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1 Introduction

Studying difference equations and systems which are not closely related to differential ones
is a topic of recent interest (see, [1–41]). Solvable difference equations attract attention of
mathematicians for a long time. Some classical classes of solvable difference equations and
methods for solving them can be found, for example, in [14]. Recently, there has been an
increasing interest in the topic (see, for example, [1–4, 6–8, 17, 20, 21, 23–41] and the related
references therein). Some of the recent papers give formulas for solutions to some very special
difference equations or systems of difference equations and prove them by using only the
method of induction (quite frequently the proofs of some statements are even omitted or
incomplete). However, the formulas are not justified by some theoretical explanations.

In paper [20] we gave a theoretical explanation for the formula of solutions of the following
difference equation

xn+1 =
xn−1

1 + xnxn−1
, n ∈N0, (1.1)

given in [7] (in fact, a generalization of equation (1.1) was treated in [20]). Paper [20] attracted
some attention among the experts in difference equations and trigged off a new interest in
the area. For some results regarding solutions of various types of extensions of equation (1.1),
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see, for example, [1,17,24,25,27,37]. Papers [3] and [4] consider also an extension of equation
(1.1), but do not use formulas for their solutions. Some other explanations for the formulas
of some special difference equations or systems of difference equations appearing in recent
literature, can be found, for example, in papers [23], [28], [36] and [38].

Recent paper [40] is also one of those which give some formulas and prove them by the
induction, but does not use any other mathematical technique in explaining the formulas.

Namely, the authors of [40] represented the general solution of the following difference
equation

xn+1 =
1

1 + xn
, n ∈N0, (1.2)

in terms of the initial value x0 and the Fibonacci sequence, that is, the sequence defined as
follows

fn+1 = fn + fn−1, n ∈N, (1.3)

f0 = 0, f1 = 1. More precisely, it was proved by induction that every well-defined solution of
equation (1.2) can be written in the following form

xn =
x0 fn−1 + fn

x0 fn + fn+1
, n ∈N. (1.4)

However, the authors of [40] did not explain how they come up with the formula and did not
support it by any mathematical theory.

They also proved that every well-defined solution of the equation

xn+1 =
1

−1 + xn
, n ∈N0, (1.5)

can be written in the following form

xn =
x0 f−(n−1) + f−n

x0 f−n + f−(n+1)
, n ∈N, (1.6)

where the terms of the Fibonacci sequence with negative indices are calculated by the formula

f−n = f−n+2 − f−n+1, n ∈N, (1.7)

and where, of course, is assumed that f0 = 0 and f1 = 1 (recurrence relation (1.7) is obtained
from (1.3) when we replace n by −n + 1).

As in the case of equation (1.2), they also did not explain how they come up with formula
(1.6) nor gave any theoretical explanation for it.

The other results in [40] are folklore, that is, follow easily from well-known ones. Formulas
(1.4) and (1.6) could be also known, but we are not able to find some specific references
for them at the moment. Nevertheless, in our opinion, these two formulas are interesting
and motivated us to explain them theoretically. Actually, our aim is to obtain, in a natural
way, similar representation for a more general difference equation which includes into itself
equations (1.2) and (1.5). As some applications of our main results we give explanations of
some results in [8], and also obtain related results for a two-dimensional system of bilinear
difference equations.

2 Preliminaries and some basic solvable difference equations

In this section we present some known difference equations and results related to them, and
also introduce some notions which will be used in the proofs of our main results.
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2.1 Linear first-order difference equation

Probably, the most known difference equation which can be solved is the linear first-order
difference equation, i.e.

xn+1 = pnxn + qn, n ∈N0, (2.1)

where (pn)n∈N0 and (qn)n∈N0 are arbitrary real (or complex) sequences and x0 ∈ R (or x0 ∈ C).
Equation (2.1) can be solved in closed form in many ways, and its general solution is

xn = x0

n−1

∏
j=0

pj +
n−1

∑
i=0

qi

n−1

∏
j=i+1

pj. (2.2)

