A(t)Z(t, s)−
∫ t

s
Z(t, τ)K(τ, s)∆τ,

Z(s, s) = I.
(1.4)

Under continuity conditions on A and K, there is a unique solution of the initial value problem
(see [17, Theorem 2.2])

∆sR(t, s) = −R(t, σ(s))A(s)−
∫ t

σ(s)
R(t, σ(τ))K(τ, s)∆τ,

R(t, t) = I.
(1.5)

Both the principle matrix and the resolvent of the linear Volterra integro-dynamic equation
are equivalent (see, [17, Theorem 2.7]). Then the unique solution y(t, t0, y0) of (1.1) satisfying
y(t0, t0, y0) = y0 is given by [3, 17]

y(t, t0, y0) = R(t, t0)y0 +
∫ t

t0

R(t, σ(τ)) f (τ)∆τ. (1.6)

In the next section, we investigate the asymptotic property of (1.2) and its perturbation (1.1)
by means of the resolvent matrix R(t, s). With results concerning the asymptotic equilibrium
we investigate asymptotic equivalence between two linear Volterra systems in Section 3. In the
last section, we use a useful equivalent system from [17, Theorem 3.1] to study the asymptotic
property of (1.1) and (1.2).
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2 Asymptotic property

In this section we investigate the asymptotic property of the linear Volterra integro-dynamic
system (1.1) and (1.2).

We need the following integral inequality.

Lemma 2.1. Suppose that u, f ∈ Crd(T, R) are nonnegative functions, and c is a nonnegative con-
stant. Assume that k(t, s) is a nonnegative and rd-continuous function for s, t ∈ T with s ≤ t.
Then

u(t) ≤ c +
∫ t

t0

[
f (s)u(s) +

∫ s

t0

k(t, τ)u(τ)∆τ

]
∆s for all t ∈ T0

implies
u(t) ≤ cep(t, t0), t ∈ T0,

where p(t) = f (t) +
∫ t

t0
k(t, τ)∆τ.

Proof. The proof is similar to [11, Theorem 3.13].

Let p, v : T0 → R be nonnegative functions. The Hardy–Littlewood symbols O and o have
the usual meaning: z(n) = O(p(t)) means that there exists c > 0 such that ‖z(t)‖ ≤ cp(t)
for large t, and z(t) = o(p(t)) means that there exists v(t) such that ‖z(t)‖ ≤ p(t)v(t) and
limt→∞ v(t) = 0.

Definition 2.2. A linear Volterra integro-dynamic system (1.2) is said to have asymptotic equi-
librium if there exist a unique ζ ∈ Rn and r > 0 such that any solution x(t) of (1.2) satisfies

x(t) = ζ + o(1) as t→ ∞ (2.1)

and conversely, for every ζ ∈ Rn there exists a solution x(t) of (1.2) with ‖x0‖ < r such that
(2.1) is satisfied.

Our next result give necessary and sufficient conditions for (1.2) to have asymptotic equi-
librium via the resolvent matrix R(t, s).

Theorem 2.3. System (1.2) has asymptotic equilibrium iff limt→∞ R(t, t0) exists and is invertible for
each t ≥ t0 ≥ 0.

Proof. Suppose that (1.2) has asymptotic equilibrium. Then there exists a unique ζ and r > 0
such that if x(t) is any solution of (1.2) with ‖x0‖ < r then limt→∞ x(t) = ζ, i.e.,

lim
t→∞

R(t, t0)x0 = ζ,

Then there exists R∞(t0) with limt→∞R(t, t0)=R∞(t0) for each t0 ≥ 0. Let ei = (0, . . . , 1, . . . , 0)T

be the unit vector in Rn for each i = 1, 2, . . . , n. Then there exist solutions x(t, t0, x0i) of (1.2)
such that

ei = lim
t→∞

x(t, t0, x0i) = lim
t→∞

R(t, t0)x0i = R∞(t0)x0i, i = 1, 2, . . . , n.

It follows that
R∞(t0)[x01 . . . x0n] = I,

where [x01 . . . x0n] is the inverse matrix of R∞(t0). Thus R∞(t0) is invertible.
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Conversely, let ζ ∈ Rn be any vector. Then there exists a solution x(t, t0, x0) of (1.2) with
x0 = R−1

∞ (t0)ζ such that
lim
t→∞

x(t, t0, x0) = lim
t→∞

R(t, t0)x0 = ζ.

