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Abstract. This article is devoted to the research of a new codimension 3 homoclinic
orbit bifurcation, which is the orbit-flip of weak type. Such kind of homoclinic orbit
is a degenerate case of the orbit-flip homoclinic orbit. We show the existence of 1-
homoclinic orbit, 1-periodic orbit, 2n-homoclinic orbit and 2n-periodic orbit for arbitrary
integer n. Our strategy is based on the local moving coordinates method.
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1 Introduction

In the past decades, multi-round homoclinic bifurcations have developed a lot due to their
great applications in spatial dynamics, where they correspond to traveling or standing multi-
pulses. Besides, cascades of homoclinic doubling bifurcation can be observed for parameter
depending vector fields [8], which are similar to the phenomenon of the period doubling
bifurcation for diffeomorphism of maps [6]. Since the codimension-one homoclinic bifurcation
with real eigenvalues cannot give birth to multi-round homoclinic orbit, see [21], complicated
dynamics of codimension 2 cases need to be considered. In [23], Yanagida studied 3 different
kinds of codimension 2 cases, which included inclination-flip bifurcation, resonant bifurcation
and the orbit-flip bifurcation. Since then, many research works have been devoted to this
subject, see [4, 5, 7, 9, 10, 12, 13] for example.

Except for the above codimension 2 mechanism for the occurrence of homoclinic doubling
bifurcation, another strategy is to consider the problem in a more degenerate situation, which
is codimension 3. [11] presented the existence of infinitely many homoclinic doubling bifurca-
tion from the inclination-flip homoclinic orbit of weak type, where the bifurcated homoclinic
orbit ΓN of arbitrary order N were inclination-flip homoclinic orbit. Despite orbit-flip and
inclination-flip homoclinic orbits are quite different from their definitions, both of them in-
volve the orientation change of their stable manifolds. So lots of similar bifurcation results
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have been discovered. For example, there exists non-empty interior region, where a suspended
horseshoe is discovered. There are parameter curves for the bifurcation of N-homoclinic orbit,
see [7] and [16] for the inclination flip case and [20] for the orbit-flip case. Moreover, the
strange attractors are presented both in the unfolding of inclination-flip case and orbit-flip
case, see [17] and [18]. A natural question would then be asking whether similar homoclinic
doubling bifurcation can occur infinitely many times from the orbit-flip homoclinic orbit of
weak type. To answer this question, we consider a smooth system

ż = f (z) + g(z, µ), (1.1)

and its unperturbed system
ż = f (z), (1.2)

where z ∈ R3, µ ∈ R3, 0 < |µ| � 1, f (0) = 0, g(z, 0) = 0 and z = 0 is a hyperbolic
equilibrium. More precisely, Spec d f (0) is real. Without loss of generality, we suppose
Spec d f (0) = {−α,−β, 1}, where α > β > 0 due to time scaling. We denote the local sta-
ble manifold by Ws

loc and the local unstable manifold by Wu
loc. Since α > β, one has a local

strong stable manifold Wss
loc corresponding to the eigenvalue −α. The local strong stable man-

ifold, which is invariant under the flow, belongs to the local stable manifold. We can extend
these manifolds by the flow and their extensions are denoted by Ws, Wu, Wss.

From now on, we always denote the homoclinic orbit of (1.2) by Γ = {r(t), t ∈ R}.

Definition 1.1. Γ is called an orbit-flip homoclinic orbit if Γ ∩Wss 6= {O}.

Before giving the definition of an orbit-flip homoclinic orbit of weak type, we firstly intro-
duce the so called “weak vector”.

