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Abstract

For the ordinary differential equation, y′′′ = f(x, y, y′, y′′), solutions of 3-
point boundary value problems on [a, b] are matched with solutions of 3-point
boundary value problems on [b, c] to obtain solutions satisfying 5-point boundary
conditions on [a, c].
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1 Introduction

We are concerned with the existence and uniqueness of solutions of boundary value
problems on an interval [a, c] for the third order ordinary differential equation,

y′′′ = f(x, y, y′, y′′), (1)

satisfying the 5-point boundary conditions,

y(a) − y(x1) = y1, y(b) = y2, y′(x2) − y′(c) = y3, (2)

where a < x1 < b < x2 < c and y1, y2, y3 ∈ R.

It is assumed throughout that f : [a, c]×R
3 → R is continuous and that solutions of

initial value problems for (1) are unique and exist on all of [a, c]. Moreover, the points
a < x1 < b < x2 < c are fixed throughout.

Nonlocal boundary value problems, for which the number of boundary points is
greater than the order of the ordinary differential equation, have received considerable
interest. For a small sample of such works, we refer the reader to works by Bai and
Fang [1], Gupta [8], Gupta and Trofimchuk [9], Infante [13], Ma [14, 15] and Webb [18].

EJQTDE Spec. Ed. I, 2009 No. 14



2 J. Henderson

Monotonicity conditions will be imposed on f and sufficient conditions will be given
such that for certain solutions of 3-point boundary value problems, y1(x) on [a, b] and
y2(x) on [b, c], then y(x) defined by

y(x) =

{

y1(x), a ≤ x ≤ b,

y2(x), b ≤ x ≤ c,

will be a desired unique solution of (1), (2). In particular, a monotonicity condition is
imposed on f(x, y, z, w) insuring that 3-point boundary value problems for (1) satisfy-
ing any one of

y(a) − y(x1) = y1, y(b) = y2, y′(b) = m, m ∈ R, (3)

y(a) − y(x1) = y1, y(b) = y2, y′′(b) = m, m ∈ R, (4)

y(b) = y2, y′(b) = m, y′(x2) − y′(c) = y3, m ∈ R, (5)

or
y(b) = y2, y′′(b) = m, y′(x2) − y′(c) = y3, m ∈ R, (6)

has at most one solution.
With the added hypothesis that solutions exist to boundary value problems for (1)

satisfying any of (3), (4), (5) or (6), a unique solution of (1), (2) is then constructed.
Solution matching techniques were first used by Bailey, Shampine, and Waltman [2]

where they dealt with solutions of 2-point boundary value problems for the second order
equation y′′(x) = f(x, y(x), y′(x)) by matching solutions of initial value problems. Since
then, there have been numerous papers in which solutions of 2-point boundary value
problems on [a, b] were matched with solutions of 2-point boundary value problems on
[b, c] to obtain solutions of 3-point boundary value problems on [a, c]; see, for example
[3, 5, 10, 16, 17]. In 1973, Barr and Sherman [4] used solution matching techniques
to obtain solutions of 3-point boundary value problems for third order differential
equations from solutions of 2-point problems, and they also generalized their results to
equations of arbitrary order obtaining solutions of nth order equations. More recently,
Eggensperger et al. [6] and Henderson and Prasad [11] used matching methods for
solutions of multipoint boundary value problems on time scales. Finally, Erke et al.

[7] and Henderson and Tisdell [12] employed matching to obtain solutions of other
5-point problems for higher order differential equations. In this paper, we will adapt
this matching method to obtain solutions of the 5-point boundary value problems (1),
(2) on [a, c].

The monotonicity hypothesis on f which will play a fundamental role in uniqueness
of solutions (and later existence as well), is given by:

(A) For all w ∈ R,

f(x, v1, v2, w) > f(x, u1, u2, w),

(a) when x ∈ (a, b], u1 ≥ v1 and v2 > u2, and

(b) when x ∈ [b, c), u1 ≤ v1 and v2 > u2.
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2 Uniqueness of Solutions

In this section, we establish that under condition (A), solutions of the 3-point boundary
value problems, as well as the 5-point problem, of this paper are unique, when they
exist.

Theorem 2.1 Let y1, y2, y3 ∈ R be given and assume condition (A) is satisfied. Then,

given m ∈ R, each of the boundary value problems for (1) satisfying any of (3), (4),
(5) or (6) has at most one solution.

Proof. We will establish the results for (1) satisfying each of (3), (5), and (6).
Arguments for (1), (4) are quite similar.

