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Abstract. We establish the concept of the principal and nonprincipal solution for

the so-called symplectic dynamic systems on time scales. We also present a brief
survey of the history of these concept for differential and difference equations.

1. Introduction.

The aim of this paper is to establish the concepts of the principal and nonprin-
cipal solutions of the so-called symplectic dynamic systems on time scales.

The concept of the principal solution appeared for the first time in the paper
[28] and it concerned the Sturm-Liouville differential equation

(1.1) (r(t)x′)′ + c(t)x = 0, r(t) > 0,

and was used when investigating singular quadratic functionals associated with
(1.1), see also [24,25]. In the fifties of this century Hartman (see [18, Chap. XI] and
the references given therein) investigated properties of this solution, introduced the
concept of the nonprincipal solution and offered several equivalent characterizations
of principal and nonprincipal solutions. Later, principal and nonprincipal solutions
were extended to more general equations and systems and finally Reid [31,32] unified
these definitions in the scope of the qualitative theory of linear Hamiltonian systems

(1.2) x′ = A(t)x + B(t)u, u′ = C(t)x − AT (t)u,

see also [19].
Concerning the Sturm-Liouville difference equation

(1.3) ∆(rk∆xk) + ckxk+1 = 0, rk 6= 0,

the concept of the principal solution, named in the difference equations theory
recessive solution, and of the nonprincipal solution (= dominant solution), appeared
e.g. in [17,29]. These concepts were extended to the three term symmetric matrix
recurrence relation

Rk+1xk+2 + Pkxk+1 + Rkxk = 0
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in [4] and to more general difference systems – the so-called symplectic difference

systems – in [5].

The similarity between qualitative theories of differential and difference equations
and systems suggests to look for a unifying theory. The first attempt to establish
such a theory was made in [33] (see also [27]), where both (1.1) and (1.3) are written
as an integral equation with Riemann-Stieltjes integrals. However, this approach
requires the sequence rk in (1.3) to be positive and this assumption is by no means
necessary as it is shown e.g. in [5,7]. Another approach which we also follow in
this paper was used in [16] and is based on the concept of time scale (an alternative
terminology is measure chain). Our investigation leans on results of the recent paper
[15], where we established basic properties of solutions of the so-called symplectic

dynamic systems which cover both linear Hamiltonian differential systems (1.2) and
symplectic difference systems. We recall some results of [15] in the next section.

The paper is organized as follows. In the next section we recall properties of
principal/recessive and nonprincipal/dominant solutions of differential and differ-
ence systems and we present basic facts of the so-called time scale calculus. The
third section contains the main results of this paper, sufficient conditions for the
existence of principal and nonprincipal solutions of symplectic dynamic systems
and some of their properties. The last section is devoted to remarks concerning the
results of the paper and contains also some suggestions for the further investigation.

2. Auxiliary results.

We start this section with a brief survey of the basic properties of principal (reces-
sive) and nonprincipal (dominant) solutions of differential and difference equations.
Suppose that (1.1) is nonoscillatory, i.e. any nontrivial solution is eventually pos-
itive or negative. Then among all solutions one can distinguish a unique (up to a
multiple by a nonzero constant) solution x̃ which is less than any other solution in
the sense that

(2.1) lim
t→∞

x̃(t)

x(t)
= 0

for any solution x of (1.1) which is linearly independent of x̃. This solution is said
to be the principal solution. Differentiating the ratio x/x̃ and using the Wronskian
identity r(x′x̃ − xx̃′) = const, it is not difficult to verify that (2.1) is equivalent to

(2.2)

∫ ∞ dt

r(t)x̃2(t)
= ∞.

Another (equivalent) characterization of the principal solution is based on the fact

that if x is a solution of (1.1) then w := r(t)x′

x
is a solution of the associated Riccati

equation

(2.3) w′ + c(t) +
w2

r(t)
= 0.