For example, if pn 6= 0, n ∈N0, by dividing both sides of (2.1) by ∏n
j=0 pj, we obtain

xn+1

∏n
j=0 pj

=
xn

∏n−1
j=0 pj

+
qn

∏n
j=0 pj

, n ∈N0. (2.3)

Summing equalities in (2.3) from 0 to n− 1, we get

xn

∏n−1
j=0 pj

= x0 +
n−1

∑
i=0

qi

∏i
j=0 pj

,

from which formula (2.2) easily follows.
It is interesting how many applications this relatively simple difference equation has. Even

many recent results are essentially connected to the equation (see, for example, [6, 17, 20, 21,
23–26, 29–31, 33, 38, 39]).

2.2 Generalized Fibonacci sequence

Here we define an extension of the Fibonacci sequence in the following way

sn+1 = asn + bsn−1, n ∈N, (2.4)

s0 = 0, s1 = 1, (2.5)

and we will call it the generalized Fibonacci sequence (note that for a = b = 1 is obtained the
Fibonacci sequence). We assume that b 6= 0, otherwise, equation (2.5) becomes a special case
of the linear first-order difference equation (2.1).

Note that the characteristic polynomial associated to equation (2.4) is

λ2 − aλ− b = 0,

so that the characteristic roots are

λ1,2 =
a±
√

a2 + 4b
2

and if a2 + 4b 6= 0, then the solution of equation (2.4) satisfying conditions (2.5) is

sn(a, b) =
λn

1 − λn
2

λ1 − λ2
(2.6)

=
1√

a2 + 4b

((
a +
√

a2 + 4b
2

)n

−
(

a−
√

a2 + 4b
2

)n)
. (2.7)

The main motivation for introducing the generalized Fibonacci sequence are representa-
tions (1.4) and (1.6) of solutions of equations (1.2) and (1.5).
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2.3 Linear second order difference equation with constant coefficients.

As is well-known, the equation

xn+2 − axn+1 − bxn = 0, n ∈N0, (2.8)

(the homogeneous linear second order difference equation with constant coefficients), where
a, x0, x1 ∈ R, and b ∈ R \ {0}, is usually solved by using the characteristic roots λ1 and λ2

of the characteristic polynomial λ2 − aλ − b = 0. This standard method along with some
calculations easily gives formulas for its general solution (see formulas (2.11) and (2.12)). To
demonstrate the importance of equation (2.1), for the completeness and the benefit of the
reader, recall, that the formulas can be also obtained by using formula (2.2). Namely, since
a = λ1 + λ2 and b = −λ1λ2, we have that

xn+2 − λ1xn+1 − λ2(xn+1 − λ1xn) = 0, n ∈N0. (2.9)

Using the change of variables yn = xn − λ1xn−1, n ∈N, equation (2.9) becomes

yn+2 = λ2yn+1, n ∈N0,

which is equation (2.1) with pn = λ2 and qn = 0, n ∈N, so its solution is yn = y1λn−1
2 , n ∈N,

that is
xn = λ1xn−1 + (x1 − λ1x0)λ

n−1
2 , n ∈N. (2.10)

Equation (2.10) is also equation (2.1), but with pn = λ1 and qn = (x1 − λ1x0)λn
2 , n ∈ N0. So,

by formula (2.2) is obtained that the general solution of equation (2.8) is

xn = x0λn
1 + (x1 − λ1x0)

n−1

∑
i=0

λn−1−i
1 λi

2,

from which for the case λ1 6= λ2 is easily obtained

xn =
λ2x0 − x1

λ2 − λ1
λn

1 +
x1 − λ1x0

λ2 − λ1
λn

2 . (2.11)

while if λ1 = λ2 is obtained

xn = (x1n + λ1x0(1− n))λn−1
1 . (2.12)

Formulas (2.11) and (2.12) are well-known, but what is interesting to note is the fact that
solution (2.11) can be written in the following form

xn = x1sn(a, b) + bx0sn−1(a, b), n ∈N, (2.13)

and that the same formula also holds for the case λ1 = λ2, with

sn = nλn−1
1 .