This completes the proof.

Corollary 2.4. If (1.2) has asymptotic equilibrium, then there exists a positive constant M > 0 such
that ‖R(t, s)‖ ≤ M, for 0 ≤ t0 ≤ s ≤ t.

Theorem 2.5. Assume that both A(t) and
∫ t

t0
K(t, s)∆s belong to L1(T0). Then (1.2) has asymptotic

equilibrium.

Proof. Let x(t) be the solution of (1.2). We can write (1.2) in an equivalent form

x(t) = x0 +
∫ t

t0

[
A(s)x(s) +

∫ s

t0

K(s, τ)x(τ)∆τ

]
∆s. (2.2)

Since x(t) = R(t, t0)x0 for each x0 ∈ Rn, it follows that

R(t, t0) = I +
∫ t

t0

[
A(s)R(s, t0) +

∫ s

t0

K(s, τ)R(τ, t0)∆τ

]
∆s. (2.3)

Let us take u(t) = ‖R(t, t0)‖ and

v(t) = 1 +
∫ t

t0

[
‖A(s)‖ ‖R(s, t0)‖+

∫ s

t0

‖K(s, τ)‖ ‖R(τ, t0)‖∆τ

]
∆s,

and we have the estimate

v(t) = 1 +
∫ t

t0

[
‖A(s)‖ u(s) +

∫ s

t0

‖K(s, τ)‖ u(τ)∆τ

]
∆s

≤ 1 +
∫ t

t0

[
‖A(s)‖ v(s) +

∫ s

t0

‖K(s, τ)‖ v(τ)∆τ

]
∆s.

Using Lemma 2.1, we obtain
v(t) ≤ ep(t, t0),

where p(s) = ‖A(s)‖+
∫ s

t0
‖K(s, τ)‖∆τ. Thus there exists a constant M > 0 with

v(t) ≤ ep(∞, t0) < M.

It is easy to see that u(t) ≤ v(t) for each t ≥ t0 and v(t) is increasing and bounded. Further-
more, for any t ≥ t1 ≥ t0, we have

‖R(t, t0)− R(t1, t0)‖ ≤
∫ t

t1

[
‖A(s)‖ ‖R(s, t0)‖+

∫ s

t0

‖K(s, τ)‖ ‖R(τ, t0)‖∆τ

]
∆s

= v(t)− v(t1).

This implies that, given any ε > 0, we can choose a t1 > 0 sufficiently large so that

‖R(t, t0)− R(t1, t0)‖ < ε for all t > t1.

Hence R(t, t0) converges to a constant n× n matrix R∞(t0) as t→ ∞.
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Next there exists a constant N > 0 such that ‖R(t, t0)‖ < N for each t > t0. Since

∫ ∞

t0

[
‖A(s)‖+

∫ s

t0

‖K(s, τ)‖∆τ

]
∆s < ∞

then for a given t0 > 0, we obtain

∫ ∞

t0

[
‖A(s)‖+

∫ s

t0

‖K(s, τ)‖∆τ

]
∆s <

1
N

. (2.4)

Let us take

q(t, t0) =
∫ t

t0

[
A(s)R(s, t0) +

∫ s

t0

K(s, τ)R(τ, t0)∆τ

]
∆s.

By taking norms, we have the estimate

‖q(t, t0)‖ ≤
∫ t

t0

[
‖A(s)‖ ‖R(s, t0)‖+

∫ s

t0

‖K(s, τ)‖ ‖R(τ, t0)‖∆τ

]
∆s.

≤ N
∫ t

t0

[
‖A(s)‖+

∫ s

t0

‖K(s, τ)‖∆τ

]
∆s.

Using (2.4), we obtain
lim
t→∞
‖q(t, t0)‖ < 1. (2.5)

From (2.3) and (2.5), this implies that limt→∞ R(t, t0) = R∞ is invertible. It follows from
Theorem 2.3 that (1.2) has asymptotic equilibrium.

Example 2.6. We consider the linear integro-dynamic equation

x∆(t) =
−1

tσ(t)
x(t)−

∫ t

π
2

p sinp(t, σ(s))x(s)∆s, x
(π

2

)
= 1, (2.6)

where A(t) = −1
tσ(t) and K(t, s) = −p sinp(t, σ(s)). Note that ( 1

t )
∆ = −1

tσ(t) and (cosp(t, s))∆ =

−p sinp(t, σ(s)) ([4, Lemma 3.26]). It is easy to see that A(t) and
∫ t

π
2

K(t, s)∆s belong to

L1([π
2 , ∞)T). From Theorem 2.5, the initial value problem (2.6) has asymptotic equilibrium.

