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Abstract. Some formulas for the “general solution” to the binomial partial difference
equation

cm,n = cm−1,n + cm−1,n−1,

are known in the literature. However, it seems that there is no such a formula on the
most natural domain connected to the equation, that is, on the set D =

{
(m, n) ∈ N2

0 :
0 ≤ n ≤ m

}
. By using a connection with the scalar linear first order difference equation

we show that the equation on the domain D \ {(0, 0)}, can be solved in closed form by
presenting a formula for the solution in terms of the “side” values ck,0, ck,k, k ∈N.
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1 Introduction

As we know, the Newton binomial formula can be written in the following form

(a + b)m =
m

∑
n=0

Cm
n am−nbn, (1.1)

where m is an arbitrary natural number. The numbers Cm
n , 0 ≤ n ≤ m, are called the binomial

coefficients, and from (1.1) and the relation

(a + b)m = (a + b)m−1(a + b) =
( m−1

∑
n=0

Cm−1
n am−1−nbn

)
(a + b)

= Cm−1
0 am +

m−1

∑
n=1

(
Cm−1

n + Cm−1
n−1

)
am−nbn + Cm−1

m−1bm,
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where m ≥ 2, it follows that

Cm
0 = Cm−1

0 and Cm
m = Cm−1

m−1 , (1.2)

and

Cm
n = Cm−1

n + Cm−1
n−1 , 1 ≤ n ≤ m− 1, (1.3)

for every m ≥ 2. From (1.2) and the obvious fact

C1
0 = C1

1 = 1,

which follows from (1.1) with m = 1, we also obtain

Cm
0 = Cm

m = 1,

for every m ∈N.
If we “naturally” assume (based, for example, on the combinatorial meanings of the coef-

ficients), that is, introduce by a definition, that

Cm−1
m = Cm−1

−1 = 0, m ∈N, and C0
0 = 1,

then we see that such a defined double sequence Cm
n satisfies the relation in (1.3), for all

m, n ∈ N0 such that 0 ≤ n ≤ m. All above mentioned is (or should be) nowadays known
to any high-school student. For a good source of some classical things connected to this and
related topics, see, for example, the nice problem book [9]. Some more advanced results can
be found, for example, in monographs [12] and [14].

Looking at recurrent relation (1.3) it can be seen that it is nothing but a camouflaged partial
difference equation, which could be traditionally written in the following form

cm,n = cm−1,n + cm−1,n−1, (1.4)

more acceptable to the experts on difference equations. This seems one of the first partial
difference equations appearing in the literature (it appeared much before than the notion
partial difference equation was coined), and one of the basic ones (see, for example, [6, p. 1]).
Some basic material on partial difference equations, especially related to the methods for
solving linear and some related partial difference equations, can be found, for example, in the
classical sources [8, Chapter 12] and [10, Chapter 8]. A plenty of classical, as well as recent
results on various types of linear and nonlinear partial difference equations, can be found, for
example, in the nice monograph [6].

On the other hand, there has been some renewed recent interest in difference equations and
systems which can be solved in closed form (see, for example, [1–4, 7, 13, 15, 16, 18–36, 38–47]).
For some basic and classical types of solvable difference equations, see, for example, [8,10,12]
(see, also, [9, Chapter 10], as well as some parts of the book [14]). Our note [15], in which a
method for solving the difference equation appearing in [7] was given, triggered the renewed
interest. Namely, it turned out that there are numerous nonlinear difference equations and
systems of interest which can be transformed into the known solvable ones by using some
suitable changes of variables. Many closed form formulas for solutions of the equations and
systems seems obtained by using some computer packages, so they need some theoretical
explanations. Some explanations for closed form formulas for solutions of such types of
equations and systems can be found, for example, in [18, 24, 40]. One of the crucial points
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in many of the above mentioned papers is the fact that the changes of variables transform
the equations into the nonhomogeneous linear first order difference equation, that is, into the
equation

xn = anxn−1 + bn, n ∈N, (1.5)

where (an)n∈N and (bn)n∈N are arbitrary sequences of real or complex numbers, and x0 ∈ R

or x0 ∈ C, respectively. For example, suitable changes of variables transform some of the
difference equations in [1,2,4,13,15,16,19,23,34,40,41,43] into equation (1.5) or into its special
cases. It should be pointed out that in some cases such obtained equations and systems are
not equivalent to the original ones. Such a situation appears for example, in the original
source [15], as well as in several later papers [19, 23, 28, 39, 45]. Actually, in this or that way,
many equations and systems are related to equation (1.5), or to the corresponding difference
inequality or linear system of difference equations [5, 11, 12, 36, 39].

