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Abstract

In this paper we investigate the formulation of a class of boundary value

problems of fractional order with the Riemann-Liouville fractional derivative and

integral-type boundary conditions. The existence of solutions is established by

applying a fixed point theorem of Krasnosel’skĭı and Zabreiko for asymptotically

linear mappings.
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1 Preliminaries

In this section we introduce basic facts of fractional calculus involving the Riemann-

Liouville fractional differential operator and list several recent and classical results

dealing with initial and boundary value problems of fractional order. In the present

section we also formulate the boundary value problems and establish the equivalence of

those to certain integral equations. The existence of solutions of the integral equations

is shown in Section 2 by applying a fixed point theorem of Krasnosel’skĭı and Zabreiko

[10].

The study of primarily initial value problems for differential equations of fractional

order with various types of integro-differential operators such as Riemann-Liouville

is extensive. It includes several well-known monographs [8, 13, 14, 15] and papers

[2, 3, 4, 5, 6, 9, 11, 12]. Boundary value problems for fractional order have received

less attention than initial value problems [1]. In this work we obtain several existence

results for a Riemann-Liouville differential equation fractional order 1 < α < 2. We

point out that if the solutions are sought in the class of continuous functions, one of the

conditions loses its meaning as a boundary condition and should instead be interpreted

as a well-posedness condition. In this regard the paper clears certain misconceptions

about formulation of boundary value problems for differential equations of fractional

order.

The Riemann-Liouville fractional integral of order α > 0 of a function u ∈ Lp(0, 1),
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1 ≤ p < ∞, is the integral

Iα
0+u(t) =

1

Γ(α)

∫ t

0

(t − s)α−1u(s) ds.

The Riemann-Liouville fractional derivative of order α > 0, n = [α] + 1, is defined by

Dα
0+u(t) =

1

Γ(n − α)

(

d

dt

)n ∫ t

0

(t − s)n−α−1u(s) ds.

It is well-known [9, 13] that if the fractional derivative Dα
0+u, n − 1 < α < n, of a

function u is integrable, then

Iα
0+D

α
0+u(t) = u(t) −

n
∑

k=1

Dα−k
0+ u(0)

Γ(α − k + 1)
tα−k. (1)

For an integrable function g, it holds that

Dα
0+I

α
0+g(t) = g(t). (2)

For β < 0, it is convenient to introduce the notation Iβ
0+ = D−β

0+ . If α > 0 and

β + α > 0, then a composition rule (also called a semigroup property)

Iβ
0+I

α
0+g(t) = Iα+β

0+ g(t)

holds (see, e.g., [9, 13]).

If u ∈ C[0, 1], then (1) becomes

u(t) = Dα−1
0+ u(0)

tα−1

Γ(α)
+ Iα

0+D
α
0+u(t) (3)

since Dα−2
0+ u(0) = I2−α

0+ u(0) = 0.

We study the Riemann-Liouville integro-differential equation

Dα
0+u(t) = f(t, u(t)), t ∈ (0, 1), (4)
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of fractional order 1 < α < 2. We assume throughout the note that

(H1) f ∈ C([0, 1] ×R,R).

We seek solutions of (4) in the class of continuous functions satisfying the boundary

condition

Iβ
0+u(1) = 0, (5)

where β > −α. In addition, we assume that γ > 1 − α and impose the condition

Iγ
0+u(0) = 0, (6)

to which we refer as the well-posedness condition. The condition (6) plays the role of

the second boundary condition.

By a solution of the boundary value problem (4)-(6) we understand a function

u ∈ C[0, 1] with Dα
0+u ∈ C[0, 1] satisfying the equation (4) and the conditions (5) and

(6).

Since α + γ > 1, setting g = Dα
0+u ∈ C[0, 1], we have by the semigroup property

(3) that

Iγ
0+u(t) = Dα−1

0+ u(0)
tα+γ−1

Γ(α + γ)
+ Iα+γ

0+ g(t).

In particular, the right side of the above equation vanishes at t = 0 thus justifying the

use of (6) and the applicability of the term “well-posedness” condition to the scope of

this work.

Similarly,

Iβ
0+u(t) = Dα−1

0+ u(0)
tα+β−1

Γ(α + β)
+ Iα+β

0+ g(t).
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It follows from (5) that

Dα−1
0+ u(0) = −Γ(α + β)Iα+β

0+ g(1)

and

u(t) = −
Γ(α + β)

Γ(α)
Iα+β

0+ g(1)tα−1 + Iα
0+g(t).

Replacing g with the inhomogeneous term of (4), we obtain that if u ∈ C[0, 1] is a

solution of the problem (4)-(6), then u ∈ C[0, 1] is the solution of the integral equation

u(t) = −
Γ(α + β)

Γ(α)
Iα+β

0+ f(·, u(·))(1)tα−1 + Iα
0+f(·, u(·))(t). (7)

The converse is also true in view of (2).

Since the solvability of (4)-(6) is equivalent the existence of a solution of the integral

equation (7), we will seek a fixed point of the integral mapping, for t ∈ [0, 1],

Tu(t) = −
Γ(α + β)

Γ(α)
tα−1

∫ 1

0

(1− s)α+β−1f(s, u(s)) ds +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, u(s)) ds.

(8)

Note that the parameter γ is absent from the integral equation (7) simply because the

shape of the mapping above is dictated by the class of admissible functions rather than

the condition (6) at t = 0 (see, e. g., [1] with u(0) = 0 which is the case γ = 0 in this

note).