A solution x̃ of (1.1) is principal if and only if w̃ = r(t)x̃′

x̃
is the eventually minimal

solution of (2.3) in the sense that any other solution w of (2.3) satisfies eventu-
ally the inequality w(t) > w̃(t). A nonprincipal solution of (1.1) is any solution
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which is linearly independent of the principal solution x̃ and it is characterized by
∫∞

r−1(t)x−2(t) dt < ∞. If x is a nonprincipal solution, then

x̃(t) = x(t)

∫ ∞

t

ds

r(s)x2(s)

is the principal solution.

The Sturm-Liouville difference equation (1.3) is said to be nonoscillatory if any
nontrivial solution satisfies

(2.4) rkxkxk+1 > 0 eventually.

It is known that the Sturmian comparison and separation theory extends to (1.3),
in particular, if there exists a solution x of (1.3) satisfying (2.4) then any other
solution has also this property. A nonoscillatory solution x̃ of (1.3) is said to be
recessive if

lim
k→∞

x̃k

xk

= 0

for any linearly independent solution x. The last limit relation is equivalent to

∞∑

k=N

1

rkx̃kx̃k+1
= ∞

and this is equivalent to the fact that wk = rk∆xk

xk

is the eventually minimal solution
of the discrete Riccati equation

∆wk + ck +
w2

k

rk + wk

= 0.

There exist more equivalent characterizations of the principal resp. recessive
solutions of (1.1) and (1.3), e.g. as the so-called zero maximal solution [26] or
as solutions of a certain boundary value problem, see [11, Chap. II]. However, to
present them here in a consistent form exceeds the scope of this contribution.

Next we turn our attention to the extension of the concepts of principal and re-
cessive solution to linear Hamiltonian differential systems and symplectic difference
systems. Together with (1.2) consider its matrix version (referred again as (1.2))

X ′ = A(t)X + B(t)U, U ′ = C(t)X − AT (t)U,

where X, U are n× n matrices. We suppose that the matrices B, C are symmetric
and B is nonnegative definite. Recall that this system is said to be nonoscillatory

if there exists a conjoined basis
(
X
U

)
(i.e. a 2n × n matrix solution such that XT U

is symmetric and rank
(
X
U

)
≡ n) such that X(t) is nonsingular for large t. System

(1.2) is said to be eventually controllable if there exists T ∈ R such that the trivial
solution

(
x

u

)
=
(
0
0

)
is the only solution for which x(t) = 0 on a nondegenerate

subinterval of [T,∞). A conjoined basis
(
X̃
Ũ

)
of a nonoscillatory system (1.2) is said

to be the principal solution if

lim
t→∞

X−1(t)X̃(t) = 0
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for any conjoined basis
(
X
U

)
such that the (constant) matrix

(2.5) XT (t)Ũ(t) − UT (t)X̃(t) is nonsingular.

Any conjoined basis satisfying (2.5) is said to be the nonprincipal solution of (1.2).
Principal and nonprincipal solutions of eventually controllable systems can be char-
acterized equivalently as conjoined bases whose first component satisfies

lim
t→∞

λ1

(∫ t

T

X−1(s)B(s)XT−1(s) ds

)

= ∞

resp.

lim
t→∞

λn

(∫ t

T

X−1(s)B(s)XT−1(s) ds

)

< ∞,

where λ1, λn denote the least and largest eigenvalue of the matrix indicated. An-
other equivalent characterization of the principal solution of (1.2) is via the associ-
ated Riccati matrix equation

(2.6) W ′ + AT (t)W + WA(t) + WB(t)W − C(t) = 0

related to (1.2) by the substitution W = UX−1. A conjoined basis
(
X̃
Ũ

)
is principal

if and only if W̃ = ŨX̃−1 is the eventually minimal solution of (2.6) in the sense

that for any other symmetric solution W of this equation the matrix W (t) − W̃ (t)
is nonnegative definite eventually.