There are several methods for solving equation (1.5). For instance, by multiplying the
equality

xn−l+1 = an−l+1xn−l + bn−l+1

by ∏n
j=n−l+2 aj, and summing up such obtained equalities for 1 ≤ l ≤ n, it follows that

xn = x0

n

∏
j=1

aj +
n

∑
i=1

bi

n

∏
j=i+1

aj, n ∈N0, (1.6)

which is the general solution to the equation. For some other methods, see, for example, [12].
For the case of some systems of difference equations the corresponding changes of vari-

ables transform them into some solvable linear ones (see, for example, [4, 18, 20–22, 24–30, 36,
39, 40, 44, 45]). In some other cases, such as in papers [32], [33], [35] and [46], where product-
type systems related to the equations and systems in [17] and [37] are considered, or in papers
[31, 34, 38, 42], the transformations and methods used therein are more complex, but as a fi-
nal outcome some solvable linear difference equations of higher order or more complicated
solvable linear systems are obtained. If we also note that many of the solvable higher-order
difference equations appearing in these papers can be presented as operator products of some
linear first-order ones, we see an exceptional importance of equation (1.5).

Now recall another well-known fact regarding the binomial coefficients. Namely, there is
a concrete formula for them. It is

Cm
n =

m!
n!(m− n)!

, 0 ≤ n ≤ m, (1.7)

which is one of the most basic formulas not only in combinatorics, but in mathematics as
whole.

The fact that the double sequence Cm
n is a solution to equation (1.4) suggests that the

equation could be “solvable” in closed form. This is, in a way, true. Namely, for the partial
difference equation (1.4) it is possible to find its “general solution” (the notion is more obscure
than the corresponding one for the scalar difference equation and we will give some additional
comments on it below). Indeed, if the following two operators are defined as

Eum,n = um+1,n and Fum,n = um,n+1,

(see [10, p. 239]) then equation (1.4) can be written in the form

cm,n = (I + F−1)cm−1,n,
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from which it follows that

cm,n = (I + F−1)mc0,n =
m

∑
j=0

Cm
j F−jc0,n =

m

∑
j=0

Cm
j c0,n−j,

which is the “general” solution to equation (1.4), since c0,n, n ∈ Z, is an arbitrary sequence (i.e.
function) on Z. To find a concrete solution to equation (1.4), it is clear that the initial values
should be given at the points (0, n)n∈Z on the y-axis. This means that the “general” solution
to equation (1.4) corresponds to the right-half plane. This clearly shows that beside a partial
difference equation, the types of domains involved considerably influence on the “general”
solution to the equation.

The particular solution to equation (1.4) given in (1.7) is obtained from the “general” one

cm,n = Cm
0 c0,n + Cm

1 c0,n−1 + · · ·+ Cm
m−1c0,n−m+1 + Cm

mc0,n−m,

by choosing the boundary values c0,k as follows

c0,0 = 1 and c0,k = 0, k 6= 0.

However, the initial values appearing on y-axis seem less natural for the binomial coeffi-
cients and for getting formula (1.7), due to the fact that the natural domain for them is the
set

D =
{
(m, n) ∈N2

0 : 0 ≤ n ≤ m
}

,

since Cm
0 and Cm

m , m ∈N0, are specified.
So, it is a natural question whether there is a closed form formula for solutions to equation

(1.4) which reconstructs its solutions on domain D by using the given “side” values c0,k and
ck,k, when k ∈N.

Our aim here is to present a closed form formula for solutions to equation (1.4) in domain
D \ {(0, 0)}. The formula could be known, but we could not locate it in the literature. Beside
this, the formula seems quite unknown to a wide audience, so deserves publication in a visible
place. Another aim is to point out a strong connection of a partial difference equation and its
solvability with the solvability of the linear difference equation of first order.

2 Main result

Here, we first give a motivation for the main formula obtained in this paper, and show its con-
nection with a special case of equation (1.5). The method presented here is half-constructive.
Namely, we will first solve equation (1.4) in some special cases and then based on the obtained
formulas we will assume the form of the general solution to the equation and confirm it by
induction. The main idea is to note that for a fixed m equation (1.4) is actually equation (1.5)
with

an = 1 and bn = cm−1,n, n ∈N,

which is, among others, why we paid some attention to equation (1.5) in the introduction, as
well as to its usefulness in various applications.

Although, in this case the corresponding linear equation is much simpler than the one
in (1.5) and its solution is essentially obtained by the telescoping method, we want to point
out the connection since we highly expect that for some related partial difference equations
we might arrive at a position to use more general form of equation (1.5). We also want to
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emphasize that, because of the specificity of the domain, we will use its natural division by
the lines

y = x + k, where x ∈N0,

and where k is a fixed natural number. Namely, we will find a formula for the solution on
the line with coefficient k, and then by using the formula on the line we will find a formula
for the solution on the line with coefficient k + 1. Since k is an arbitrary natural number, this
decomposition will produce the solution on the whole domain D.

