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1 Introduction

In this paper, we consider the existence and attractivity of mild solutions of the second order
evolution equation

y′′(t)− A(t)y(t) = f (t, yt), t ∈ J := [0, ∞), (1.1)

y0 = φ, y′(0) = ỹ, (1.2)

where (E, | · |) a real Banach space, {A(t)}0≤t<+∞ is a family of linear closed operators from
E into E that generate an evolution system of operators {U (t, s)}(t,s)∈J×J for 0 ≤ s ≤ t < +∞,
f : J × B → E is a Carathéodory function, B is an abstract phase space to be specified later,
ỹ ∈ E, and φ ∈ B.

For any continuous function y and any t ≥ 0, we denote by yt the element of B defined
by yt(θ) = y(t + θ) for θ ∈ (−∞, 0]. Here, yt(·) represents the history of the state up to the
present time t. We assume that the histories yt belong to B.

Functional differential equations arise in many areas of applications, and for basic results
and background information, we refer the reader to the monographs of Hale and Verduyn
Lunel [14] and Kolmanovskii and Myshkis [20]. There are many results concerning the second-
order functional evolution equations; see, for example, Abbas and Benchohra [1], Balachan-
dran et al. [5,6], Fattorini [12], Hernández [15], Hernández and McKibben [16], Henríquez and
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Vásquez [17], and Travis and Webb [23]. Fractional evolution equations and inclusions have
been studied by Wang, Fečkan, and Zhou [24], Wang, Ibrahim, and Fečkan [25], Wang and
Zhang [26], and Wang and Zhou [27].

Differential equations on infinite intervals frequently occur in mathematical modeling of
various applied problems. For example, in the study of unsteady flow of a gas through a
semi-infinite porous medium [3, 19], the analysis of the mass transfer on a rotating disk in
a non-Newtonian fluid [4], heat transfer in the radial flow between parallel circular disks
[22], investigation of the temperature distribution in the problem of phase change of solids
with temperature dependent thermal conductivity [22], as well as numerous problems arising
in the study of circular membranes [2, 9, 10], plasma physics [4], nonlinear mechanics, and
non-Newtonian fluid flows [2].

This paper is organized as follows. In Section 2, we recall some definitions and facts about
evolution systems. In Section 3, we prove the existence of mild solutions to the problem
(1.1)–(1.2). In Section 4, we show the attractivity of mild solutions, and in the last section, an
example is given to show the applicability of our results.

To our knowledge, no papers devoted to the global existence and the attractivity of mild
solutions of problem (1.1)–(1.2) have appeared in the literature. The present work attempts to
fill that gap.

2 Preliminaries

Let E be a Banach space with the norm | · | and let BC(J, E) be the Banach space of all bounded
and continuous functions y mapping J into E with the usual supremum norm

‖y‖ = sup
t∈J
|y(t)|.

Let X be the space defined by

X =
{

y : R→ E | y|J ∈ BC(J, E) and y0 ∈ B
}

,

where by y|J we mean the restriction of y to J.
In this paper, we will use an axiomatic definition of the phase space B introduced by

Hale and Kato in [13] and follow the terminology used in [18]. Thus, (B, ‖ · ‖B) will be a
seminormed linear space of functions mapping (−∞, 0] into E, and satisfying the following
axioms.

(A1) If y : (−∞, b) → E, b > 0, is continuous on [0, b] and y0 ∈ B, then for any t ∈ [0, b) the
following conditions hold:

(i) yt ∈ B;

(ii) there exists a positive constant H such that |y(t)| ≤ H‖yt‖B ;

(iii) there exist functions K, M : R+ → R+ independent of y with K continuous and M
locally bounded such that:

‖yt‖B ≤ K(t) sup{ |y(s)| : 0 ≤ s ≤ t }+ M(t)‖y0‖B .

(A2) For the function y in (A1), yt is a B-valued continuous function on [0, b].
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(A3) The space B is complete.

Remark 2.1. In the sequel, we assume that K and M are bounded on J and

γ := max

{
sup
t∈R+

{K(t)}, sup
t∈R+

{M(t)}
}

.