Remark 2.1. Note that representation (2.13) holds also for n = 0, if we assume that

bs−1 = s1 − as0 = 1,

that is, if s−1 = 1/b.

Now, we have all the ingredients for formulating and proving the main results in this
paper.
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3 Extensions of formulas (1.4) and (1.6) and their consequences

A natural extension of equations (1.2) and (1.5) is the bilinear difference equation

zn+1 =
αzn + β

γzn + δ
, n ∈N0, (3.1)

where parameters α, β, γ, δ and initial value z0 are real numbers.
We will assume that γ 6= 0, since for γ = 0 equation (3.1) is reduced to a special case of

equation (2.1). Beside this, we will also assume that αδ 6= βγ, since otherwise is obtained the
trivial equation

zn+1 = const., n ∈N0,

(case γ = δ = 0 is excluded by the first assumption). For some recent applications of equation
(3.1), see, for example, [6] and [34].

Our aim is to obtain an extension of formula (1.4), for the solutions of difference equation
(3.1), in terms of the initial value and a sequence of type in (2.4) satisfying the conditions in
(2.5). We also want to obtain an extension of formula (1.6) for the solutions of equation (3.1).

Note that equation (3.1) can be written in the form

zn+1 =
α

γ
+

1
γ

βγ− αδ

γzn + δ
, n ∈N0,

from which it follows that

γzn+1 + δ = α + δ +
βγ− αδ

γzn + δ
, n ∈N0. (3.2)

Since we are interested in well-defined solutions of equation (3.1) we may assume that

γzn + δ 6= 0, n ∈N0.

Hence we can use the change of variables

bn =
1

γzn + δ
, n ∈N0, (3.3)

in (3.2) and obtain

bn+1 =
1

α + δ + (βγ− αδ)bn
, n ∈N0. (3.4)

If we use the following change of variables

bn =
cn

cn+1
, n ∈N0, (3.5)

in (3.4), we get
cn+1 − (α + δ)cn + (αδ− βγ)cn−1 = 0, n ∈N. (3.6)

Now note that equation (3.6) is nothing but equation (2.4) with

a = α + δ and b = βγ− αδ.

Hence, by using representation (2.13) we see that the general solution of equation (3.6) in
terms of the sequence sn := sn(α + δ, βγ− αδ), and initial values c0 and c1 is

cn = c1sn + c0(βγ− αδ)sn−1, n ∈N0. (3.7)
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By using (3.7) in (3.3) we get

γzn + δ =
1
bn

=
c1sn+1 + c0(βγ− αδ)sn

c1sn + c0(βγ− αδ)sn−1

=
(γz0 + δ)sn+1 + (βγ− αδ)sn

(γz0 + δ)sn + (βγ− αδ)sn−1
.

Hence, by using (3.6) it follows that

zn =
1
γ

(
(γz0 + δ)(sn+1 − δsn) + (βγ− αδ)(sn − δsn−1)

(γz0 + δ)sn + (βγ− αδ)sn−1

)
=

1
γ

(
(γz0 + δ)(αsn + (βγ− αδ)sn−1) + (βγ− αδ)(sn − δsn−1)

γz0sn + δsn + (βγ− αδ)sn−1

)
=

(αz0 + β)sn + z0(βγ− αδ)sn−1

(γz0 − α)sn + sn+1
.

From all above mentioned we see that the following theorem holds.

Theorem 3.1. Consider equation (3.1), with γ 6= 0 and αδ 6= βγ. Then every well-defined solution of
the equation can be written in the following form

zn =
z0(βγ− αδ)sn−1 + (αz0 + β)sn

(γz0 − α)sn + sn+1
, n ∈N, (3.8)

where (sn)n∈N0 is the sequence satisfying difference equation (3.6) with the initial conditions s0 = 0
and s1 = 1.