Let Σ be C1 cross-section transverse to Wss. It turns out that Ws splits Σ into two connected
components, say Σ+ and Σ−. Then the Poincaré return map Φ is only defined on a single
component of Σ \Ws, we suppose this component is Σ+. Let C = {C(t), t ∈ (−1, 1)} be a C1

curve in Σ transverse to the stable manifold such that C(0) = Wss ∩Σ = pΣ. Since the Poincaré
return map is only defined on Σ+, we put Φ(C) = Φ{C(t), t ∈ (0, 1)}. Set CΦ(t) = Φ(C(t))
and define

uΣ = lim
t→0

d
dt CΦ(t)∥∥∥ d
dt CΦ(t)

∥∥∥ ,

then this vector is called the “weak vector” associated with the section Σ.

Definition 1.2. We say that an orbit-flip homoclinic orbit is of weak type if for any cross-
section Σ, uΣ ∈ TpΣ(W

s ∩ Σ) where pΣ = Σ ∩Wu, and TpΣ(W
s ∩ Σ) is the tangent space of the

intersection between Σ and the stable manifold at point pΣ.

Let M1, M3 are Melnikov vectors defined in Section 2. Then, our main theorem is stated as
follows.

Theorem 1.3. Assume system (1.2) admits Γ an orbit-flip homoclinic orbit of weak type. The eigen-
values of D f (0) avoid a finite number of resonances and satisfy 1 > β > 1

2 , β + 1 > α > β,
rank(M1, M3) = 2, then there exist a 1-homoclinic bifurcation surface H1, a 2-fold periodic orbit
bifurcation surface SN1, a period-doubling bifurcation surface P2n

of 2n−1 periodic orbit and a 2n-
homoclinic bifurcation surface H2n

for ∀ n ∈ N, which share the same normal vector M1 at µ = 0,
such that system (1.1) has
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a 1-homoclinic orbit if and only if µ ∈ H1 and |µ| � 1;

a 2-fold periodic orbit if and only if µ ∈ SN1;

a 2n−1-periodic orbit changing its stability and a 2n-periodic orbit arising at the same time if and
only if µ ∈ P2n

;

a 2n-homoclinic orbit if and only if µ ∈ H2n
.

Furthermore, there exist a bifurcation surface ∆1 (which is a branch of H1) with codimension 1 and
normal vector M1 such that system (1.1) has a 1-homoclinic orbit as well as a 1-periodic orbit for
µ ∈ ∆1 and |µ| � 1.

The paper is organized as follows. In Section 2, the local moving coordinates are intro-
duced and the Poincaré return map on a given cross-section is deduced. Section 3 is devoted
to proving Theorem 1.3.

2 Preliminaries and bifurcation equation

In the following, we assume that the parameter depending vector field (1.1) is locally C2

linearizable. This condition is not essential but will simplify computations and notations a
lot. Such linearization is possible if the eigenvalues −α,−β and 1 avoid a finite number of
resonances, see [1, 2, 3, 19, 22] for more details and discussion. As a consequence, there exist
a neighborhood U of 0 in R3 and a neighborhood V of 0 in R3, such that for all v ∈ U and all
µ ∈ V, (1.1) has the following normal form:

ẋ = x, ẏ = −β(µ)y, v̇ = −α(µ)v. (2.1)

Lemma 2.1. Suppose β + 1 > α > β. Let Σ be a cross section transverse to the orbit-flip homoclinic
orbit Γ, then the weak vector µΣ exists, which is exactly ∂

∂v .

See [18] for details of the proof.

Now we consider the linear variational system of (1.2) and its adjoint system

ż = D f (r(t))z, (2.2)

ż = −(D f (r(t)))∗z. (2.3)

Denote r(t) = (rx(t), ry(t), rv(t)) and take T > 0 large enough such that r(−T) = (δ, 0, 0),
r(T) = (0, 0, δ), where δ is small enough so that {(x, y, v) : |x|, |y|, |v| < 2δ} ⊂ U.