Theorem 2.7. Assume that (1.2) has asymptotic equilibrium and f (t) belongs to L1(T0). Then (1.1)
has asymptotic equilibrium.

Proof. The solution y(t) of (1.1), is given by

y(t) = R(t, t0)y0 +
∫ t

t0

R(t, σ(τ)) f (τ)∆τ for each t ≥ t0.

Let us consider r(t) =
∫ t

t0
R(t, σ(τ)) f (τ)∆τ. Since (1.2) has asymptotic equilibrium then by

Corollary 2.4, R(t, s) is bounded for t0 ≤ s ≤ t and
∫ ∞

t0
‖ f (τ)‖∆τ < ∞.Then there exists r∞

with limt→∞ r(t) = r∞. This with Theorem 2.3 that limt→∞ y(t) = xi for some xi in Rn.
Conversely, let ξ be any vector Rn and consider p(t) =

∫ t
t0

R(t, σ(τ)) f (τ)∆τ. Since (1.2)
has asymptotic equilibrium then again by Corollary 2.4 and f (t) belongs to L1(T0) there
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exists p∞ with limt→∞ p(t) = p∞. Thus there exists a solution y(t) of (1.1) with initial value
y0 = R−1

∞ (ξ − p∞) such that

y(t) = R(t, t0)y0 +
∫ t

t0

R(t, σ(τ)) f (τ)∆τ

= R(t, t0)R−1
∞ (ξ − p∞) + p∞ −

∫ ∞

t
R(∞, σ(τ)) f (τ)∆τ

= ξ + o(1) as t→ ∞,

since
∫ ∞

t R(∞, σ(τ)) f (τ)∆τ → 0 as t→ ∞.

Example 2.8. For p ∈ R, such that �p = −p
1+µ(t)p ∈ R

+(T, R), we consider the linear integro-
dynamic equation

x∆(t) =
−1

tσ(t)
x(t)−

∫ t

π
2

p sinp(t, σ(s))x(s)∆s + e�p

(
σ(t),

π

2

)
, x

(π

2

)
= 1, (2.7)

where A(t) = −1
tσ(t) , K(t, s) = −p sinp(t, σ(s)) and f (t) = e�p(σ(t), π

2 ). Note that

∫ ∞

π
2

e�p

(
σ(t),

π

2

)
∆t = lim

b→∞

−1
p

∫ ∞

π
2

−p
ep(σ(t), π

2 )
∆t

= lim
b→∞

−1
p

∫ ∞

π
2

−p
ep(σ(t), π

2 )
∆t

= lim
b→∞

−1
p

∫ ∞

π
2

(
1

ep(t, π
2 )

)∆

∆t

= lim
b→∞

−1
p

[
1

ep(b, π
2 )
− 1
]

=
1
p

.

It follows that f (t) belongs to L1([π
2 , ∞)T). From Theorem 2.7, (2.7) has asymptotic equilib-

rium.

Let us consider the Volterra integro-dynamic equation

y∆(t) = A(t)y(t) +
∫ t

t0

K(t, s)y(s)∆s + f (t), (2.8)

and the corresponding homogeneous equation

x∆(t) = A(t)x(t) +
∫ t

t0

K(t, s)x(s)∆s, (2.9)

Definition 2.9. The two Volterra integro-dynamic systems (2.8) and (2.9) are said to be asymp-
totically equivalent if, for every solution x(t) of (2.9), there exists a solution y(t) of (2.8) such
that

x(t) = y(t) + o(1) as t→ ∞ (2.10)

and conversely, for every solution y(t) of (2.8), there exists a solution x(t) of (2.9) such that
the asymptotic relationship (2.10) holds.

Next, we obtain asymptotic equivalence between (2.8) and (2.9).
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Theorem 2.10. Assume that (2.9) has asymptotic equilibrium and f (t) belongs to L1(T0). Then (2.8)
and (2.9) are asymptotically equivalent.