A symplectic difference system is the first order recurrence system of the form

(2.7) zk+1 = Skz, z =

(
x

u

)

, S =

(
A B

C D

)

,

where x, u ∈ R
n and A,B, C,D are n × n matrices such that the matrix S is sym-

plectic, i.e. STJS = J with J =
(

0 I

−I 0

)
. Symplectic difference systems cover a

large variety of difference equations and systems, among them also as a very spe-
cial case Sturm-Liouville difference equation (1.3). Indeed, using the substitution
u = r∆x this equation can be written as the first order system

(
xk+1

uk+1

)

=

(
1 1

rk

−pk 1 − pk

rk

)(
xk

uk

)

and it is easy to see that the matrix in this system is really symplectic.
A 2n × n matrix solution

(
X

U

)
of (2.7) is said to be a conjoined basis if XT U is

symmetric and rank
(
X

U

)
= n. System (2.7) is said to be disconjugate in a discrete

interval [l, m], l, m ∈ N, if the 2n × n matrix solution
(
X
U

)
given by the initial

condition Xl = 0, Ul = I satisfies

(2.8) Ker Xk+1 ⊆ Ker Xk and XkX†
k+1Bk ≥ 0

for k = l, . . . , m. Here Ker, † and ≥ stand for the kernel, Moore-Penrose generalized
inverse and nonnegative definiteness of a matrix indicated, respectively. System
(2.7) is said to be nonoscillatory if there exists N ∈ N such that this system is
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disconjugate on [N,∞) and it is said to be oscillatory in the opposite case. System
(2.7) is said to be eventually controllable if there exist N, κ ∈ N such that for any
m ≥ N the trivial solution

(
x

u

)
=
(
0
0

)
is the only solution for which xm = xm+1 =

· · · = xm+κ = 0. A conjoined basis
(
X̃
Ũ

)
of (2.7) is said to be a principal solution if

X̃k are nonsingular, XkX−1
k+1Bk ≥ 0, both for large k, and for any other conjoined

basis
(
X
U

)
for which the (constant) matrix XT Ũ − UT X̃ is nonsingular we have

(2.9) lim
k→∞

X−1
k X̃k = 0.

Note that the existence of a conjoined basis
(
X

U

)
such that its first component X is

nonsingular and the second condition in (2.8) holds for large k implies that the first
component of any other conjoined basis has the same property, see [9]. Using the
Wronskian-type identity for solutions of (2.7) it is not difficult to show that (2.9)
is for eventually controllable systems equivalent to

lim
k→∞

λ1

(
k∑

X−1
j+1Bj(X

T
j )−1

)

= ∞.

Nonprincipal solutions of (2.7) can be defined similarly as for linear Hamiltonian
differential systems (1.2).

Now we recall some basic facts of the time scale calculus, see [6,20,21], unifying
the differential and difference calculus. A time scale T is any closed subset of the set
of real numbers R, an alternative terminology for the time scale is measure chain.
On any time scale T we define the following operators and concepts:

σ(t) := inf{s ∈ T, s > t}, ρ(t) := sup{s ∈ T, s < t}

are the forward and backward shift operators. A point t ∈ T is said to be left-dense

(l-d) if ρ(t) = t, right-dense (r-d) if σ(t) = t, left-scattered (l-s) if ρ(t) < t, right-

scattered (r-s) if σ(t) > t and it is said to be dense if it is r-d or l-d. The graininess

µ of a time scale T is defined by µ(t) := σ(t) − t. For a function f : T → R (the
range R of f may be replaced by any Banach space) it is defined the generalized

derivative f∆(t) as follows. For every ε > 0 there exists a neighborhood U of t such
that

|f(σ(t))− f(s) − f∆(t)(σ(t)− s)| ≤ ε|σ(t) − s| for all s ∈ U

If T = R, then σ(t) = t, µ(t) = 0 and f∆ = f ′ is the usual derivative. In case
T = Z, we have σ(t) = t + 1, µ(t) = 1 and f∆ = ∆f is the forward difference
operator.