Lemma 2.2. Assume system (1.2) admits an orbit-flip homoclinic orbit Γ of weak type and α > β > 0,
then there exists a fundamental solution matrix Z(t) = (z1(t), z2(t), z3(t)) for system (2.2) with

z1(t) ∈ (Tri(t)W
u)c ∩ (Tri(t)W

ss)c,

z2(t) = −ṙ(t)/|ṙv(T)| ∈ Tr(t)W
u ∩ Tr(t)W

ss,

z3(t) ∈ Tr(t)W
s,

satisfying

Z(−T) =

 0 ω21 ω31

1 0 ω32

0 0 ω33

 , Z(T) =

 ω11 0 0
ω12 0 1
ω13 1 0

 ,

where ω21 < 0, ω11 6= 0, ω33 6= 0, |ω31| � |ω33|, |ω32| � |ω33|.
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Proof. Firstly, due to the fact that TWss
loc = span{(0, 0, 1)∗} and TWu

loc = span{(1, 0, 0)∗}, we
can choose z2(T) = (0, 0, 1)∗ as an initial value with the definition z2(t) = −ṙ(t)/|ṙv(T)| in
mind, which implies z2(−T) = (ω21, 0, 0)∗, where ω21 < 0.

Then, for z3(t) ∈ Tr(t)Ws with z3(T) = (0, 1, 0)∗, we have z3(−T) = (ω31, ω32, ω33)∗. Since
system (1.2) admits no inclination-flip, then from the strong-inclination property, it is deduced
that ω33 6= 0 and |ω31| � |ω33|, |ω32| � |ω33|.

Finally, note that Tr(−T)Wu is the x-axis and Tr(T)Wss is the v-axis, one can check that z1(t)∈
(Tr(t)Wu)c ∩ (Tr(t)Wss)c is well defined satisfying z1(−T) = (0, 1, 0)∗. Since det Z(−T) 6= 0,
then we obtain det Z(T) 6= 0 thanks to the Liouville formula, which implies ω11 6= 0.

Remark 2.3. If the homoclinic orbit of orbit-flip is weak type, then ω32 = 0, see Figure 2.1.

Figure 2.1: Orbit-flip homoclinic orbit of weak type.

As well known from the matrix theory, system (2.3) has a fundamental solution ma-
trix Φ(t) = (Z−1(t))∗. We denote Φ(t) = (φ1(t), φ2(t), φ3(t)). And for every point z =

(x(t), y(t), v(t)) near Γ, introduce the local moving coordinates N = (n1(t), 0, n3(t)). Set

z = S(t) = r(t) + Z(t)N∗ = r(t) + z1(t)n1(t) + z3(t)n3(t). (2.4)

With this notation, we can choose the cross sections

S0 = {z = S(T) :| x |, | y |, | v |< 2δ} ⊂ U,

S1 = {z = S(−T) :| x |, | y |, | v |< 2δ} ⊂ U.

One can refer [13, 14, 15, 24, 25] for more details and discussions about the local moving
coordinates method.

Under the transformation (2.4), system (1.1) has the following form

ṅj = (φj(t))∗gµ(r(t), 0)µ + h.o.t., j = 1, 3, (2.5)
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which is C2 and produces the map P1 : S1 → S0. Integrating both sides from −T to T, we have

nj(T) = nj(−T) + Mjµ + h.o.t., j = 1, 3, (2.6)

where N(T) = (n1(T), 0, n3(T)), N(−T) = (n1(−T), 0, n3(−T)), and

Mj =
∫ T

−T
(φj(t))∗gµ(r(t), 0)dt, j = 1, 3

are Melnikov vectors.

Lemma 2.4.

Mj =
∫ T

−T
φ∗j (t) fµ(r(t), 0)dt =

∫ +∞

−∞
φ∗j (t) fµ(r(t), 0)dt, j = 1, 3. (2.7)

Proof. To prove (2.7), it is sufficient to verify that φ∗j (t) fµ(r(t), 0) = 0 for t > T, and t < −T,

j = 1, 3. As r(T) = (0, 0, δ), then r(t) = (0, 0, rv(t)) for t > T with rv(t) = O(δe−α(t−T)).
Similarly, we have r(t) = (rx(t), 0, 0) with rx(t) = O(δet+T) for t < −T, which is due to
r(−T) = (δ, 0, 0). According to the flow of linearized system near 0, we have

fµ(r(t), 0) = (0, 0, O(δ)) for t > T, fµ(r(t), 0) = (O(δ), 0, 0) for t < −T.