For additional details we refer the reader, for example, to the book by Hino et al. [18].
In what follows, let {A(t), t ≥ 0} be a family of closed linear operators on the Banach

space E with domain D(A(t)) that is dense in E and independent of t. The existence of
solutions to the problem (1.1)–(1.2) is related to the existence of an evolution operator U (t, s)
for the homogeneous problem

y′′(t) = A(t)y(t), t ∈ J. (2.1)

This concept of evolution operator has been developed by Kozak [21].

Definition 2.2. A family U of bounded operators U (t, s) : E→ E, (t, s) ∈ ∆ := {(t, s) ∈ J × J :
s ≤ t}, is called an evolution operator of the equation (2.1) if the following conditions hold.

(D1) For any x ∈ E the map (t, s) 7−→ U (t, s)x is continuously differentiable and:

(a) for any t ∈ J, U (t, t) = 0;

(b) for all (t, s) ∈ ∆ and for any x ∈ E, ∂
∂tU (t, s)x

∣∣
t=s = x and ∂

∂sU (t, s)x
∣∣
t=s = −x.

(D2) For all (t, s) ∈ ∆, if x ∈ D(A(t)), then ∂
∂sU (t, s)x ∈ D(A(t)), the map (t, s) 7−→ U (t, s)x

is of class C2, and:

(a) ∂2

∂t2U (t, s)x = A(t)U (t, s)x;

(b) ∂2

∂s2U (t, s)x = U (t, s)A(s)x;

(c) ∂2

∂s∂tU (t, s)x
∣∣
t=s = 0.

(D3) For all (t, s) ∈ ∆, if x ∈ D(A(t)), then ∂
∂sU (t, s)x ∈ D(A(t)), ∂3

∂t2∂sU (t, s)x and ∂3

∂s2∂tU (t, s)x
exist, and:

(a) ∂3

∂t2∂sU (t, s)x = A(t) ∂
∂s (t)U (t, s)x;

(b) ∂3

∂s2∂tU (t, s)x = ∂
∂tU (t, s)A(s)x.

Moreover, the map (t, s) 7−→ A(t) ∂
∂s (t)U (t, s)x is continuous.

The following compactness criterion in C(R+, E) is particularly useful.

Lemma 2.3 (Corduneanu [7]). Let C ⊂ BC(R+, E) be a set satisfying the following conditions:

(i) C is bounded in BC(R+, E);

(ii) the functions belonging to C are equicontinuous on any compact interval of R+;

(iii) the set C(t) := {y(t) : y ∈ C} is relatively compact on any compact interval of R+;

Then C is relatively compact in BC(R+, E).

Our final lemma is the well known Schauder fixed point theorem [11].

Lemma 2.4. Let C be a nonempty closed convex bounded subset of a Banach space E. Then any
continuous compact mapping T : C → C has a fixed point.
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3 Main result

We begin with the definition of a mild solution to our problem.

Definition 3.1. A function y ∈ X is called a mild solution to the problem (1.1)–(1.2), if y is
continuous and

y(t) =

φ(t), if t ≤ 0,

− ∂
∂sU (t, 0)φ(0) + U (t, 0)ỹ +

∫ t

0
U (t, s) f (s, ys)ds, if t ∈ J.

(3.1)

To prove our results we introduce the following conditions.

(H1) There exists a constant M̂ ≥ 1 and ω > 0 such that

‖U (t, s)‖B(E) ≤ M̂e−ω(t−s) for any (t, s) ∈ ∆.

(H2) There exists a constant M̃ ≥ 0 such that∥∥∥∥ ∂

∂s
U (t, s)

∥∥∥∥
B(E)
≤ M̃.

(H3) There exists a function p ∈ L1(J, R+) such that

| f (t, u)| ≤ p(t)(‖u‖B + 1) for a.e. t ∈ J and any u ∈ B.

(H4) For any (t, s) ∈ ∆, we have

lim
t→+∞

∫ t

0
e−w(t−s)p(s)ds = 0.

Theorem 3.2. If conditions (H1)–(H4) hold, then the problem (1.1)–(1.2) admits at least one mild
solution.