Directly one can verify the following basic rules of the differential calculus on
time scales

[f(t) ± g(t)]
∆

= f∆(t) ± g∆(t), f(σ(t)) = f(t) + µ(t)f∆(t),

[f(t)g(t)]
∆

= f∆(t)g(σ(t)) + f(t)g∆(t) = f∆(t)g(t) + f(σ(t))g∆(t),
{

f(t)

g(t)

}∆

=
f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
.
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For the investigation of solvability of dynamic equations on time scales (dynamic
equation means an equation involving an unknown function together with its gen-
eralized derivatives) we need also the following concepts. Here the usual notation
for an interval [a, b] actually means the set {t ∈ T, t ∈ [a, b]}, open and half open
intervals are defined in the same way.

A function f : [a, b] → R is said to be rd-continuous if it is continuous at each
r-d point and there exists a finite left limit in all l-d points, and this function is
said to be rd-continuously differentiable if its generalized derivative exists and it
is rd-continuous. To every rd-continuous function f there exists its generalized

antiderivative – a function F such that F ∆ = f . Using the antiderivative we define
∫ b

a
f(t)∆t := F (b) − F (a). A function f is said to be regressive if 1 + µ(t)f(t) 6= 0

(the mapping x 7−→ (id + µ(t)f(t))x is invertible if the range of f is a Banach
space). The initial value problem for the linear dynamic equation

z∆ = g(t)z, z(t0) = z0

with a regressive and rd-continuous function g has the unique solution which de-
pends continuously on the initial condition.

We finish this section with definition and basic properties of solutions of the so-
called symplectic dynamic systems. A symplectic dynamic system on a time scale
T is the first order linear dynamic system

(2.10) z∆ = S(t)z, z =

(
x

u

)

, S =

(
A B

C D

)

,

where x, u : T → R
n, A,B, C,D : T → R

n×n and S satisfies

(2.11) JS(t) + ST (t)J + µ(t)ST (t)JS(t) ≡ 0, J =

(
0 I

−I 0

)

.

If T = R then we get the first order differential system

z′ =

(
x

u

)′

=

(
A B

C D

)(
x

u

)

and (2.11) (with µ ≡ 0) implies B = BT , C = CT ,D = −AT , i. e. (2.10) is really a
linear Hamiltonian differential system (1.2). In case T = N we have z∆

k = ∆zk =
zk+1 − zk and substituting this into (2.10) we get the system

(2.12) zk+1 = (I + Sk)zk.

From (2.11) with µ ≡ 1 immediately follows that the matrix (I + S) is symplectic
and hence (2.12) is a symplectic difference system.

Condition (2.11) implies that the matrix-valued function S is regressive (since it
implies that the matrix (I + µS) is symplectic and hence invertible). Hence, if S is
rd-continuous, an initial condition determines the unique solution of (2.10).

System (2.10) is said to be dense normal on an interval [a, b] if for any dense
point s ∈ (a, b] the trivial solution

(
x

u

)
≡
(
0
0

)
is the only solution of (2.10) for which

x(t) ≡ 0 on [a, s]. System (2.10) is said to be eventually dense normal if there exists
T ∈ T and κ ∈ N such that this system is dense normal on [T,∞) and if there is

no dense point in (T,∞) then for any t1 ≥ T xσk

(t1) = 0, k = 0, . . . , κ implies
(

x
u

)
≡
(
0
0

)
on (t1,∞). Here σk = σ ◦ · · · ◦ σ

︸ ︷︷ ︸

k−times

, σ0(t) = t.
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III. Principal and nonprincipal solutions.

In this section we suppose that the time scale T is not bounded above, i.e.
sup{t ∈ T} = ∞. In the sequel we adopt the usual “time scale” notation. We write
fσ(t) instead of f(σ(t)) and t → ∞ means that t attains arbitrarily large values
from T. The inequality Q1 ≥ Q2 (≤) between two symmetric matrices of the same
dimension means that Q1 − Q2 is nonnegative (nonpositive) definite.