Denote by φ∗j (t) = (φ1
j (t), φ2

j (t), φ3
j (t)). Since Φ∗(t)Z(t) = I, we have φ∗j (t)z

2(t) = 0, j =
1, 3. Then z2(T) = (0, 0, 1)∗ implies that φ3

j (T) = 0, j = 1, 3. Thereafter, we have φ3
j (t) =

0 for t > T, j = 1, 3. Likewise, we can also obtain φ1
j (−T) = 0, j = 1, 3, due to the fact that

z2(−T) = (ω21, 0, 0)∗. Consequently, φ1
j (t) = 0, for t < −T, j = 1, 3. Thus, conclusion (2.7) is

verified. The proof is completed.

Define P0 : S0 → S1, q0 → q1 induced by the flow of (2.1) in the neighborhood U of z = 0.
Set the flying time from q0 to q1 as τ and the Silnikov time s = e−τ (see Figure 2.2). Then we
have

P0 : q0(x0, y0, v0)→ q1(x1, y1, v1),

x0 = sx1, y1 = sβy0, v1 = sαv0,

and x1 = δ, v0 = δ;

n0
1 = (ω11)

−1x0, n0
3 = y0 −ω12(ω11)

−1x0,

n1
1 = y1 −ω32(ω33)

−1v1, n1
3 = (ω33)

−1v1.

From the above, we give the following Poincaré maps:

F1 = P1 ◦ P0 : S0 −→ S0,

n̄0
1 = y0sβ −ω32(ω33)

−1δsα + M1µ + h.o.t.,

n̄0
3 = (ω33)

−1δsα + M3µ + h.o.t.

Now, the successor function is given by G(s, y0) = (G1, G3) = (F1(q0)− q0) as follows:

G1 = −(ω11)
−1δs + y0sβ −ω32(ω33)

−1δsα + M1µ + h.o.t.,

G3 = −y0 + ω12(ω11)
−1δs + (ω33)

−1δsα + M3µ + h.o.t.

By solving y0 from G3 = 0 and substituting it into G1 = 0, we obtain the bifurcation equation

− (ω11)
−1δs−ω32(ω33)

−1δsα + M1µ + M3µsβ + h.o.t. = 0. (2.8)
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Figure 2.2: Poincaré return map.

3 Bifurcation results

In this section, we consider the codimension 3 bifurcation results of the orbit-flip homoclinic
bifurcation of weak type, i.e. ω32 = 0. Then bifurcation equation is:

− (ω11)
−1δs + M1µ + M3µsβ + h.o.t. = 0. (3.1)

Proposition 3.1. Suppose 1 > β > 1
2 , then the following statements hold.

(1) System (1.1) has a unique periodic orbit for µ ∈ D+
− ∪ D+

+ if ω11 > 0, and µ ∈ D−− ∪ D−+ if
ω11 < 0. Here

D+
− = {µ : M1µ > 0, M3µ < 0}, D+

+ = {µ : M1µ > 0, M3µ > 0},

D−+ = {µ : M1µ < 0, M3µ > 0}, D−− = {µ : M1µ < 0, M3µ < 0}.

(2) There exists a bifurcation surface ∆1:

M1µ + h.o.t. = 0, for ω11M3µ > 0

with normal vector M1 at µ = 0 such that system (1.1) has an 1-homoclinic orbit as well as a
1-periodic orbit for µ ∈ ∆1 and | µ |� 1.