Proof. Let x(t) be the solution of (2.9) with the initial value x0. Then there exists a solution
y(t) of (2.8) with initial condition y(t0) = x0 − R−1

∞ p∞, such that

x(t) = R(t, t0)x0

= y(t) + R(t, t0)R−1
∞ p∞ −

∫ t

t0

R(t, σ(τ)) f (τ)∆τ

= y(t) + o(1) as t→ ∞,

where p∞ = limt→∞
∫ t

t0
R(t, σ(τ)) f (τ)∆τ.

Conversely, let y(t) be the solution of (2.8) with the initial value y0. Then there exists a
solution x(t) of (2.9) with initial condition x(t0) = y0 + R−1

∞ p∞, such that

y(t) = R(t, t0)y0 +
∫ t

t0

R(t, σ(τ)) f (τ)∆τ

= x(t)− R(t, t0)R−1
∞ p∞ +

∫ t

t0

R(t, σ(τ)) f (τ)∆τ

= x(t) + o(1) as t→ ∞.

This completes the proof.

3 Asymptotic equivalence between two Volterra systems

Let us consider two linear Volterra integro-dynamic systems

x∆ = A(t)x +
∫ t

t0

K(t, s)x(s)∆s, x(t0) = x0 (3.1)

and

y∆ = C(t)y +
∫ t

t0

D(t, s)y(s)∆s, y(t0) = y0 (3.2)

(H1) Assume that
∫ ∞

t0
‖A(t)− C(t)‖∆t < ∞ and

∫ ∞
t0
‖K(t, s)− D(t, s)‖∆s < ∞ for almost all

t ∈ T0.

Theorem 3.1. Let (H1) hold. Then (3.1) has an asymptotic equilibrium if and only if (3.2) has an
asymptotic equilibrium.

Proof. Assume that (3.1) has an asymptotic equilibrium. We can write (3.2) in the form

y∆ = A(t)y +
∫ t

t0

K(t, s)y(s)∆s− h(t, y(t)), y(t0) = y0,

where

h(t, y(t)) = [A(t)− C(t)] y(t) +
∫ t

t0

[K(t, s)− D(t, s)] y(s)∆s.

Let y(t) be any solution of (3.2) with the initial value y(t0) = y0. By using the variation of
constants formula (1.6), we obtain

y(t) = R(t, t0)y0 +
∫ t

t0

R(t, σ(s))h(s, y(s))∆s. (3.3)
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It follows from (3.3) that

Q(t, t0)y0 = R(t, t0)y0 +
∫ t

t0

R(t, σ(s))h(t, Q(s, t0))∆s

= R(t, t0)y0 +
∫ t

t0

R(t, σ(s)) (A(s)− C(s)) Q(s, t0)y0∆s

+
∫ t

t0

R(t, σ(s))
[∫ s

t0

(K(s, τ)− D(s, τ)) Q(τ, t0)y0∆τ

]
∆s,

where Q(t, s) is the unique solution of the initial value problem

∆sQ(t, s) = −Q(t, σ(s))C(s)−
∫ t

σ(s)
Q(t, σ(τ))D(τ, s)∆τ,

Q(t, t) = I.

Also, it follows from the boundedness of R(t, s) (with bound M) that

‖Q(t, t0)‖ ≤ ‖R(t, t0)‖+
∫ t

t0

‖R(t, σ(s))‖
[
‖A(s)− C(s)‖ ‖Q(s, t0)‖

+
∫ s

t0

‖K(s, τ)− D(s, τ)‖ ‖Q(τ, t0)‖∆τ

]
∆s

≤ M + M
∫ t

t0

[
‖A(s)− C(s)‖ ‖Q(s, t0)‖+

∫ s

t0

‖K(s, τ)− D(s, τ)‖ ‖Q(τ, t0)‖∆τ

]
∆s.

Putting u(t) = ‖Q(t, t0)‖ we obtain

u(t) ≤ Meq(t, t0) ≤ Meq(∞, t0) < ∞,

where q(t) = ‖A(t)− C(t)‖+
∫ t

t0
‖K(t, τ)− D(t, τ)‖∆τ. Thus

lim
t→∞

Q(t, t0) = Q∞(t0)

exists for each fixed t0 ∈ T0.
Also we obtain the following relationship between R(t, t0) and Q(t, t0):

Q(t, t0) = R(t, t0) +
∫ t

t0

R(t, σ(s)) (A(s)− C(s)) Q(s, t0)∆s

+
∫ t

t0

R(t, σ(s))
[∫ s

t0

(K(s, τ)− D(s, τ)) Q(τ, t0)∆τ

]
∆s

= R(t, t0) + R∞P(t, t0),

(3.4)

where

P(t, t0) = R−1
∞

∫ t

t0

R(t, σ(s)) (A(s)− C(s)) Q(s, t0)∆s

+ R−1
∞

∫ t

t0

R(t, σ(s))
[∫ s

t0

(K(s, τ)− D(s, τ)) Q(τ, t0)∆τ

]
∆s.