If α = 0, then from (3.8) we get

zn = β
γz0sn−1 + sn

γz0sn + sn+1
. (3.9)

Hence, for β = γ = δ = 1 we have that sn = fn, n ∈ N0, and consequently we get formula
(1.4), giving a natural explanation for it.

Corollary 3.2. Consider equation (3.1), with βγ 6= 0 and α = 0. Then for every well-defined solution
of the equation the following formula holds

n

∏
j=0

zj =
z0βn

γz0sn + sn+1
, (3.10)

where (sn)n∈N0 is the sequence satisfying difference equation (3.6) with the initial conditions s0 = 0
and s1 = 1.

Proof. We have
n

∏
j=0

zj = z0

n

∏
j=1

β
γz0sj−1 + sj

γz0sj + sj+1
= z0βn γz0s0 + s1

γz0sn + sn+1
,

from which (3.10) follows.
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Difference equation (2.4) can be naturally extended for negative indices by using the fol-
lowing recurrence relation

s−n = (s−(n−2) − as−(n−1))/b, (3.11)

where s0 = 0 and s1 = 1.
It is known that its solution is

s−n =
λ−n

1 − λ−n
2

λ1 − λ2
, n ≥ −1,

from which it follows that

s−n = − 1
(λ1λ2)n

λn
1 − λn

2
λ1 − λ2

.

Hence, for the case of difference equation (3.6), we have that

s−n = − sn

(αδ− βγ)n , n ∈N0,

that is,
sn = −s−n(αδ− βγ)n, n ∈N0. (3.12)

Using (3.12) into (3.8) we get

zn =
−z0s−(n−1) + (αz0 + β)s−n

(γz0 − α)s−n + (αδ− βγ)s−(n+1)
, n ∈N0, (3.13)

which is a representation of well-defined solutions of equation (3.1) in terms of the generalized
Fibonacci sequence with negative indices. Hence we have that the following theorem holds.

Theorem 3.3. Consider equation (3.1), with γ 6= 0 and αδ 6= βγ. Then every well-defined solution of
the equation can be written in the following form

zn =
−z0s−(n−1) + (αz0 + β)s−n

(γz0 − α)s−n + (αδ− βγ)s−(n+1)
, n ∈N0, (3.14)

where (s−n)n≥−1 is the sequence satisfying recurrent relation (3.11) with the initial conditions s0 = 0
and s1 = 1.

If α = 0, then from (3.13) we get

zn = −
z0s−(n−1) − βs−n

γ(z0s−n − βs−(n+1))
, n ∈N0. (3.15)

Hence, for β = γ = −1 and δ = 1 we have that sn+1 − sn − sn−1 = 0, n ∈ N, so that sn = fn,
n ∈ N0. From this and since by (3.12) we have that (−1)n+1 fn = f−n, n ∈ N0, we get
s−n = f−n, n ∈N0, from which along with (3.15), formula (1.6) follows.

Corollary 3.4. Consider equation (3.1), with βγ 6= 0 and α = 0. Then for every well-defined solution
of the equation the following formula holds

n

∏
j=0

zj =
z0

(−γ)n+1(z0s−n − βs−(n+1))
, (3.16)

where (s−n)n≥−1 is the sequence satisfying recurrent relation (3.11) with the initial conditions s0 = 0
and s1 = 1.
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Proof. We have

n

∏
j=0

zj =
n

∏
j=0

(
−

z0s−(j−1) − βs−j

γ(z0s−j − βs−(j+1))

)
=

1
(−γ)n+1

z0s1 − βs0

z0s−n − βs−(n+1)
,

from which (3.16) follows.

4 Some applications

As some applications of our main results, in this section we give theoretical explanations for
the formulas presented in Theorems 4–6 in [8], and obtain some related results for a two-
dimensional system of bilinear difference equations. The author of [8] formulated, among
others, the following three results and proved them by induction. However, none theoretical
explanations are given therein and it was also not explained how the formulas for solutions
of the difference equations therein are obtained, especially since the forms of the solutions do
not look simple.