Let X = C[0, 1] be endowed with the sup-norm denoted by ‖ · ‖. It is clear that

T : X → X is a completely continuous mapping. The existence of a fixed point of T

will follow from the Krasnosel’skĭı-Zabreiko fixed point theorem [10]:
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Theorem 1.1 Let X be a Banach space. Assume that T : X → X is completely

continuous mapping and L : X → X is a bounded linear mapping such that 1 is not an

eigenvalue of L and

lim
‖u‖→∞

‖Tu − Lu‖

‖u‖
= 0. (9)

Then T has a fixed point in X.

For applications of Theorem 1.1 we refer the reader to [7] and the references therein.

Although the inhomogeneous term in the above mentioned work was considered in the

form φ(t)g(u(t)), we observe that there is no need in separating the variables so that

a slightly more general scenario f(t, u(t)) is considered in the present note.

2 The existence result

The first existence result is obtained for the problem (4)-(6).

In addition to the hypothesis (H1) we impose the following conditions:

(H2) lim
|u|→∞

f(t, u)

u
= φ(t) uniformly in [0, 1];

(H3) f(t, 0) does not vanish identically in [0, 1].

Theorem 2.1 Let the assumptions (H1)-(H3) be satisfied. Assume that

Γ(α + β)

Γ(α)

∫ 1

0

(1 − s)α+β−1|φ(s)| ds +
1

Γ(α)

∫ 1

0

(1 − s)α−1|φ(s)| ds < 1. (10)

Then the boundary value problem (4)-(6) has a nontrivial solution.
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Proof. Define a bounded linear mapping, L : X → X, by

Lu(t) = −
Γ(α + β)

Γ(α)
tα−1

∫ 1

0

(1 − s)α+β−1φ(s)u(s) ds +
1

Γ(α)

∫ t

0

(t − s)α−1φ(s)u(s) ds,

for t ∈ [0, 1]. Suppose that λ = 1 is an eigenvalue of L. Since (10) holds,

‖Lu‖ ≤

(

Γ(α + β)

Γ(α)

∫ 1

0

(1 − s)α+β−1|φ(s)| ds +
1

Γ(α)

∫ 1

0

(1 − s)α−1|φ(s)| ds

)

‖u‖

< ‖u‖,

together with Lu = u with u 6= 0 lead to a contradiction. Thus λ = 1 is not an

eigenvalue of L.

Let ε > 0. There exists an A > 0 such that

∣

∣

∣

∣

f(t, z)

z
− φ(s)

∣

∣

∣

∣

< ε (11)

for all t ∈ [0, 1] provided |z| > A. Set

B = sup{|f(t, z)| : t ∈ [0, 1], |z| ∈ [0, A|}.

If |u(t)| ≤ A, then |f(t, u(t)) − φ(t)u(t)| ≤ B + ‖φ‖A. Choose M > A so that

B + ‖φ‖A ≤ Mε. Then, for u ∈ X with ‖u‖ > M , either |u(s)| ≤ A, in which case

|f(t, u(t)) − φ(t)u(t)| < ε‖u‖, or |u(s)| > A, in which case, by (11), we also have

|f(t, u(t)) − φ(t)u(t)| < ε‖u‖.

Now, if ‖u‖ > M , then

‖Tu − Lu‖ = sup
t∈[0,1]

|Tu(t) − Lu(t)|

= sup
t∈[0,1]

∣

∣

∣

∣

∣

−
Γ(α + β)

Γ(α)
tα−1

∫ 1

0

(1 − s)α+β−1(f(s, u(s)) − φ(s)u(s)) ds
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+
1

Γ(α)

∫ t

0

(t − s)α−1(f(s, u(s))− φ(s)u(s)) ds

∣

∣

∣

∣

∣

≤

(

Γ(α + β)

Γ(α)

∫ 1

0

(1 − s)α+β−1 ds +
1

Γ(α)

∫ 1

0

(1 − s)α−1 ds

)

ε‖u‖

≤

(

Γ(α + β)

(α + β)Γ(α)
+

1

Γ(α + 1)

)

ε‖u‖.

We see that the condition (9) is verified. Thus, by Theorem 1.1, T has a fixed point

in X which is a solution of the boundary value problem (4)-(6). It follows from (H3)

that the boundary value problem does not possess the trivial solution.
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[10] M. A. Krasnosel’skĭı and P. P. Zabreiko, “Geometrical Methods of Nonlinear Anal-

ysis,” Springer-Verlag, New York, 1984.

[11] V. Lakshmikantham, Theory of fractional functional differential equations, Non-

linear Anal., 69 (2008), 3337-3343.

EJQTDE, 2009 No. 20, p. 9



[12] V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equa-

tions, Nonlinear Anal., 69 (2008), 2677-2682.

[13] I. Podlubny, “Fractional Differential Equations, Mathematics in Sciences and Ap-

plications,” Academic Press, New York, 1999.

[14] J. Sabatier, O. P. Agrawal and J. A. Tenreiro-Machado, “Advances in Fractional

Calculus: Theoretical Developments and Applications in Physics and Engineer-

ing,” Springer, The Netherlands, 2007.

[15] S. G. Samko, A. A. Kilbas and O. I. Mirichev, “Fractional Integral and Derivatives

(Theory and Applications),” Gordon and Breach, Switzerland, 1993.

(Received February 25, 2009)

EJQTDE, 2009 No. 20, p. 10