(3) There exists a unique bifurcation surface H1:

M1µ + h.o.t. = 0,

with normal vector M1 at µ = 0 which coincides with ∆1 in the region defined by {µ :
ω11M3µ > 0} such that system (1.1) has a unique 1-homoclinic orbit for µ ∈ H1 and | µ |� 1.
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(4) There exists a 2-fold periodic orbit bifurcation surface SN1:

(ω11)
−1δ(δ−1βω11M3µ)

1
1−β = M3µ(δ−1βω11M3µ)

β
1−β + M1µ + h.o.t.

with normal vector M1 at µ = 0 such that system (1.1) has a unique 2-fold periodic orbit.

Proof. (1) Denote by

F(s, µ) = −(ω11)
−1δs + M3µsβ + M1µ + h.o.t.

Let sβ = t, L(t, µ) = M3µt + M1µ + h.o.t., N(t, µ) = (ω11)
−1δt

1
β + h.o.t. then for µ ∈ D+

− ,
ω11 > 0,

L(0, µ) = M1µ + h.o.t. > 0, L′(0, µ) = M3µ + h.o.t. < 0,

N′(t, µ) = (βω11)
−1δt

1−β
β + h.o.t. > 0.

So the line W = L(t, µ) and the curve W = N(t, µ) intersect at a unique sufficiently
small positive point t̄ < (δ−1ω11M1µ)β and F has a unique sufficiently small positive
zero s̄ = (t̄)1/β.

If µ ∈ D+
+ , ω11 > 0, then

L(0, µ) = M1µ + h.o.t. > 0, L′(t, µ) = M3µ + h.o.t. > 0,

N′(t, µ) = (βω11)
−1δt

1−β
β + h.o.t. > 0,

N′′(t, µ) = (1− β)(β2ω11)
−1δt

1−2β
β + h.o.t. > 0.

Take t̄ = [δ−1ω11(2M3µ + M1µ)]β, then

N(t̄, µ)− L(t̄, µ) = 2M3µ + M1µ−M3µt̄−M1µ > M3µ > 0.

Therefore, based on the fact that N(·, µ) is a monotone increasing convex function, we
see that the line W = L(t, µ) and the curve W = N(t, µ) intersect uniquely at t∗ ∈ (0, t̄),
that is, F has a unique sufficiently small positive zero point s̄∈ (0, δ−1ω11(2M3µ + M1µ)).

(2) Let µ ∈ ∆1 , {µ : F(0, µ) = M1µ + h.o.t. = 0, ω11M3µ > 0}, we have

F(s, µ) = sβ[−(ω11)
−1δs1−β + M3µ + h.o.t.].

Consequently, there are two zero points s1 = 0, s2 = (ω11δ−1M3µ)
1

1−β + h.o.t.

(3) For µ ∈ {M1µ + h.o.t. = 0}, Eq. (3.1) admits s = 0 as its solution. In this case, system
(1.1) has a bifurcated homoclinic orbit. And from the above proof, one can easily check
that H1 coincides with ∆1 in the region defined by {µ : ω11M3µ > 0}.

(4) The 2-fold zero point t̄ should satisfy

L(t, µ) = N(t, µ), L′(t, µ) = N′(t, µ). (3.2)

The second equation turns out to be

(αω11)
−1δt

1−β
β + h.o.t. = M3µ + h.o.t. (3.3)
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which forces t̄ = (δ−1βω11M3µ)
β

1−β + h.o.t. for ω11M3µ > 0 due to (3.3). Then from the
first equation of (3.2), we get the corresponding 2-fold periodic orbit bifurcation surface
SN1:

(ω11)
−1δ(δ−1βω11M3µ)

1
1−β = M3µ(δ−1βω11M3µ)

β
1−β + M1µ + h.o.t.

with normal vector M1 at µ = 0.