We start with basic results of the transformation theory of symplectic dynamic
systems (further SDS) (2.10), for details we refer to [15] and [22]. The transforma-
tion

(3.1) z = R(t)w, R(t) =

(
H(t) 0
K(t) (HT (t))−1

)

, w =

(
y

v

)

where H, K are n×n matrices of rd-continuously differentiable functions such that
H is nonsingular and HT K is symmetric, transforms (2.10) into another SDS

(3.2) z̄∆ = S̄(t)z̄, S̄(t) =

(
Ā(t) B̄(t)
C̄(t) D̄(t)

)

with

(3.3)

Ā = −(Hσ)−1(H∆ −AH − BK),

B̄ = (Hσ)−1B(HT )−1,

C̄ = (Kσ)T (H∆ −AH − BK) − (Hσ)T (K∆ − CH −DK),

D̄ = (H∆ + DT Hσ − BT Kσ)T (HT )−1.

This transformation preserves oscillatory properties of the transformed system
which means that (3.2) is nonoscillatory if and only if (2.10) is nonoscillatory. If
(
X

U

)
is a conjoined basis such that X(t) is nonsingular then setting H = X, K = U

in (3.1) we have Ā = 0, B̄ = 0, C̄ = 0 in (3.2). In particular,

X̄(t) = X(t)

∫ t

t1

(Xσ(s))−1B(s)(XT (s))−1 ∆s,

Ū(t) = U(t)

∫ t

t1

(Xσ(s))−1B(s)(XT (s))−1 ∆s + (XT (t))−1

is a conjoined basis of (2.10) for which XT Ū − UT X̄ = I.
The definition of the concept of the principal solution of symplectic dynamic

system reads as follows.

Definition. A conjoined basis
(
X̃
Ũ

)
of (2.10) is said to be a principal solution of

SDS (2.10) if X̃(t) is nonsingular,

(X̃σ(t))−1B(t)(X̃T (t))−1 ≥ 0,

both for large t, and

(3.4) lim
t→∞

X−1(t)X̃(t) = 0
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for any conjoined basis
(
X
U

)
for which the (constant) matrix

(3.5) L := XT Ũ − UT X̃ is nonsingular.

Any conjoined basis
(
X

U

)
for which (3.4) and (3.5) hold is said to be a nonprincipal

solution.

The following theorem concerns the existence of the principal and nonprincipal
solution of (2.10) and unifies statements concerning the existence of principal and
recessive solutions of (1.2) and (2.7), respectively.

Theorem 3.1. Suppose that (2.10) is nonoscillatory and eventually dense normal.

Then this system possesses the principal solution
(
X̃
Ũ

)
. This solution is equivalently

characterized by

(3.6) lim
t→∞

λ1

(∫ t

(X̃σ(s))−1B(s)(X̃T (s))−1 ∆s

)

= ∞.

Any conjoined basis
(
X

U

)
for which (3.5) holds is nonprincipal and this solution is

characterized by the relation

(3.7) lim
t→∞

λn

(∫ t

(Xσ(s))−1B(s)(XT (s))−1 ∆s

)

< ∞.

Proof. Let t0 ∈ T be sufficiently large and consider the solution
(
X
U

)
given by the

initial condition X(t0) = 0, U(t0) = I. Nonoscillation and eventual dense normality
of (2.10) imply that there exists t1 > t0 such that X(t) is nonsingular and

(Xσ(t))−1B(t)
(
XT (t)

)−1
= X−1(t)

[
X(t)(Xσ(t))−1B(t)

]
(XT (t))−1

is nonnegative definite for t ≥ t1. Denote

B̃(t) := (Xσ(t))−1B(t)
(
XT (t)

)−1
, G(t; X) :=

∫ t

t1

B̃(s) ∆s

and let

(3.8) X̄(t) = X(t)[I + G(t; X)], Ū(t) = U(t)[I + G(t; X)] + (XT (t))−1.

Then
(
X̄
Ū

)
is a conjoined basis for which X̄T U − ŪT X = −I.