Proof. It is clear that the fixed points of the operator T : X → X defined by

T(y)(t) =

φ(t), if t ≤ 0,

− ∂
∂sU (t, 0)φ(0) + U (t, 0)ỹ +

∫ t

0
U (t, s) f (s, ys)ds, if t ∈ J,

(3.2)

are mild solutions of problem (1.1)–(1.2).
For φ ∈ B, let x : (−∞,+∞)→ E be the function defined by

x(t) =

{
φ(t), if t ∈ (−∞, 0],

− ∂
∂sU (t, 0)φ(0) + U (t, 0)ỹ if t ∈ J.

Then x0 = φ. For any function z ∈ X , we set

y(t) = x(t) + z(t).

It is clear that y satisfies (3.2) if and only if z satisfies z0 = 0 and for all t ∈ J

z(t) =
∫ t

0
U (t, s) f (t, xs + zs)ds. (3.3)
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In the sequel, we always take X0 to be the Banach space

X0 = {z ∈ X : z0 = 0}

endowed with the norm

‖z‖X0 = sup
t∈J
|z(t)|+ ‖z0‖B = sup

t∈J
|z(t)|.

Now, we can consider the operator L : X0 → X0 given by

Lz(t) =
∫ t

0
U (t, s) f (s, zs + xs)ds, for t ∈ J.

The problem (1.1) having a solution is equivalent to L having a fixed point. To prove that
problem (1.1) does in fact have a solution, we begin with the following estimation.

For any z ∈ X0 and t ∈ J, we have

‖zt + xt‖B ≤ ‖zt‖B + ‖xt‖B

≤ K(t)|z(t)|+ K(t)‖ ∂

∂s
U (t, 0)‖B(E)‖φ‖B

+ K(t)‖U (t, 0)‖B(E)|ỹ|+ M(t)‖φ‖B
≤ γ‖z‖X0 + γM̃‖φ‖B + γM̂e−ωt|ỹ|+ γ‖φ‖B
≤ γ‖z‖X0 + γ‖φ‖B(M̃ + 1) + γM̂|ỹ|. (3.4)

Now, we will show that the operator L satisfied the conditions of Schauder’s fixed point
theorem.

Step 1. L is continuous.
Let (zk)k∈N be a sequence in X0 such that zk → z in X0; then for any t ∈ J, we obtain

|L(zk)(t)− L(z)(t)| ≤
∫ t

0
‖U (t, s)‖B(E)| f (t, xs + zk

s)− f (t, xs + zs)| ds

≤ M̂
∫ t

0
e−ω(t−s)| f (s, zk

s + xs)− f (s, zs + xs)| ds.

Hence, from the continuity of the function f and the Lebesgue dominated convergence theo-
rem, we obtain

‖Lzk − Lz‖X0 → 0 as k→ +∞.

So L is continuous.

Step 2. L maps bounded sets in X0 into bounded sets.
Let η > 0 satisfy

η ≥
M̂
(
γ‖φ‖B(M̃ + 1) + γM̂|ỹ|+ 1

)
‖p‖L1

1− M̂γ‖p‖L1
,

and consider the set Dη = {z ∈ X0 : ‖z‖X0 ≤ η}. If z ∈ Dη , then from (H3) and (3.4),

|L(z)(t)| ≤
∫ t

0
‖U (t, s)‖B(E)| f (s, xs + zs)| ds

≤ M̂
∫ t

0
e−ω(t−s)p(s)(‖zs + xs‖B + 1)ds.

≤ M̂
(

γ‖z‖X0 + γ‖φ‖B(M̃ + 1) + γM̂|ỹ|+ 1
) ∫ t

0
e−ω(t−s)p(s)ds

≤ M̂ξ‖p‖L1 ≤ η,
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where
ξ := γη + γ‖φ‖B(M̃ + 1) + γM̂|ỹ|+ 1.

Thus, the operator L maps Dη into itself.

Step 3. L(Dη) relatively compact.
Let Dη be a bounded subset of X0. To show that L(Dη) is relatively compact we will use

Lemma 2.3.
� L(Dη) is equicontinuous.