Since both R(t, t0) and Q(t, t0) are bounded and (H1) holds, then P(t, t0) has the Cauchy
property. Thus limt→∞ P(t, t0) = P∞(t0) exists for each t0 ∈ [0, ∞)T. We can choose t0 > 0
sufficiently large so that ‖P∞(t0)‖ < 1. Then we obtain from (3.4)

Q∞ = lim
t→∞

Q(t, t0) = R∞[I + P∞(t0)].
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It follows from ‖P∞(t0)‖ < 1 that I + P∞(t0) is invertible and Q∞ is also invertible. Hence (3.2)
has an asymptotic equilibrium by Theorem 2.3.

In a similar manner we can obtain the converse.

Our next result is about asymptotic equivalence between linear systems (3.1) and (3.2).

Theorem 3.2. In addition to the assumptions of Theorem 3.1, suppose that (3.1) has an asymptotic
equilibrium. Then (3.1) and (3.2) are asymptotically equivalent.

Proof. We know that (3.2) has an asymptotic equilibrium by Theorem 3.1. Let x(t, t0, x0) be any
solution of (3.1). Then limt→∞ x(t, t0, x0) = x∞ exists. Thus there exists a solution y(t, t0, y0) of
(3.2) such that limt→∞ y(t, t0, y0) = x∞ and the asymptotic relationship

x(t, t0, x0) = y(t, t0, y0) + o(1) as t→ ∞ (3.5)

holds. The converse asymptotic relationship can be obtained similarly.

4 Asymptotic property via equivalent system

In this section we use a useful equivalent system to study the asymptotic property of (1.1) and
(1.2).

Theorem 4.1. Let L(t, s) be an n× n continuously differentiable matrix function on Ω. Then (1.1) is
equivalent to the following system{

z∆(t) = B(t)z(t) + L(t, t0)x0 + H(t), t ∈ T0,

z(t0) = x0,
(4.1)

where
B(t) = A(t)− L(t, t) and H(t) = f (t) +

∫ t

t0

L(t, σ(s)) f (s)∆s, (4.2)

and
K(t, s) + ∆sL(t, s) + L(t, σ(s))A(s) +

∫ t

σ(s)
L(t, σ(τ))K(τ, s)∆τ = 0. (4.3)

Proof. By taking G(t, s) = 0 in [17, Theorem 3.1], we obtain the result.

The solution z(t) of (4.1) with initial condition z(t0) = x0 is given by

z(t) = ΦB(t, t0)x0 +
∫ t

t0

ΦB(t, σ(τ)) [L(τ, t0)x0 + H(τ)]∆τ, (4.4)

where ΦB(t, t0) is a fundamental matrix solution of z∆(t) = B(t)z(t).
Our next theorem shows asymptotic equilibrium for the linear Volterra integro-dynamic

system (1.1) by using the equivalent system (4.1) with H(t) = 0.

Theorem 4.2. Let us assume that limt→∞ ΦB(t, t0) = Φ∞ is an invertible constant matrix and∫ ∞

t0

‖ΦB(t0, σ(τ))L(τ, t0)‖∆τ < 1. (4.5)

Then (1.1) with f (t) = 0 has an asymptotic equilibrium.
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Proof. Let us consider an arbitrary ζ ∈ Rn. By using (4.5), it follows that∫ ∞

t0

ΦB(t0, σ(τ))L(τ, t0)∆τ(= E)

exists, so I + E is invertible. Thus we can find the unique solution x0 of the linear system

Φ∞(I + E)x0 = ζ

such that the solution of linear system is given by

x0 = (I + E)−1Φ−1
∞ ζ. (4.6)

Using (4.4), we obtain

lim
t→∞

z(t) = lim
t→∞

[
ΦB(t, t0)

(
I +

∫ t

t0

ΦB(t0, σ(τ))L(τ, t0)

)
x0

]
∆τ

= Φ∞(I + E)x0

= Φ∞(I + E)(I + E)−1Φ−1
∞ ζ

= ζ.