Since G(t; X) is nonnegative definite, X̄ is nonsingular for t ≥ t1. Hence any

conjoined basis
(
X̂

Û

)
of (2.10) can be expressed in the form

(3.9) X̂ = X̄[M + G(t; X̄)N ], Û = Ū [M + G(t; X̄)N ] + (X̄T )−1,

where M, N are constant n × n matrices such that MT N is symmetric and

G(t; X̄) =

∫ t

t1

(X̄σ(s))−1B(s)(X̄T (s))−1 ∆s.
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In particular, the solution
(
X
U

)
is also of this form and substituting t = t1 into (3.9)

we get M = I, N = −I, hence

(3.10) X = X̄[I − G(t; X̄)], U = Ū [I − G(t; X̄)] − (X̄T )−1

The first equalities in (3.9) and (3.10) imply that

I = [I − G(t; X̄)][I + G(t; X)].

Since the second factor in the last equality is a nondecreasing matrix-valued func-
tion, the first factor is nonincreasing and 0 ≤ G(t; X̄) < I, hence there exists a
nonnegative definite matrix limit G∞ = limt→∞ G(t; X̄). Denote

X̃ = X̄[G∞ − G(t; X̄)], Ũ = Ū [G∞ − G(t; X̄)] − (X̄T )−1.

Then X̃T Ū − ŨT X̄ = I and

lim
t→∞

X̄−1(t)X̃(t) = lim
t→∞

[G∞ − G(t; X̄)] = 0,

i.e.
(
X̃

Ũ

)
is a principal solution of (2.10). Concerning the equivalent characterization

of the principal solution (3.6), if this limit relation holds, then for

X(t) = X̃(t)G(t; X̃), U(t) = Ũ(t)G(t; X̃) + (X̃T (t))−1

with

G(t; X̄) =

∫ t

t1

(X̃σ(s))−1B(s)(X̃T (s))−1 ∆s,

we have X̃T U − ŨT X = I and

lim
t→∞

X−1(t)X̃(t) = lim
t→∞

(∫ t

t1

B̃(s) ∆s

)−1

≤ lim
t→∞

λn

(∫ t

t1

B(s) ∆s

)−1

= lim
t→∞

1

λ1

(∫ t

t1
B(s) ∆s

) = 0.

In the last computation the inequality between a symmetric matrix and a scalar
quantity actually means the matrix inequality between a matrix and the identity
matrix multiplied by the scalar quantity.

Conversely, suppose that (3.4), (3.5) hold. Without loss of generality we can

suppose that L = I in (3.4). Then
(
X
U

)
can be expressed in the form

X = X̃[M + G(t; X̃)], U = Ũ [M + G(t; X̃)] + (X̃T )−1.

Moreover, we can suppose that M = 0 since if X satisfies (3.4) then X − X̃M
satisfies this limit relation as well since

lim
t→∞

[X(t)− X̃(t)M ]−1X̃(t) = lim
t→∞

[I − X−1(t)X̃(t)M ]−1X−1(t)X̃(t) = 0
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for any constant matrix M . Consequently,

0 = lim
t→∞

X−1(t)X̃(t) = lim
t→∞

[

G(t; X̃)
]−1

and hence

0 = lim
t→∞

λn

[

(G(t; X̃))−1
]

= lim
t→∞

1

λ1(G(t; X̃))

which implies (3.6) since G(·; X̃) is the nondecreasing matrix-valued function.
Finally, the equivalent characterization of the nonprincipal solution follows from

the fact that if L = I in (3.5) (what we can again suppose without loss of generality),
then

(X−1X̃)∆ = −(Xσ)−1B(XT )−1

and remaining arguments are the same as in the proof of equivalence of (3.4) and
(3.6). �

The next theorem shows that the principal solution of (2.10) defines a solution
of the associated Riccati matrix equation

(3.11) Q∆ = [C + DQ − QA− QBQ][I + µ(A + BQ)]−1

related to (2.10) by the Riccati substitution Q = UX−1, which has the same
extremal property as in the continuous and discrete case.

Theorem 3.2. Suppose that (2.10) is nonoscillatory and let
(
X̃
Ũ

)
be its principal

solution. Then the solution Q̃ = ŨX̃−1 of the associated Riccati equation (3.11)
is eventually minimal in the sense that if Q is any solution of this equation which

exists on some interval [T,∞) and [I + µ(A + BQ)−1]B ≥ 0 in this interval, then

Q(t) ≥ Q̃(t) for t ∈ [T,∞).

