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Abstract. In this paper we prove nonexistence theorems of nonnegative nontrivial so-
lutions for a singular nonlinear ordinary inequality in bounded domains with singular
points on the boundary. The proofs are based on the test function method developed by
Mitidieri and Pohozaev. We also give the examples demonstrating that the conditions
obtained are sharp in the case of the problem under consideration.
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1 Introduction

In this paper, we shall consider nonexistence of nontrivial weak solutions of the singular
nonlinear differential inequality

(|u′|p−2u′)′ ≥ a(x)uq for x ∈ (0, x0],

u(x) ≥ 0 for x ∈ (0, x0],

u′(x0) < 0,

(1.1)

where x0 > 0, p > 1, q > p− 1, and the function a ∈ C((0, x0]) satisfies the estimate

a(x) ≥ cx−α (1.2)

for some constants α ∈ R and c > 0.
There have been many results on the nonexistence of nonnegative nontrivial solutions for

nonlinear differential inequalities (systems), see [1–32] and references therein. Tools based on
different forms of the maximum principle like the moving planes method or moving spheres
method, nonlinear capacitary estimates and Pohozaev type identities, energy methods and
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Harnack inequality type argument, have been proved to be very successful for solving in-
teresting problems related to applications and to the general theory of partial differential
equations.

Mitidieri and Pohozaev (see [22]) have developed a new effective approach to these prob-
lems on the basis of a special choice of test functions. By integration technique which uses
suitable test functions, they have established a priori estimates of solutions and obtained the
nonexistence results. This approach not only provides simple, accurate, and more general re-
sults but also is essentially different from the comparison method. Moreover, it can be applied
to a wide class of nonlinear differential inequalities (see [5–7, 16–23, 25–29]) and systems (see
[12, 14, 15, 24]). In particular, it was shown in [22] that the inequalities

± ∆pu ≥ |x|−αuq in RN (1.3)

have no weak positive solutions, and then, G. Caristi [3] perfected the results, where ∆pu =

div(|∇u|p−2∇u). In fact this method was applied to more general operators, including the
generalized mean curvature operator (see [2, 16], [22–32]) and a wide class of anisotropic
quasilinear operator (see [5, 6]). Later, by using refined techniques, Filippucci, Pucci and
Rigoli (see [8–11]) proved very significant existence and nonexistence results for the coercive
case.

In the present paper, by modifying the method developed by Mitidieri and Pohozaev in
[22] and Galakhov in [16] , we will show nonexistence theorems for the nonlinear differential
inequality (1.1) with singular points on the boundary.

We understand solutions to problem (1.1) in the sense of distributions and define the class
of admissible solutions to problem (1.1) as

X((0, x0]) := {u : (0, x0]→ R+, a(x)uq, |u′|p ∈ L1
loc((0, x0])}.

We prove the following theorems.

Theorem 1.1. Suppose that the function a ∈ C((0, x0]) is nonnegative and satisfies inequality (1.2),
and q > p− 1. If α > p, then the problem (1.1) has no nontrivial nonnegative solutions in X((0, x0]).

Theorem 1.2. Under the assumptions of Theorem 1.1, the problem (1.1) with α = p has no nontrivial
nonnegative solutions in X((0, x0]) ∩ C((0, x0]).

Remark 1.3. For α < p and q > p − 1, a solution of problem (1.1) with a(x) = x−α can be

written down explicitly as u(x) = Cx
α−p

q−p+1 with an appropriate constant C > 0. Thus, the
assumption α ≥ p is essential to deal with nonexistence results.

2 Proofs of Theorems 1.1 and 1.2

In this section, we will prove the two theorems. In doing so we will follow the argument of
Theorem 2.1 in [22] and Theorem 3.4 in [16].

To establish a priori estimates of the solutions, we need to define some test functions that
will be widely used in the sequel. We consider the test function ξ ∈ C1([0, x0]; [0, 1]) that
satisfies

ξ(x) =

{
1, η < x < x0,

0, 0 < x < η/2,
(2.1)
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and
|ξ ′(x)| ≤ c η−1, ∀ x ∈ (0, x0), (2.2)

where η ∈ (0, x0) is a parameter and c > 0 is a constant. Set

χ(x) = ξλ(x), (2.3)

where λ > 0 is a parameter to be chosen later according to the nature of the problem.
To prove the main results of this section, we need the following lemma.

Lemma 2.1. Assume that a ∈ C((0, x0]) is a nonnegative function. Let χ be defined as (2.3) and
q > p− 1. Then each nontrivial nonnegative solution to problem (1.1) in X((0, x0]) satisfies a priori
estimate ∫ x0

0
a(x)uq+γχdx ≤ C

∫ η

η/2
a(x)−

p−1+γ
q−p+1 |ξ ′|

p(q+γ)
q−p+1 dx (2.4)

for γ > 0, with a constant C > 0 independent of u.