Now, we turn to study on the bifurcation of 2-homoclinic orbit and the period-doubling bi-
furcation. The second successor function can be given by G(s1, s2, y0, y2) = (G1

1 , G1
3 , G2

1 , G2
3) =

(F1(q0)− q2, F1(q2)− q0) as follows:

G1
1 = −(ω11)

−1δs2 + y0sβ
1 + M1µ + h.o.t.,

G1
3 = −y2 + ω12(ω11)

−1δs2 + (ω33)
−1δsα

1 + M3µ + h.o.t.

G2
1 = −(ω11)

−1δs1 + y2sβ
2 + M1µ + h.o.t.,

G2
3 = −y0 + ω12(ω11)

−1δs1 + (ω33)
−1δsα

2 + M3µ + h.o.t.

By solving y0 and y2 from G1
3 = 0, G2

3 = 0, and then by substituting them into G1
1 = 0,

G2
1 = 0, we obtain the bifurcation equation

−(ω11)
−1δs2 + (ω33)

−1δsβ
1 sα

2 + M3µsβ
1 + M1µ + h.o.t. = 0. (3.4)

−(ω11)
−1δs1 + (ω33)

−1δsα
1sβ

2 + M3µsβ
2 + M1µ + h.o.t. = 0. (3.5)

Proposition 3.2. There exists a unique bifurcation surface H2:

M3µ(ω11δ−1M1µ)β + M1µ + h.o.t. = 0,

which is well defined in the region {µ : ω11M1µ > 0, ω11M3µ < 0} such that system (1.1) has a
unique 2-homoclinic orbit for µ ∈ H2.

Proof. Suppose system (1.1) has a unique 2-homoclinic orbit, then (3.4) admits s1 > 0, s2 = 0
or s1 = 0, s2 > 0 as its solution. Due to the symmetry of bifurcation equations, we can
suppose s1 > 0, s2 = 0. Therefore,

s1 = ω11δ−1M1µ + h.o.t. > 0.

So, we can get the 2-homoclinic bifurcation surface H2:

M3µ(ω11δ−1M1µ)β + M1µ + h.o.t. = 0,

which is well defined in the region {µ : ω11M1µ > 0, ω11M3µ < 0} such that system (1.1) has
a unique 2-homoclinic orbit for µ ∈ H2.

Corollary 3.3. The 1-homoclinic bifurcation surface H1 and 2-homoclinic bifurcation surface H2 have
the same normal vector M1 at µ = 0. Then, there is a tongue area bounded by H1 and H2, in which
there must be another bifurcation surface P2 where a period-doubling bifurcation arises.

Define

Pj
0 : q2j−2(x2j−2, y2j−2, v2j−2)→ q2j−1(x2j−1, y2j−1, v2j−1),

x2j−2 = sjx2j−1, y2j−1 = sβ
j y2j−2, v2j−1 = sα

j v2j−2,



Codimension 3 homoclinic bifurcation of weak type 9

and x2j−1 = δ, v2j−2 = δ, j = 1, 2, . . . .

n2j−2
1 = (ω11)

−1δsj, n2j−2
3 = y2j−2 −ω12(ω11)

−1δsj,

n2j−1
1 = y2j−1 −ω32(ω33)

−1v2j−1, n2j−1
3 = (ω33)

−1v2j−1 = (ω33)
−1δsα

j .

From the above, we give the n-th Poincaré return maps:

Fj
1 = P1 ◦ Pj

0 : S0 → S0, q2j−2 7−→ q̄2j−2,

n̄2j−2
1 = y2j−2sβ

j −ω32(ω33)
−1δsα

j + M1µ + h.o.t.,

n̄2j−2
3 = (ω33)

−1δsα
j + M3µ + h.o.t.

Consequently, the associated n-th successor function is given by

Gn(s1, . . . , sn, v0, . . . , v2n−2) = (G1
1 , G1

3 , G2
1 , G2

3 , G3
1 , G3

3 , G4
1 , G4

3)

= (F1
1 (q0)− q2, F2

1 (q2)− q4, . . . , Fn
1 (q2n−2)− q0).