Proof. Let
(
X

U

)
be a conjoined basis of (2.10) which defines Q, i.e. Q = UX−1 and

denote M = X̃T U − ŨT X. Then we have

Q − Q̃ = UX−1 − ŨX̃−1 = (X̃T )−1[X̃T U − ŨT X]X−1 = (X̃T )−1[MX−1X̃]X̃−1

and

(MX−1X̃)∆ = −M(Xσ)−1(AX + BU)X−1X̃ + M(Xσ)−1(AX̃ + BŨ)

= M(Xσ)−1B(XT )−1(−UT X̃ + XT Ũ) = −M(Xσ)−1B(XT )−1MT .

Now,

[I + µ(A + BQ)]−1B = X[X + µ(AX + BU)]−1 = X[X + µX∆]−1B

= X(Xσ)−1B(XT )−1XT ≥ 0

for t ≥ T , hence also (Xσ)−1B(XT )−1 ≥ 0, i.e. MX−1X̃ is the nonincreasing

matrix-valued sequence. Since MX−1X̃ → 0 as t → ∞, this matrix-valued function
must be nonnegative definite which implies that Q − Q̃ ≥ 0 for t ≥ T . �

The following theorem proves the essential uniqueness of the principal solution
of (2.10).
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Theorem 3.3. Let
(
X̃
Ũ

)
,
(
X̄
Ū

)
be two principal solutions of (2.10). Then there exists

a constant nonsingular n × n matrix M such that
(
X̃

Ũ

)
=
(
X̄

Ū

)
M .

Proof. Let Q̃ = ŨX̃−1, Q̄ = ŪX̄−1 be the solutions of (3.11) generated by
(
X̃
Ũ

)
and

(
X̄
Ū

)
, respectively, i.e. X̃, X̄ are solutions of the first order liner dynamic systems

X̃∆ = (A + BQ̃)X̃, X̄∆ = (A + BQ̄)X̄.

By the previous theorem we have Q̃ ≤ Q̄ and Q̄ ≤ Q̃ eventually, so Q̃ = Q̄.
This means that X̃, X̄ are fundamental matrices of the same first order linear
dynamic systems, hence there exists a constant nonsingular n × n matrix M such
that X̃ = X̄M and then Ũ = Q̃X̃ = Q̄X̄M = ŪM . �

4. Remarks.

In this last section we present some remarks concerning our previous results and
also some suggestions for the further investigation.

(i) Observe that transformation (3.1) of SDS’s is “principal solutions invariant”,

i.e.
(
X

U

)
is a principal solution of (2.10) if and only if

(
Y

V

)
= R−1

(
X

U

)
is a principal

solution of (3.2). This follows immediately from the identity (Xσ)−1B(XT )−1 =
(Y σ)−1B̄(Y T )−1.

(ii) Consider a general transformation

(4.1) z = R(t)w, R =

(
H M
K N

)

, z =

(
x

u

)

, w =

(
y

v

)

with a symplectic matrix R. This transformation transforms (2.10) again into a
symplectic system, see [15]. It is a natural question when this transformation pre-
serves oscillatory nature of transformed systems and converts the principal solution
into the principal solution. In the theory of linear Hamiltonian systems (1.2) and
symplectic difference systems (2.7) this problem is closely related to the so-called
reciprocity principle and its generalization.

Transformation (4.1) with R = J =
(

0 I

−I 0

)
transforms (1.2) into the so-called

reciprocal system

(4.2) y′ = −AT (t)y − C(t)z, z′ = −B(t)y + A(t)z.