Proof. Without loss of generality, we suppose u > 0. If u is allowed to vanish at some points,
we consider uδ = u + δ with arbitrary δ > 0 and then pass to the limit as δ → 0+. Let γ ∈ R

be a parameter to be chosen later. Multiplying (1.1) by uγχ and integrating by parts, we get∫ x0

0
a(x)uq+γχdx + γ

∫ x0

0
|u′|puγ−1χdx ≤ |u′|p−2u′uγχ|x0

0 +
∫ x0

0
|u′|p−1uγ|χ′|dx. (2.5)

Applying Young’s inequality with exponents l = p
p−1 , l′ = p > 1, ε > 0 to the second integral

on the right-hand side of (2.5), we obtain∫ x0

0
a(x)uq+γχdx + γ

∫ x0

0
|u′|puγ−1χdx

≤ |u′|p−2u′uγχ|x0
0 + ε

∫ x0

0
|u′|puγ−1χdx + ε1−p

∫ x0

0
up+γ−1 |χ′|p

χp−1 dx.
(2.6)

Taking ε = γ/2, we have∫ x0

0
a(x)uq+γχdx +

γ

2

∫ x0

0
|u′|puγ−1χdx ≤ |u′|p−2u′uγχ|x0

0 +
(γ

2

)1−p∫ x0

0
up+γ−1 |χ′|p

χp−1 dx. (2.7)

By Hölder’s inequality with exponents m = q+γ
p−1+γ > 1, m′ = q+γ

q−p+1 > 1 for every γ > 0 to the
second integral on the right-hand side of (2.7) (since, by assumption, q > p− 1), we get∫ x0

0
a(x)uq+γχdx

≤ |u′|p−2u′uγχ|x0
0 +

(γ

2

)1−p
(∫ x0

0
a(x)uq+γχdx

) 1
m
(∫ x0

0
a(x)−

m′
m
|χ′|pm′

χpm′−1 dx

) 1
m′

,
(2.8)

i.e., ∫ x0

0
a(x)uq+γχdx

≤ |u′(x0)|p−2u′(x0)uγ(x0)

+
(γ

2

)1−p
(∫ x0

0
a(x)uq+γχdx

) 1
m
(∫ x0

0
a(x)−

m′
m
|χ′|pm′

χpm′−1 dx

) 1
m′

.

(2.9)
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Since u′(x0) < 0, we get

∫ x0

0
a(x)uq+γχdx ≤

(γ

2

)1−p
(∫ x0

0
a(x)uq+γχdx

) 1
m
(∫ x0

0
a(x)−

m′
m
|χ′|pm′

χpm′−1 dx

) 1
m′

. (2.10)

Consequently, the above inequality yields∫ x0

0
a(x)uq+γχdx ≤

(γ

2

)1−p ∫ x0

0
a(x)−

m′
m
|χ′|pm′

χpm′−1 dx. (2.11)

Recalling the definition of the function χ in (2.2), we get

|χ′|pm′

χpm′−1 = λpm′ξλ−pm′ |ξ ′|pm′ , (2.12)

which leads to ∫ x0

0
a(x)uq+γχdx ≤

(γ

2

)1−p
λpm′

∫ x0

0
a(x)−

m′
m ξλ−pm′ |ξ ′|pm′dx. (2.13)

Since ξ ∈ C1([0, x0]; [0, 1]) satisfy (2.1), then

∫ x0

0
a(x)uq+γχdx ≤

(γ

2

)1−p
λpm′

∫ η

η/2
a(x)−

m′
m ξλ−pm′ |ξ ′|pm′dx

≤
(γ

2

)1−p
λ

p(q+γ)
q−p+1

∫ η

η/2
a(x)−

p−1+γ
q−p+1 |ξ ′|

p(q+γ)
q−p+1 dx,

(2.14)

by choosing λ large enough. Hence (2.4) holds with a constant C = (γ
2 )

1−pλ
p(q+γ)
q−p+1 . The lemma

is proved.

Proof of Theorem 1.1. Now let ξ ∈ C1([0, x0]; [0, 1]) satisfy (2.1) and (2.2). Then (2.4) takes the
form ∫ x0

η
a(x)uq+γdx ≤

∫ x0

0
a(x)uq+γχdx

≤ Cλ
p(q+γ)
q−p+1

∫ η

η/2
x

α(p−1+γ)
q−p+1 η

− p(q+γ)
q−p+1 dx

≤ Cλ
p(q+γ)
q−p+1 η

− p(q+γ)
q−p+1

∫ η

η/2
x

α(p−1+γ)
q−p+1 dx

≤ C′λ
p(q+γ)
q−p+1 ησ,

(2.15)

where

σ =
q− p + 1− pq + α(p− 1) + γ(α− p)

q− p + 1
.

If we choose γ large enough, then the assumption α > p implies σ > 0. Hence

0 ≤
∫ x0

η
a(x)uq+γdx ≤ C′λ

p(q+γ)
q−p+1 ησ. (2.16)

Letting η → 0 in (2.16), we get ∫ x0

0
a(x)uq+γdx = 0. (2.17)

Thus u ≡ 0. This completes the proof.
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Proof of Theorem 1.2. If α = p, one has σ = 1− p for every γ > 0 in (2.15). Now fix a number
b > 0. We may choose the parameters γ and λ in (2.13) so that

pm′ < λ < b
q−p+1

p . (2.18)

For u ∈ C((0, x0]), we can consider the set

Mη,b = {x ∈ (η, x0) : u(x) ≥ b}. (2.19)

Due to (2.15) with α = p, we get

cx0
−pbq+γµ(Mη,b) ≤

∫
Mη,b

cx−puq+γdx ≤
∫

Mη,b

a(x)uq+γdx ≤
∫ x0

η
a(x)uq+γdx (2.20)

and by (2.16)

cx0
−pbq+γµ(Mη,b) ≤ C′λ

p(q+γ)
q−p+1 η1−p, (2.21)

which leads to

µ(Mη,b) ≤ c−1C′x0
pη1−p

(
λ

p
q−p+1

b

)q+γ

→ 0 (2.22)

for each b, η fixed and γ → ∞, since the fraction in parentheses is less than 1 by (2.18). For
each b and η, one obtains

µ(Mη,b) = 0,

which means u ≡ 0. Thus we obtain the conclusion.
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