Conversely, it is easy to see that the solution z(t) of (4.1) tends to a vector ζ ∈ Rn as t → ∞.
This completes the proof.

Corollary 4.3. In addition to the assumption of Theorem 4.2 suppose that
∫ ∞

t0
‖H(τ)‖∆τ exists. Then

(1.1) has an asymptotic equilibrium.

Proof. In the proof of Theorem 4.2 take

x0 = (I + E)−1
[
Φ−1

∞ ζ − h∞

]
,

where h∞ =
∫ ∞

t0
ΦB(t0, σ(τ))H(τ)∆τ. Then the rest of the proof is the same as in Theorem 4.2.

To obtain a sufficient condition on asymptotic equivalence between (1.1) and (1.2) we need
the system {

u∆(t) = B(t)u(t) + L(t, t0)x0, t ∈ T0,

u(t0) = x0.
(4.7)

Theorem 4.4. Assume that limt→∞ ΦB(t, t0) = Φ∞ and
∫ ∞

t0
ΦB(t0, σ(τ))H(τ)∆τ exist. Then (1.1)

and (1.2) are asymptotically equivalent.

Proof. It suffices to prove that the systems (4.1) and (4.7) which are equivalent to (1.1) and (1.2)
respectively, are asymptotically equivalent. Let τ(t) be any solution of (4.7) with the initial
condition u(t0) = u0. Then the solution z(t) of (4.1) is given by

z(t) = ΦB(t, t0)x0 +
∫ t

t0

ΦB(t, σ(τ)) [L(τ, t0)x0 + H(τ)]∆τ

= u(t) + ΦB(t, t0)(x0 − u0) +
∫ t

t0

ΦB(t, σ(τ))H(τ)∆τ.
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Thus there exists a solution z(t) of (4.1) with the initial value x0 = u0 − h∞ such that

z(t) = u(t) + ΦB(t, t0) [(x0 − u0) + h∞]

= u(t) + o(1) as t→ ∞,

where, h∞ =
∫ ∞

t0
ΦB(∞, σ(τ))H(τ)∆τ.

Conversely, let z(t) be any solution of (4.1). By taking u0 = x0 + h∞, there exists a solution
u(t) of (4.7) such that

z(t) = u(t) + ΦB(t, t0)
[
(h∞) + h̃(t)

]
= u(t) + o(1) as t→ ∞,

where h̃(t) =
∫ t

t0
ΦB(t0, σ(τ))H(τ)∆τ. Hence (1.1) and (1.2) are asymptotically equivalent.

This completes the proof.

References

[1] M. Adivar, Y. N. Raffoul, Necessary and sufficient conditions for uniform stability
of Volterra integro-dynamic equations using new resolvent equation, An. S, tiint, . Univ.
“Ovidius” Constant,a Ser. Mat. 21(2013), No. 3, 17–32. MR3145088

[2] M. Adivar, Function bounds for solutions of Volterra integro dynamic equations on the
time scales, Electron. J. Qual. Theory Differ. Equ. 2010, No. 7, 1–22. MR2577160

[3] M. Adivar, Principal matrix solutions and variation of parameters for Volterra integro-
dynamic equations on time scales, Glasg. Math. J. 53(2011), No. 3, 1–18. MR2822793

[4] M. Bohner, A. Peterson, Dynamic equations on time scales. An introduction with applica-
tions, Birkhäuser, Boston, 2001. MR1843232; url

[5] M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Birkhäuser, Boston,
2003. MR1962542; url

[6] M. Bohner, G. Sh. Guseinov, Double integral calculus of variations on time scales, Com-
put. Math. Appl. 54(2007) 45–57. MRMR2332777

[7] T. A. Burton, Volterra integral and differential equations, Mathematics in Science and Engi-
neering, Vol. 167, Academic Press, Inc., Orlando, FL, 1983. MR715428

[8] S. K. Choi, N. J. Koo, Asymptotic equivalence between two linear Volterra difference
systems, Comput. Math. Appl. 47(2004), 461–471. MR2048197

[9] S. K. Choi, N. J. Koo, Asymptotic property of linear Volterra difference systems, J. Math.
Anal. Appl. 321(2006), 260–272. MR2236556

[10] S. K. Choi, N. J. Koo, Asymptotic property for linear integro-differential systems, Non-
linear Anal. 70(2009), 1862–1872. MR2492124