Theorem 4.1. Let (xn)n≥−1 be a solution of the following difference equation

xn+1 =
2x2

n + xnxn−1

xn + xn−1
, n ∈N0. (4.1)

Then

xn = x0

n

∏
j=1

f2j+1x0 + f2jx−1

f2jx0 + f2j−1x−1
, n ∈N0. (4.2)

Theorem 4.2. Let (xn)n≥−1 be a solution of the following difference equation

xn+1 =
2x2

n − xnxn−1

xn − xn−1
, n ∈N0. (4.3)

Then

xn = x0

n

∏
j=1

f j+2x0 − f jx−1

f jx0 − f j−2x−1
, n ∈N0. (4.4)

Theorem 4.3. Let (xn)n≥−1 be a solution of the following difference equation

xn+1 =
xnxn−1

xn + xn−1
, n ∈N0. (4.5)

Then

xn =
x0x−1

fnx0 + fn+1x−1
, n ∈N0. (4.6)

Now we give theoretical explanations for the formulas presented in Theorems 4.1–4.3,
based on our main results. Before this, note that the author of [8] under solutions seems tacitly
understands well-defined solutions. Hence, we will assume that the solutions we deal with
are of this type. For some results in the area, see, e.g. [29].
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4.1 Case of equation (4.1)

First note that we may assume that xn 6= 0 for every n ∈ N. Otherwise, if there is an n0 ∈ N

such that xn0 = 0, then if xn0+1 is defined, from (4.1) we would have xn0+1 = 0, which would
imply that xn0+2 is not defined (since in this case xn0 + xn0+1 = 0). We may also assume
that x−1 6= 0, for if x−1 = 0 and x0 6= 0, and solution (xn)n≥−1 is well-defined, then we can
consider equation (4.1) for n ∈ N, that is, to reduce the case to the previous one by scaling
indices backward for one.

Hence, we can use the change of variables

yn =
xn−1

xn
, n ∈N0, (4.7)

and transform equation (4.1) into the following one

yn+1 =
yn + 1
yn + 2

, n ∈N0, (4.8)

which is a special case of equation (3.1), with α = β = γ = 1 and δ = 2.
Clearly, from (4.7) we have that

xn = x0

n

∏
j=1

1
yj

, n ∈N0. (4.9)

By using Theorem 3.1 we have that every well-defined solution of equation (4.8) can be
written in the form

yn =
−y0sn−1 + (y0 + 1)sn

(y0 − 1)sn + sn+1
, n ∈N, (4.10)

where (sn)n∈N0 is the sequence satisfying the difference equation

sn+1 − 3sn + sn−1 = 0, n ∈N, (4.11)

with the initial conditions s0 = 0 and s1 = 1.
Employing formula (2.6) or (2.7) we have

sn =

(
3+
√

5
2

)n
−
(

3−
√

5
2

)n

3+
√

5
2 − 3−

√
5

2

, n ∈N0. (4.12)

Now note that (
1±
√

5
2

)2

=
3±
√

5
2

.

Using this in (4.12) we obtain

sn =

(
1+
√

5
2

)2n
−
(

1−
√

5
2

)2n

(
1+
√

5
2

)2
−
(

1−
√

5
2

)2 = f2n, n ∈N0. (4.13)
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Using (4.13) into (4.10), recurrent relation (1.3), and (4.7) with n = 0, we have that

yn =
−y0 f2n−2 + (y0 + 1) f2n

(y0 − 1) f2n + f2n+2

=
−y0( f2n − f2n−1) + (y0 + 1) f2n

(y0 − 1) f2n + f2n+1 + f2n

=
y0 f2n−1 + f2n

y0 f2n + f2n+1
(4.14)

=
x−1 f2n−1 + x0 f2n

x−1 f2n + x0 f2n+1
, n ∈N. (4.15)

Employing relationship (4.15) into (4.9) and by some simple calculations formula (4.2) is ob-
tained.