To demonstrate the method, and to point out clearly connection of equation (1.4) with a
scalar linear difference equation of first-order, we will first find the solution to equation (1.4)
for the case when k = 1, 2, 3.

First assume that k = 1, that is, m = n + 1. Then in this case equation (1.4) becomes

cn+1,n = cn,n + cn,n−1, n ∈N. (2.1)

Summing up the equations in (2.1) from 1 to n, or equivalently solving it by using the change
of variables

xn = cn+1,n, n ∈N,

which transforms equation (2.1) into the following linear difference equation of first-order

xn = xn−1 + cn,n, n ∈N,

and using formula (1.6) with an = 1 and bn = cn,n, we get

cn+1,n =
n

∑
i=1

ci,i + c1,0, n ∈N0. (2.2)

If k = 2, then m = n + 2. If we put it into (1.4), we get

cn+2,n = cn+1,n + cn+1,n−1, n ∈N. (2.3)

Similarly to the previous case, we get

cn+2,n =
n

∑
j=1

cj+1,j + c2,0, (2.4)

for every n ∈N0.
Using (2.2) in (2.4), change the order of summation and by some calculation, we get

cn+2,n =
n

∑
j=1

( j

∑
i=1

ci,i + c1,0

)
+ c2,0

=
n

∑
i=1

ci,i

n

∑
j=i

1 +
n

∑
j=1

c1,0 + c2,0

=
n

∑
i=1

(n− i + 1)ci,i + nc1,0 + c2,0, (2.5)

for every n ∈N0.
If k = 3, then m = n + 3, and if we put it in (1.4), we get

cn+3,n = cn+2,n + cn+2,n−1, n ∈N. (2.6)
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Similar to the case k = 1, we get

cn+3,n =
n

∑
j=1

cj+2,j + c3,0, (2.7)

for every n ∈N0.
Using (2.5) in (2.7), changing the order of summation and by some calculation, we get

cn+3,n =
n

∑
j=1

( j

∑
i=1

(j− i + 1)ci,i + jc1,0 + c2,0

)
+ c3,0

=
n

∑
i=1

ci,i

n

∑
j=i

(j− i + 1) +
n

∑
j=1

jc1,0 +
n

∑
j=1

c2,0 + c3,0

=
n

∑
i=1

ci,i

n−i+1

∑
j=1

s +
n(n + 1)

2
c1,0 + nc2,0 + c3,0

=
n

∑
i=1

(n− i + 1)(n− i + 2)
2

ci,i +
n(n + 1)

2
c1,0 + nc2,0 + c3,0

=
n

∑
i=1

Cn−i+2
2 ci,i + Cn+1

2 c1,0 + Cn
1 c2,0 + Cn−1

0 c3,0, n ∈N0, (2.8)

where we have also used the well-known formula
l

∑
j=1

j =
l(l + 1)

2
, l ∈N,

for l = n− i + 1 and l = n.
Hence, on the lines m = n + k, for k ∈ {1, 2, 3}, we have found the solution to equation

(1.4) by constructing it. The procedure can be continued for k = 4 and other small values of k.
However, since we need a closed form formula to solutions of equation (1.4) which holds for
every m ∈N, we need a formula for cn+k,n which holds for every k ∈N.

Formulas (2.2), (2.5) and (2.8) suggest that the following formula holds

cn+k,n =
n

∑
i=1

Cn−i+k−1
k−1 ci,i +

k

∑
j=1

Cn+k−j−1
k−j cj,0, (2.9)

for every n ∈N0 and k ∈N.
We apply the method of induction. According to the previous consideration equality (2.9)

holds for k = 1 since (2.2) can be written in the form

cn+1,n =
n

∑
i=1

Cn−i
0 ci,i + c1,0, n ∈N0.

Assume that (2.9) hold for some k ∈N.
If we put m = n + k + 1 into (1.4), we get

cn+k+1,n = cn+k,n + cn+k,n−1, n ∈N. (2.10)

Summing up the equations in (2.10) from 1 to n, we get

cn+k+1,n =
n

∑
j=1

cj+k,j + ck+1,0, n ∈N0. (2.11)
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Using the hypothesis (2.9) in (2.11), and by some simple calculations, we get

cn+k+1,n =
n

∑
j=1

(
j

∑
i=1

Cj−i+k−1
k−1 ci,i + Cj+k−2

k−1 c1,0 + Cj+k−3
k−2 c2,0 + · · ·+ Cj−1

0 ck,0

)
+ ck+1,0

=
n

∑
i=1

ci,i

n

∑
j=i

Cj−i+k−1
k−1 +

k

∑
r=1

cr,0

n

∑
j=1

Cj+k−r−1
k−r + ck+1,0, (2.12)