First, we establish the result for (1), (3). For the sake of contradiction, assume for
some m ∈ R, there are distinct solutions, p and q, of (1), (3), and set w = p− q. Then

w(a) − w(x1) = w(b) = w′(b) = 0.

By uniqueness of solutions of initial value problems for (1), we may assume with no
loss of generality that w′′(b) < 0. It follows that there exists a < r < b such that

w′′(r) = 0 and w′′(x) < 0 on (r, b].

This implies in turn that

w(x) < 0 and w′(x) > 0 on [r, b).

This leads to

w′′′(r) = lim
x→r+

w′′(x)

x − r
≤ 0.

However, from condition (A),

w′′′(r) = p′′′(r) − q′′′(r)

= f(r, p(r), p′(r), p′′(r)) − f(r, q(r), q′(r), q′′(r))

= f(r, p(r), p′(r), p′′(r)) − f(r, q(r), q′(r), p′′(r))

> 0,

which is a contradiction. Thus, (1), (3) has at most one solution.
Now, we deal with uniqueness of solutions of (1), (5). Again, for contradiction

purposes, assume for some m ∈ R, there are distinct solutions, ρ and σ, of (1), (5),
and set z = ρ − σ. Then,

z(b) = z′(b) = z′(x2) − z′(c) = 0.

As before, by uniqueness of solutions of initial value problems for (1), we may assume
with no loss of generality that z′′(b) < 0. Then, there exists b < r < c such that

z′′(r) = 0 and z′′(x) < 0 on [b, r).
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It follows that

z(x) < 0 and z′(x) < 0 on (b, r].

This yields that

z′′′(r) = lim
x→r−

z′′(x)

x − r
≥ 0.

But, by condition (A),

z′′′(r) = ρ′′′(r) − σ′′′(r)

= f(r, ρ(r), ρ′(r), ρ′′(r)) − f(r, σ(r), σ′(r), σ′′(r))

= f(r, ρ(r), ρ′(r), ρ′′(r)) − f(r, σ(r), σ′(r), ρ′′(r))

< 0,

which is again a contradiction. Thus, (1), (5) has at most one solution.
Finally, we address uniqueness for solutions of (1), (6). As in the pattern, assume

there exists an m ∈ R for which there are distinct solutions, h and k, of (1), (6), and
set l = h − k. Then,

l(b) = l′′(b) = l′(x2) − l′(c) = 0.

By uniqueness of solutions of initial value problems for (1), we may assume that l′(b) <

0; in particular, we have

h(b) = k(b), h′′(b) = k′′(b), and h′(b) < k′(b).

Now, for each δ > 0, let kδ(x) be the solution of (1) satisfying the initial conditions

kδ(b) = k(b), k′

δ
(b) = k′(b), and k′′

δ
(b) = k′′(b) + δ.

By continuous dependence of solutions of (1) on initial conditions, it follows that

limδ→0 k
(i)
δ

(x) = k(i)(x) uniformly on [b, c], for each i = 0, 1, 2. Next, we set lδ = h− kδ.
Then,

lδ(b) = 0, l′
δ
(b) < 0, and l′′

δ
(b) = −δ < 0,

and limδ→0 l
(i)
δ

(x) = l(i)(x) uniformly on [b, c], for each i = 0, 1, 2. It follows that, for δ

sufficiently small, there exists b < r < c such that,

l′′
δ
(r) = 0 and l′′

δ
(x) < 0 on [b, r).

In turn, then

lδ(x) < 0 and l′
δ
(x) < 0 on (b, r].

This yields that

l′′′δ (r) = lim
x→r−

l′′
δ
(x)

x − r
≥ 0,
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whereas, from condition (A),

l′′′
δ
(r) = h′′′(r) − k′′′

δ
(r)

= f(r, h(r), h′(r), h′′(r)) − f(r, kδ(r), k
′

δ(r), k
′′

δ (r))

= f(r, h(r), h′(r), h′′(r)) − f(r, kδ(r), k
′

δ
(r), h′′(r))

< 0,

again a contradiction. Thus, (1), (6) also has at most one solution.
The proof is complete.

Theorem 2.2 Let y1, y2, y3 ∈ R be given and assume condition (A) is satisfied. Then,

the boundary value problem (1), (2) has at most one solution.

Proof. Again, we argue by contradiction. Assume for some values y1, y2, y3 ∈ R,
there are distinct solutions, p and q, of (1), (2), and let w = p − q. Then

w(a) − w(x1) = w(b) = w′(x2) − w′(c) = 0.

By Theorem 2.1, w′(b) 6= 0, and w′′(b) 6= 0. We assume with no loss of generality that
w′(b) > 0. Then, there are points a < r1 < b < r2 ≤ c so that

w′(r1) = 0 and w′(x) > 0 on (r1, r2).

