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Abstract. The classical Lipschitz-type citeria guarantee unique solvability of the scalar
initial value problem ẋ = f (t, x), x(t0) = x0, by putting restrictions on | f (t, x)− f (t, y)|
in dependence of |x− y|. Geometrically it means that the field differences are estimated
in the direction of the x-axis. In 1989, Stettner and the second author could establish a
generalized Lipschitz condition in both arguments by showing that the field differences
can be measured in a suitably chosen direction v = (dt, dx), provided that it does not
coincide with the directional vector (1, f (t0, x0)).
Considering the vector v depending on t, a new general uniqueness result is derived
and a short proof based on the implicit function theorem is developed. The advantage
of the new criterion is shown by an example. A comparison with known results is given
as well.
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1 Introduction

We consider the scalar initial value problem

dx
dt

= f (t, x), x(t0) = x0, (1.1)

and assume throughout the paper that f : D → R is a continuous function on an open neigh-
borhood D of the point (t0, x0) ∈ R2. Problem (1.1) is called locally uniquely solvable if there
exists an open interval I containing t0 such that (1.1) has exactly one solution on I.
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The uniqueness problem of (1.1) attracts permanent attention because it is not really
solved up to now as simple examples show. The classical Lipschitz condition and its gen-
eralizations [1], including the results by Nagumo, Osgood, Perron and Kamke, consider
| f (t, x) − f (t, y)| in dependence of |x − y| and thus measure the field differences in the di-
rection of the x-axis. In 1989, Stettner and Nowak [9] could establish a generalized Lipschitz
condition in both arguments. The field differences can be measured in a suitably chosen di-
rection v = (dt, dx), provided that it does not coincide with the directional vector (1, f (t0, x0)).
The particular case with the t-axis as direction, thus requiring a Lipschitz condition with
respect to the first argument of f , if f (t0, x0) 6= 0, was independently published first by
Mortici [6] and then by Cid and López Pouso [2, 4]. Stettner and Nowak’s paper is written
in German, and therefore it is maybe non-accessible by not German-speaking colleagues as it
is also remarked by Cid and López Pouso [3]. Hoag [5] extends the approach of a Lipschitz
condition in the first argument including cases when f (t0, x0) = 0.

In Section 2, considering the vector v depending on t, a new general uniqueness result is
derived. We give a rather short proof based on the implicit function theorem. In Section 3 we
compare our criterion with known results and show the advantage by an example.

2 A general Lipschitz uniqueness criterion

Theorem 2.1. Let v(t) = (ϕ(t), ψ(t)) be a continuously differentiable vector on an open neighborhood
of t0 with real entries ϕ and ψ such that

(i) ψ(t0) 6= f (t0, x0)ϕ(t0),

(ii) for a constant L ≥ 0 and every k ∈ R

| f (t, x)− f (t + kϕ(t), x + kψ(t))| ≤ L|k| (2.1)

whenever the arguments of f are well-defined and belong to D.

Then (1.1) is locally uniquely solvable.

Proof. Peano’s theorem guarantees that (1.1) has at least one solution x : [t0 − α0, t0 + α0]→ R

for some α0 > 0. By assumption (i) there exists α ∈ (0, α0] with ψ(t) 6= f (t, x(t))ϕ(t) for
all t ∈ (t0 − α, t0 + α). To prove that (1.1) is locally uniquely solvable with solution x on
I := (t0 − α, t0 + α) assume to the contrary that there exists a solution y : I → R of (1.1)
and x 6≡ y on [t0, t0 + α) (the case x 6≡ y on (t0 − α, t0] is treated similarly). For t1 :=
sup{t ∈ [t0, t0 + α) : x(s) = y(s) for s ∈ [t0, t]} we have t1 ∈ [t0, t0 + α), x(t1) = y(t1) =: x1 by
continuity and also

ψ(t1) 6= f (t1, x1)ϕ(t1). (2.2)

We show that the equation

y(t + k(t)ϕ(t)) = x(t) + k(t)ψ(t) (2.3)

is uniquely solvable with respect to k = k(t) on a subinterval of I. The problem suggests to
apply the implicit function theorem. Let

F(t, k) := y(t + kϕ(t))− x(t)− kψ(t).
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This function is defined in an open set containing (t1, 0) with the property

F(t1, 0) = y(t1)− x(t1) = 0.

As
∂F
∂k

(t, k) = f (t + kϕ(t), y(t + kϕ(t)))ϕ(t)− ψ(t),

we get with assumption (2.2)

∂F
∂k

(t1, 0) = f (t1, x1)ϕ(t1)− ψ(t1) 6= 0 .

The implicit function theorem (cf., e.g., [8, Theorem 9.28]) now yields that there exists a unique
continuously differentiable function k = k(t) on an open interval I1 ⊂ I containing t1 such
that k(t1) = 0 and F(t, k(t)) = 0 for all t ∈ I1.

We show that k(t) ≡ 0 on a subinterval of I1 with t1 ∈ I1. Due to (2.2), there exist a
constant η > 0 and an open interval I2 ⊂ I1 containing t1 such that

| f (t + k(t)ϕ(t), y(t + k(t)ϕ(t)))ϕ(t)− ψ(t)| ≥ η for t ∈ I2.

Moreover, there exists a constant M such that

| f (t + k(t)ϕ(t), y(t + k(t)ϕ(t)))| ≤ M, |ϕ′(t)| ≤ M, |ψ′(t)| ≤ M, t ∈ I2.