4.2 Case of equation (4.3)

Note that we may also assume that xn 6= 0 for every n ∈ N. Otherwise, if there is an n1 ∈ N

such that xn1 = 0, then if xn1+1 is defined, from (4.3) we would have xn1+1 = 0, which would
imply that xn1+2 is not defined (since in this case xn1+1 − xn1 = 0). We may also assume
that x−1 6= 0, for if x−1 = 0 and x0 6= 0, and solution (xn)n≥−1 is well-defined, then we can
consider equation (4.3) for n ∈ N, that is, to reduce the case to the previous one by scaling
indices backward for one.

Hence, we can use the change of variables

yn =
xn

xn−1
, n ∈N0, (4.16)

and transform equation (4.3) into the following one

yn+1 =
2yn − 1
yn − 1

, n ∈N0, (4.17)

which is a special case of equation (3.1), with β = δ = −1, γ = 1 and α = 2.
Clearly, from (4.16) we have that

xn = x0

n

∏
j=1

yj, n ∈N0. (4.18)

By using Theorem 3.1 we have that every well-defined solution of equation (4.17) can be
written in the form

yn =
y0sn−1 + (2y0 − 1)sn

(y0 − 2)sn + sn+1
, n ∈N, (4.19)

where (sn)n∈N0 is the sequence satisfying the difference equation

sn+1 − sn − sn−1 = 0, n ∈N,

with the initial conditions s0 = 0 and s1 = 1. This means that (sn)n∈N0 is the Fibonacci
sequence.
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Using recurrent relation (1.3) in (4.19) and the change (4.16) with n = 0, we have that

yn =
y0 fn−1 + (2y0 − 1) fn

(y0 − 2) fn + fn+1

=
y0( fn+1 − fn) + (2y0 − 1) fn

(y0 − 2) fn + fn + fn−1

=
y0 fn+1 + (y0 − 1) fn

(y0 − 1) fn + fn−1

=
y0( fn+2 − fn) + (y0 − 1) fn

(y0 − 1) fn + fn − fn−2

=
y0 fn+2 − fn

y0 fn − fn−2

=
x0 fn+2 − x−1 fn

x0 fn − x−1 fn−2
, n ∈N. (4.20)

Employing relationship (4.20) into (4.18) is obtained formula (4.4).

4.3 Case of equation (4.5)

As in the case of equation (4.1) it is shown that in this case we may also assume that xn 6= 0
for every n ≥ −1. Hence, we can use the change of variables in (4.16), so that equation (4.5) is
transformed into the following equation

yn+1 =
1

1 + yn
, n ∈N0,

and we have that relation (4.18) holds.
By using Theorem 3.1 (or formula (1.4)) we have that

yn =
y0 fn−1 + fn

y0 fn + fn+1
=

x0 fn−1 + x−1 fn

x0 fn + x−1 fn+1
, n ∈N0, (4.21)

since equation (3.6) it this case becomes (1.3). Using (4.21) in (4.18), formula (4.6) easily
follows.

4.4 On a bilinear system of difference equations

A natural system of difference equations related to equation (3.1) is the following

zn+1 =
αwn + β

γwn + δ
, wn+1 =

azn + b
czn + d

, n ∈N0, (4.22)

where parameters α, β, γ, δ, a, b, c and d, and initial values z0 and w0 are real numbers.
If we use the second recurrent relation in (4.22) into the first one, it is obtained

zn+1 =
(aα + βc)zn−1 + αb + βd
(aγ + cδ)zn−1 + bγ + dδ

, n ∈N,

from which it follows that the sequences (z2n+i)n∈N0 , i = 0, 1, satisfy the following difference
equation

z̃n+1 =
(aα + βc)z̃n + αb + βd
(aγ + cδ)z̃n + bγ + dδ

, n ∈N0. (4.23)
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Analogously, if we use the first recurrent relation in (4.22) into the second one, it is obtained

wn+1 =
(aα + bγ)wn−1 + aβ + bδ

(αc + γd)wn−1 + βc + dδ
, n ∈N,

from which it follows that the sequences (w2n+i)n∈N0 , i = 0, 1, satisfy the following difference
equation

w̃n+1 =
(aα + bγ)w̃n−1 + aβ + bδ

(αc + γd)w̃n−1 + βc + dδ
, n ∈N0. (4.24)