for every n ∈N0.
By using recurrent relation (1.3), we have

n

∑
j=1

Cj+k−r−1
k−r =

n

∑
j=1

(
Cj+k−r

k−r+1 − Cj+k−r−1
k−r+1

)
= Cn+k−r

k−r+1 − Ck−r
k−r+1

= Cn+k−r
k−r+1 , (2.13)

for every 1 ≤ r ≤ k, and

n

∑
j=i

Cj−i+k−1
k−1 =

n

∑
j=i

(
Cj−i+k

k − Cj−i+k−1
k

)
= Cn−i+k

k − Ck−1
k = Cn−i+k

k , (2.14)

for every 1 ≤ i ≤ n.
Using (2.13) and (2.14) in (2.12), it follows that

cn+k+1,n =
n

∑
i=1

Cn−i+k
k ci,i +

k+1

∑
j=1

Cn+k−j
k−j+1 cj,0,

from which along with the method of induction it follows that formula (2.9) holds for every
n ∈N0 and k ∈N.

Due to the above considerations, we are now in a position to formulate and prove the main
result in this note.

Theorem 2.1. If (uk)k∈N, (vk)k∈N, are given sequences of real numbers. Then the solution to partial
difference equation (1.4) on domain D \ {(0, 0)}, with the boundary value conditions given by

ck,0 = uk and ck,k = vk, k ∈N, (2.15)

is given by

cm,n =
n

∑
i=1

Cm−i−1
m−n−1vi +

m−n

∑
j=1

Cm−1−j
m−n−juj. (2.16)

Proof. If we put k = m − n in formula (2.9) (note that m > n so k ∈ N), use the “side”
conditions given in (2.15), and by some simple calculations, we obtain formula (2.16).

Remark 2.2. Note that Theorem 2.1 actually says that the general solution to partial difference
equation (1.4) on domain D \ {(0, 0)} is given by the formula

cm,n =
n

∑
i=1

Cm−i−1
m−n−1ci,i +

m−n

∑
j=1

Cm−1−j
m−n−jcj,0, (2.17)

which is the closed form formula that we wanted to obtain (the formula which reconstructs
the solutions to equation (1.4) by given “side” values ck,0, ck,k, k ∈N).
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Remark 2.3. Note that formula (2.17) does not contain value c0,0, which is why instead of
domain D we consider domain D \ {(0, 0)}.

Corollary 2.4. The solution to partial difference equation (1.4) on domain D \ {(0, 0)}, with the
boundary value conditions given by

ck,0 = 1 and ck,k = 1, k ∈N, (2.18)

is given by

cm,n = Cm
n . (2.19)

Proof. If we put the conditions in (2.18) in formula (2.16), we get

cm,n =
n

∑
i=1

Cm−i−1
m−n−1 +

m−n

∑
j=1

Cm−1−j
m−n−j. (2.20)

We have

n

∑
i=1

Cm−i−1
m−n−1 =

n

∑
i=1

(
Cm−i

m−n − Cm−i−1
m−n

)
= Cm−1

m−n − Cm−n−1
m−n = Cm−1

m−n. (2.21)

By using (2.21) in (2.20), noticing that

m−n

∑
j=1

Cm−1−j
m−n−j =

m−n−1

∑
r=0

Cn−1+r
r ,

and then applying recurrent relation (1.3), we get

cm,n = Cm−1
m−n +

m−n−1

∑
r=0

Cn−1+r
r

=
m−n

∑
r=0

Cn−1+r
r = Cn−1

0 +
m−n

∑
r=1

(
Cn+r

r − Cn+r−1
r−1

)
= Cn−1

0 + Cm
m−n − Cn

0 = Cm
m−n. (2.22)

From (2.22) and since Cm
m−n = Cm

n , formula (2.19) follows, as desired. �

Remark 2.5. The formula
m−n

∑
r=0

Cn−1+r
r = Cm

m−n,

is well-known and can be found in many books on combinatorics or problem books on ele-
mentary mathematics, in this or some equivalent forms (see, e.g., [9] or [12]). We have added
the proof for its simplicity, benefit of the reader and for the completeness of the note.
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Knjiga, Beograd, 1984.

[13] G. Papaschinopoulos, G. Stefanidou, Asymptotic behavior of the solutions of a class
of rational difference equations, Inter. J. Difference Equations 5(2010), No. 2, 233–249.
MR2771327

[14] J. Riordan, Combinatorial identities, John Wiley & Sons Inc., New York-London-Sydney,
1968. MR0231725
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[19] S. Stević, On the difference equation xn = xn−2/(bn + cnxn−1xn−2), Appl. Math. Comput.
218(2011), 4507–4513. MR2862122; url
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[35] S. Stević, M. A. Alghamdi, A. Alotaibi, E. M. Elsayed, Solvable product-type system
of difference equations of second order, Electron. J. Differential Equations 2015, No. 169, 20
pages. MR3376000
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