Take n = 4 for example.

G1
1 = −(ω11)

−1δs2 + y0sβ
1 + M1µ + h.o.t.,

G1
3 = −y2 + ω12(ω11)

−1δs2 + (ω33)
−1δsα

1 + M3µ + h.o.t.

G2
1 = −(ω11)

−1δs3 + y2sβ
2 + M1µ + h.o.t.,

G2
3 = −y4 + ω12(ω11)

−1δs3 + (ω33)
−1δsα

2 + M3µ + h.o.t.

G3
1 = −(ω11)

−1δs4 + y4sβ
3 + M1µ + h.o.t.,

G3
3 = −y6 + ω12(ω11)

−1δs4 + (ω33)
−1δsα

3 + M3µ + h.o.t.

G4
1 = −(ω11)

−1δs1 + y6sβ
4 + M1µ + h.o.t.,

G4
3 = −y0 + ω12(ω11)

−1δs1 + (ω33)
−1δsα

4 + M3µ + h.o.t.

By solving (y0, y2, y4, y6) from (G1
3 , G2

3 , G3
3 , G4

3) = 0 and substituting it into (G1
1 , G2

1 , G3
1 , G4

1),
then we get the bifurcation equation:

−(ω11)
−1δs2 + (ω33)

−1δsβ
1 sα

4 + sβ
1 M3µ + M1µ + h.o.t. = 0, (3.6)

−(ω11)
−1δs3 + (ω33)

−1δsβ
2 sα

1 + sβ
2 M3µ + M1µ + h.o.t. = 0, (3.7)

−(ω11)
−1δs4 + (ω33)

−1δsβ
3 sα

2 + sβ
3 M3µ + M1µ + h.o.t. = 0, (3.8)

−(ω11)
−1δs1 + (ω33)

−1δsβ
4 sα

3 + sβ
4 M3µ + M1µ + h.o.t. = 0. (3.9)

Thereafter, similarly as in the analysis in Proposition 3.2 for 2-homoclinic bifurcation result,
we can get the 22-homoclinic bifurcation surface H4. By Repeating the above procedure, we
can also get the 2n-homoclinic bifurcation surface H2n

and the period-doubling bifurcation
surface P2n

for arbitrary n ∈N. Up to now, it is sufficient to claim that Theorem 1.3 holds.
The bifurcation diagram (see Figure 3.1) is given to better illustrate our main results. In

the diagram, O represents that there is no periodic orbits, while P (resp. Pk) represents that
there exists a 1-periodic (resp. k-periodic) orbit in the corresponding region.
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Figure 3.1: Bifurcation diagram.

4 Conclusion

This paper is devoted to proving the existence of higher order homoclinic orbits and periodic
orbits from the orbit-flip homoclinic orbit of weak type. Such homoclinic orbit is a degenerate
version of the so called orbit-flip homoclinic orbit, and it is a new case of codimension 3. The
homoclinic orbit of higher order, also named as the multi-round homoclinic orbit, corresponds
to the traveling or standing multi-pulse in the spatial dynamics. The method we employ is
the local moving coordinates method. The phenomenon of homoclinic doubling bifurcation
like we showed in this paper, is just like the cascades of periodic doubling bifurcation found
by Feigenbaum and Coullet–Tresser. It is a change of a homoclinic orbit into twice round
homoclinic orbit in the neighborhood of the primary homoclinic orbit. More precisely, H1

is the 1-homoclinic bifurcation surface and H2 is the 2-homoclinic bifurcation surface as we
found, which have the same normal vector M1 at µ = 0. So, there is a tongue area bounded
by H1 and H2. In the tongue area, there must be another bifurcation surface P2 where a
period-doubling bifurcation arises. By repeating the similar procedure, we also obtain the
2n-homoclinic bifurcation surface H2n

and the period-doubling bifurcation surface P2n
for

arbitrary n ∈N.
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