It is known ([2,30]) that if B(t) ≥ 0, C(t) ≤ 0 and both (1.2) and (4.2) are even-
tually controllable, then (1.2) is nonoscillatory if and only if (4.2) is nonoscillatory.
Moreover, if

lim
t→∞

λ1

(∫ t

H−1(s)B(s)(HT (s))−1 ds

)

= ∞

and
(
X

U

)
is a principal solution of (1.2) then

(
Y

Z

)
=
(

U

−X

)
= J

(
X

U

)
is a principal

solution of (4.2), see [3]. These results were extended to general transformation
(4.1) in [12,13] and papers [8,14] contain a discrete version of these statements.
However, as pointed out in [6], there are some discrepancies between “differential”
and “difference” results which have not been explained yet. The time scale point
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of view where (2.1) and (2.7) are special cases of symplectic dynamic system (2.10)
could perhaps give an explanation of these discrepancies.

(iii) Suppose that (2.10) is nonoscillatory and eventually dense normal, and let
(

X

U

)

=

(
X(t; a, b)

U(t; a, b)

)

be its 2n×n matrix solution satisfying the boundary condition X(a) = I, X(b) = 0
(such solution exists and is unique if a < b are sufficiently large as we will show

later). Let
(
X̃
Ũ

)
,
(
X̄
Ū

)
be the principal and nonprincipal solutions of (2.10) such

that X̃(a) = I, X̄(a) = I. Any 2n × n matrix solution
(
X
U

)
is of the form X =

X̃M +X̄N , U = ŨM + ŪN with constant n×n matrices M, N . Substituting there
the conditions at t = a and t = b we get I = M + N, 0 = X̃(b)M + X̄(b)N , i.e.

M =
[

I − X̄−1(b)X̃−1(b)
]−1

, N =
[

I − X̃−1(b)X̄(b)
]−1

.

Since X̄−1(b)X̃(b) → 0 as b → ∞, the matrices in brackets are really nonsingular if
b is sufficiently large, hence our boundary value has the unique solution and M → I,
N → 0 as b → ∞ (and a is fixed), which means that

(
X(t; a, b)

U(t; a, b)

)

→

(
X̃

Ũ

)

, as t → ∞,

uniformly on every compact interval [a, τ ], τ > a. Consequently, we have shown
another construction of the principal solution of (2.10), as the limit of solutions of
a certain boundary value problem associated with (2.10).

(iv) Together with (1.1) consider another Sturm-Liouville equation

(4.3) (R(t)y′)′ + C(t)y = 0

and suppose that this equation is the majorant of (1.1), i.e. C(t) ≥ c(t) and
r(t) ≤ R(t). If (4.3) is nonoscillatory then (1.1) is nonoscillatory as well by the
Sturm comparison theorem. Denote by x̃, ỹ principal solutions of (1.1) and (4.3)
and by w̃, ṽ the corresponding minimal solutions of the associated Riccati equa-
tions. Then ṽ(t) ≥ w̃(t) for large t, see [18]. A similar inequality between minimal
solutions of Riccati matrix differential equations (2.6) can be found in [23,32] and
a discrete version of this inequality is given in [9]. Since the assumptions under
which inequality between eventually minimal solutions holds differ in the discrete
and continuous case (at least optically), it would be interesting to find their uni-
fication in the scope of the theory of SDS (2.10) and associated Riccati equation
(3.11).

(v) This last remark deals with the so-called zero maximality of the principal
solution. To explain the idea, consider the solution of (1.1) given by the initial
condition x(b) = 0, r(b)x′(b) = −1 and let a be its firs zero point left of b. Then by
the Sturm separation theorem any solution of (1.1) which is not proportional to x
has exactly one zero in (a, b). Now, let x̃ be the principal solution of (1.1) and let a
be its largest zero point (if any). Then every solution which is linearly independent
of x̃ (i.e. nonprincipal) has exactly one zero in (a,∞), see [24,26]. Consequently, the
principal solution behaves like a solution given by the “initial condition” x̃(∞) = 0.
This property of the principal solution was extended to linear Hamiltonian systems
e.g. in [32] and to difference Hamiltonian systems in [10]. Similarly as in the case of
the reciprocity principle, the continuous and discrete results are not quite analogical
and the qualitative theory of SDS’s (2.10) may explain this discrepancy.
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