A simple calculation shows that the associated equation (3.6) to both bilinear difference
equations (4.23) and (4.24) is

sn+1 − (aα + bγ + cβ + dδ)sn + (ad− bc)(αδ− βγ)sn−1 = 0, n ∈N0, (4.25)

where s0 = 0 and s1 = 1.
Applying Theorem 3.1 for the case of equations (4.23) and (4.24), and using the relations

which are obtained from the equations in (4.22) with n = 0, after some calculation we obtain
the following result.

Theorem 4.4. Consider system of equations (4.22), with ad 6= bc, aγ + cδ 6= 0, αc + γd 6= 0 and
αδ 6= βγ. Then for every well-defined solution of the system the following relations hold

z2n =
z0(βγ− αδ)(ad− bc)sn−1 + ((aα + βc)z0 + αb + βd)sn

((aγ + cδ)z0 − aα− βc)sn + sn+1
,

z2n+1 =
(αw0 + β)(βγ− αδ)(ad− bc)sn−1 + ((aα + βc)(αw0 + β) + (αb + βd)(γw0 + δ))sn

((aγ + cδ)(αw0 + β)− (aα + βc)(γw0 + δ))sn + (γw0 + δ)sn+1
,

w2n =
w0(βγ− αδ)(ad− bc)sn−1 + ((aα + bγ)w0 + aβ + bδ)sn

((αc + γd)w0 − aα− bγ)sn + sn+1
,

w2n+1 =
(az0 + b)(βγ− αδ)(ad− bc)sn−1 + ((aα + bγ)(az0 + b) + (aβ + bδ)(cz0 + d))sn

((αc + γd)(az0 + b)− (aα + bγ)(cz0 + d))sn + (cz0 + d)sn+1
,

n ∈N0, where (sn)n∈N0 is the sequence satisfying difference equation (4.25) with the initial conditions
s0 = 0 and s1 = 1.

The following system is a special case of system (4.22) and is a natural generalization of
equation (1.2).

Corollary 4.5. Consider the system of difference equations

zn+1 =
1

1 + wn
, wn+1 =

1
1 + zn

, n ∈N0,

where z0 and w0 are real numbers. Then for every well-defined solution of the system the following
relations hold

z2n =
z0 f2n−1 + f2n

z0 f2n + f2n+1
, n ∈N0, (4.26)

z2n+1 =
f2n+1 + w0 f2n

f2n+2 + w0 f2n+1
, n ∈N0, (4.27)

w2n =
w0 f2n−1 + f2n

w0 f2n + f2n+1
, n ∈N0, (4.28)

w2n+1 =
f2n+1 + z0 f2n

f2n+2 + z0 f2n+1
, n ∈N0. (4.29)
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Proof. Since the system is symmetric it is enough to prove only formulas (4.26) and (4.27)
(formulas (4.28) and (4.29) follow by replacing letters z and w only). Now note that in this
case the associate equation (4.25) is reduced to (4.11) and that the sequences (z2n+i)n∈N0 ,
i = 0, 1, satisfy difference equation (4.8). Hence, employing formula (4.14) and equation (1.3),
we obtain

z2n =
z0 f2n−1 + f2n

z0 f2n + f2n+1
, n ∈N,

and

z2n+1 =
z1 f2n−1 + f2n

z1 f2n + f2n+1
=

f2n−1 + (1 + w0) f2n

f2n + (1 + w0) f2n+1
=

f2n+1 + w0 f2n

f2n+2 + w0 f2n+1
,

as desired.
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[28] S. Stević, Solutions of a max-type system of difference equations, Appl. Math. Comput.
218(2012), 9825–9830. MR2916163; url
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