There are two cases to analyze; that is, w′′(b) > 0 or w′′(b) < 0.
We will first treat the case w′′(b) > 0. In view of the fact that w′(b) > 0, there

exists b < r < c so that

w′′(r) = 0 and w′′(x) > 0 on [b, r).

Then

w(x) > 0 and w′(x) > 0 on (b, r].

This leads to

w′′′(r) = lim
x→r−

w′′(x)

x − r
≤ 0.

However, from condition (A) again,

w′′′(r) = p′′′(r) − q′′′(r)

= f(r, p(r), p′(r), p′′(r)) − f(r, q(r), q′(r), q′′(r))

= f(r, p(r), p′(r), p′′(r)) − f(r, q(r), q′(r), p′′(r))

> 0,

which is a contradiction.
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Now, we deal with the case w′′(b) < 0. It follows that there exists r1 < r < b such
that

w′′(r) = 0 and w′′(x) < 0 on (r, b].

In turn, then
w(x) < 0 and w′(x) > 0 on (r, b].

But, then we have both

w′′′(r) = lim
x→r+

w′′(x)

x − r
≤ 0,

and

w′′′(r) = p′′′(r) − q′′′(r)

= f(r, p(r), p′(r), p′′(r)) − f(r, q(r), q′(r), q′′(r))

= f(r, p(r), p′(r), p′′(r)) − f(r, q(r), q′(r), p′′(r))

> 0,

giving the usual contradiction.
Thus, (1), (2) has at most one solution, and the proof is complete.

3 Existence of Solutions

In this section, we establish monotonicity of higher order derivatives, as functions of
m, of solutions of (1) satisfying each of (3), (4), (5) and (6). We use these monotonicity
properties then to obtain solutions of (1), (2).

For notation purposes, given m ∈ R, let α(x, m), u(x, m), β(x, m) and v(x, m) de-
note the solutions, when they exist, of the boundary value problems for (1) satisfying,
respectively, (3), (4), (5) and (6).

Theorem 3.1 Suppose (A) is satisfied and that, for each m ∈ R, there exist solutions

of (1) satisfying each of (3), (4), (5) and (6). Then, α′′(b, m) and β ′′(b, m) are,

respectively, strictly increasing and decreasing functions of m with ranges all of R.

Proof: The “strictness” of the conclusion arises from Theorem 2.1. Let m1 > m2 and
let

w(x) = β(x, m1) − β(x, m2).

Then,

w(b) = 0, w′(b) = m1 − m2 > 0, w′(x2) − w′(c) = 0, and w′′(b) 6= 0.

Contrary to the conclusion, assume w′′(b) > 0. It follows that there exists b < r < c

such that
w′′(r) = 0 and w′′(x) > 0 on [b, r).
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We also have,
w(x) > 0 and w′(x) > 0 on (b, r].

As in the other proofs above, we arrive at the same contradiction, w′′′(r) ≤ 0 and
w′′′(r) > 0. Thus, w′′(b) < 0 and as a consequence, β ′′(b, m) is a strictly decreasing
function of m.

We next argue that {β ′′(b, m) | m ∈ R} = R. So, let k ∈ R, and consider the solu-
tion, v(x, k) of (1), (6), with v as defined above. Consider also the solution β(x, v′(b, k))
of (1), (5). Then β(x, v′(b, k)) and v(x, k) are solutions of the same type boundary value
problem (1), (5), and hence by Theorem 2.1, the functions are identical. Therefore,

β ′′(b, v′(b, k)) = v′′(b, k) = k,

and the range of β ′′(b, m), as a function of m, is the set of real numbers.
The argument for α′′(b, m) is somewhat similar. This completes the proof.

In a similar way, we also have a monotonicity result on first order derivatives of
u(x, m) and v(x, m).

Theorem 3.2 Assume the hypotheses of Theorem 3.1. Then, u′(b, m) and v′(b, m)
are, respectively, strictly increasing and decreasing functions of m with ranges all of R.

We now provide our existence result.

Theorem 3.3 Assume the hypotheses of Theorem 3.1. Then (1), (2) has a unique

solution.

Proof. The existence is immediate from either Theorem 3.1 or Theorem 3.2. Making
use of Theorem 3.1, there exists a unique m0 ∈ R such that α′′(b, m0) = β ′′(b, m0).
Then

y(x) =

{

α(x, m0), a ≤ x ≤ b,

β(x, m0), b ≤ x ≤ c,

is a solution of (1), (2), and by Theorem 2.2, y(x) is the unique solution. The proof is
complete.
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