Now we consider u(t) := k2(t) on I2. Using the derivative of the function k(t), relation
(2.3) and inequality (2.1) we get for t ∈ I2

u̇(t) = 2k(t)k̇(t) = 2k(t)
ẋ(t)− ẏ(t + k(t)ϕ(t))(1 + k(t)ϕ′(t)) + k(t)ψ′(t)

ẏ(t + k(t)ϕ(t))ϕ(t)− ψ(t)

= 2k(t)
f (t, x(t))− f (t + k(t)ϕ(t), y(t + k(t)ϕ(t)))(1 + k(t)ϕ′(t)) + k(t)ψ′(t)

f (t + k(t)ϕ(t), y(t + k(t)ϕ(t)))ϕ(t)− ψ(t)

= 2k(t)
f (t, x(t))− f (t + k(t)ϕ(t), x(t) + k(t)ψ(t))(1 + k(t)ϕ′(t)) + k(t)ψ′(t)

f (t + k(t)ϕ(t), y(t + k(t)ϕ(t)))ϕ(t)− ψ(t)

≤ 2(L + M2 + M)

η
k2(t) =

2(L + M2 + M)

η
u(t)

which is equivalent to

d
dt

[
u(t) exp

(
−2(L + M2 + M)

η
(t− t1)

)]
≤ 0 .

Since u(t1) = k2(t1) = 0, we get u(t) = k2(t) ≡ 0 and hence from (2.3), x(t) ≡ y(t) on I2,
which contradicts the definition of t1.

3 Concluding remarks and comparison with known results

The function k(t) in the proof of Theorem 2.1 measures in the case when v(t) is a unit vector
the distance between the points (t, x(t)) and (t + k(t)ϕ(t), y(t + k(t)ϕ(t))) on the graphs of
the solutions x and y because

dist
(
(t, x(t)), (t + k(t)ϕ(t), y(t + k(t)ϕ(t)))

)
= |k(t)|

√
ϕ2(t) + ψ2(t) = |k(t)|.
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By the specification v(t) = (ϕ(t), ψ(t)) = (0, 1) we get the well-known Lipschitz condition.
The specification v(t) = (ϕ(t), ψ(t)) = (1, 0) yields the result by Mortici cited above. The latter
case contains the following special uniqueness criterion which is given in [7]. It was already
known by Peano.

Corollary 3.1. If f : R→ R+ is continuous and positive then the equation ẋ = f (x) has uniqueness,
i.e. exactly one solution passes through every point of R2.

Finally, the choice v(t) = (ϕ(t), ψ(t)) = (dt, dx) turns our result into the following criterion
published in German by Stettner and Nowak [9].

Theorem 3.2. Let D be an open neighborhood of the point (t0, x0) and f : D → R be continuous on
D. Let dt, dx be real numbers such that

i ) d2
t + d2

x > 0,

ii ) dx 6= f (t, x)dt on D,

iii ) for a constant L ≥ 0 and every k ∈ R the inequality

| f (t, x)− f (t + kdt, x + kdx)| ≤ L|k|

is satisfied whenever the arguments of f are in D.

Then (1.1) has at most one solution.

Now we illustrate the advantage of Theorem 2.1.

Example 1. Consider the initial value problem

dx
dt

= f (t, x), x(0) = 0, (3.1)

where

f (t, x) :=

{
1 + x, x < t2,

1 + x +
√

x− t2 , x ≥ t2.

It is easy to check that f is not Lipschitz continuous with respect to x in any neighborhood of
(0, 0), and the problem cannot be treated by Theorem 3.2 using a constant vector v = (dt, dx).
Nevertheless, problem (3.1) is locally unique which can be shown by Theorem 2.1 using the
vector v(t) = (ϕ(t), ψ(t)) = (1, 2t). As 0 = ψ(0) 6= f (0, 0)ϕ(0) = 1, assumption (i) is ful-
filled. We briefly explain that assumption (ii) also holds on an arbitrary open and bounded
neighbourhood D ⊂ R×R of (0, 0). Let M1 := sup{|t| : (t, x) ∈ D} < ∞ and L := 2M1 + 1.
Consider the theoretically possible cases

α) x < t2 ∧ x + 2tk < (t + k)2,

β) x < t2 ∧ x + 2tk ≥ (t + k)2,

γ) x ≥ t2 ∧ x + 2tk < (t + k)2,

δ) x ≥ t2 ∧ x + 2tk ≥ (t + k)2,

and note that β) is impossible. Then condition (2) of the form

| f (t, x)− f (t + k, x + 2tk)| ≤ L|k|



A general Lipschitz uniqueness criterion 5

is also fulfilled, since in the case α)

| f (t, x)− f (t + k, x + 2tk)| = |1 + x− (1 + x + 2tk)| = 2|t||k| ≤ 2M1|k| ≤ L|k|,

in the case γ), regarding that
√

x− t2 < |k|,

| f (t, x)− f (t + k, x + 2tk)| = |1 + x +
√

x− t2 − (1 + x + 2tk)|
≤ |k|+ 2|t||k| ≤ |k|+ 2M1|k| = L|k|

and in the case δ), regarding that
√

x− t2 ≥ |k|,

| f (t, x)− f (t + k, x + 2tk)|

=

∣∣∣∣1 + x +
√

x− t2 −
(

1 + x + 2tk +
√

x + 2tk− (t + k)2

)∣∣∣∣
≤ 2|t||k|+

∣∣∣√x− t2 −
√

x− t2 − k2
∣∣∣ ≤ 2M1|k|+

∣∣∣∣ k2
√

x− t2 +
√

x− t2 − k2

∣∣∣∣
≤ 2M1|k|+

∣∣∣∣ k2
√

x− t2

∣∣∣∣ ≤ 2M1|k|+
∣∣∣∣ k2

k

∣∣∣∣ = 2M1|k|+ |k| = L|k|,

where without loss of generality we can assume k 6= 0.
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