[11] S. K. Choi, N. J. Koo, On a Gronwall-type inequality on time scales, J. Chungcheong Math.
Soc. 23(2010), No. 1, 137–147. url

http://www.ams.org/mathscinet-getitem?mr=3145088
http://www.ams.org/mathscinet-getitem?mr=2577160
http://www.ams.org/mathscinet-getitem?mr=2822793
http://www.ams.org/mathscinet-getitem?mr=1843232
http://dx.doi.org/10.1007/978-1-4612-0201-1
http://www.ams.org/mathscinet-getitem?mr=1962542
http://dx.doi.org/10.1007/978-0-8176-8230-9
http://www.ams.org/mathscinet-getitem?mr=MR2332777
http://www.ams.org/mathscinet-getitem?mr=715428
http://www.ams.org/mathscinet-getitem?mr=2048197
http://www.ams.org/mathscinet-getitem?mr=2236556
http://www.ams.org/mathscinet-getitem?mr=2492124
http://www.ccms.or.kr/data/pdfpaper/jcms23_1/23_1_137.pdf


14 S. Mirza, D. O’Regan, N. Yasmin and A. Younus

[12] C. Corduneanu, Integral equations and applications, Cambridge University Press, 1991.
MR1109491; url

[13] G. Sh. Guseinov, B. Kaymakçalan, Basics of Riemann delta and nabla integration on
time scales. J. Differ. Equ. Appl. 8(2002), No. 11, Special issue in honour of Professor Allan
Peterson on the occasion of his 60th birthday, Part I., 1001–1017. MR1942437

[14] S. Hilger, Analysis on measure chains – a unified approach to continuous and discrete
calculus, Results Math. 18(1990), 18–56. MR1066641

[15] G. Huang, L. Li, A mathematical model of infectious diseases, Ann. Oper. Res. 168(2009),
41–80. MR2487407

[16] B. Karpuz, Volterra theory on time scales, Results. Math. 65(2014), No. 3–4, 263–292.
MR3201198

[17] V. Lupulescu, S. K. Ntouyas, A. Younus, Qualitative aspects of a Volterra integro-
dynamic system on time scales, Electron. J. Qual. Theory Differ. Equ. 2013, No. 5, 1–35.
MR3011509

[18] X. Li, L. Xu, An integrated information system for the intervention and prevention of
AIDS. Int. J. Biomed. Comput. 29(1991), 191–206. url

[19] P. Liu, Q.-L. Han, On stability of recurrent neural networks – an approach from Volterra
integro-differential equations, Trans. Neural Netw. 17(2006), No. 1, 264–267. url

[20] P. Liu, Q.-L. Han, Discrete-time analogs for a class of continuous-time recurrent neural
networks, Trans. Neural Netw. 18(2007), No. 5, 1343–1355. url

[21] J. Morchało, Integral equivalence of two systems of integro-differential equations (in
Russian), in: Differential equations and applications, I, II (Russian) (Ruse, 1985), ‘Angel
Kanchev’ Tech. Univ., Ruse, 1987, 841–844. MR916652

[22] J. A. Nohel, Asymptotic equivalence of Volterra equations, Ann. Mat. Pura Appl. 96(1973),
339–347. MR0336267

[23] J. Zhou, Y. Li, Sobolev’s spaces on time scales and its applications to a class of second or-
der Hamiltonian systems on time scales, Nonlinear Anal. 73(2010), 1375–1388. MR2661233

http://www.ams.org/mathscinet-getitem?mr=1109491
http://dx.doi.org/10.1017/CBO9780511569395
http://www.ams.org/mathscinet-getitem?mr=1942437
http://www.ams.org/mathscinet-getitem?mr=1066641
http://www.ams.org/mathscinet-getitem?mr=2487407
http://www.ams.org/mathscinet-getitem?mr=3201198
http://www.ams.org/mathscinet-getitem?mr=3011509
http://www.sciencedirect.com/science/article/pii/002071019190037F
http://www.ncbi.nlm.nih.gov/pubmed/16526497
http://www.ncbi.nlm.nih.gov/pubmed/18220184
http://www.ams.org/mathscinet-getitem?mr=916652
http://www.ams.org/mathscinet-getitem?mr=0336267
http://www.ams.org/mathscinet-getitem?mr=2661233

	Introduction
	Asymptotic property
	Asymptotic equivalence between two Volterra systems
	Asymptotic property via equivalent system