Let s, t ∈ [0, b] with t > s and z ∈ Dη . Then, we have

|(Lz)(t)− (Lz)(s)| =
∣∣∣∣∫ s

0
(U (t, τ)−U (s, τ)) f (τ, zτ + xτ)dτ +

∫ t

s
U (t, τ) f (τ, zτ + xτ)dτ

∣∣∣∣
≤
∫ s

0
‖U (t, τ)−U (s, τ)‖B(E) p(τ)

(
‖zτ + xτ‖B + 1

)
dτ

+ M̂
∫ t

s
e−ω(t−τ) p(τ)

(
‖zτ + xτ‖B + 1

)
dτ.

From inequality (3.4), we obtain

|(Lz)(t)− (Lz)(s)| ≤ ξ
∫ s

0
‖U (t, τ)−U (s, τ)‖B(E) p(τ) dτ + M̂ξ

∫ t

s
p(τ)dτ.

The right-hand side of the above inequality tends to zero as t − s → 0, which implies that
L(Dη) is equicontinuous.
� Λ := {(Lz)(t) : z ∈ Dη} is relatively compact in E.

Let t ∈ J be a fixed and let 0 < ε < t ≤ b. For z ∈ Dη , we define

Lε(z)(t) = U (t, t− ε)
∫ t−ε

0
U (t− ε, s) f (s, zs + xs)ds.

Since U (t, s) is a compact operator, and the set Λε := {(Lεz)(t) : z ∈ Dη} is the image of
bounded set in E by U (t, s), we see that Λε is precompact in E. Furthermore, for z ∈ Dη , we
have

|L(z)(t)− Lε(z)(t)| ≤
∫ t

t−ε
‖U (t, s)‖B(E)

∣∣∣ f (s, zs + xs)
∣∣∣ds

≤
∫ t

t−ε
‖U (t, s)‖B(E)p(s)

(
‖zs + xs‖B + 1

)
ds

≤ ξM̂
∫ t

t−ε
e−ω(t−s)p(s)ds.

The right-hand side tends to zero as ε→ 0, so Lε(z) converge uniformly to L(z), which implies
that Dη(t) is precompact in E.
� L is equiconvergent.

Let z ∈ D; then from conditions (H1)–(H3) and (3.4), we have

|(Lz)(t)| ≤ M̂ξ
∫ t

0
e−ω(t−s)p(s)ds,

and it follows immediately from (H4) that |(Lz)(t)| → 0 as t→ +∞. Hence,

lim
t→+∞

|(Lz)(t)− (Lz)(+∞)| = 0,

which implies that L is equiconvergent.
Therefore, by Lemma 2.3, L(Dη) is relatively compact. Hence, by Lemma 2.4, the operator

L has at least one fixed point which in turn is a mild solution of problem (1.1)–(1.2).
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4 Attractivity of solutions

In this section we study the local attractivity of solutions the problem (1.1)–(1.2).

Definition 4.1 ([8]). Solutions of (1.1) are locally attractive if there exists a closed ball B̄(z∗, σ)

in the space X0 for some z∗ ∈ X such that, for any solutions z and z̃ of (1.1)–(1.2) belonging
to B̄(z∗, σ), we have

lim
t→+∞

(z(t)− z̃(t)) = 0.

Under the assumptions of Section 3, let z∗ be a solution to (1.1)–(1.2) and B̄(z∗, σ) the
closed ball in X0 where σ satisfies

σ ≥
2M̂
(

γ‖φ‖B(M̃ + 1) + γM̂|ỹ|+ 1
)
‖p‖L1

1− 2M̂γ‖p‖L1
.

Then, for z ∈ B̄(z∗, σ), from (H1)–(H3) and (3.4), we have

|(Lz)(t)− z∗(t)| = |(Lz)(t)− (Lz∗)(t)|

≤
∫ t

0
‖U (t, s)‖B(E)

∣∣∣ f (s, zs + xs)− f (s, z∗s + xs)
∣∣∣ds

≤ M̂
∫ t

0
e−ω(t−s)p(t)

(
‖zs + xs‖B + ‖z∗s + xs‖B + 2

)
ds

≤ 2M̂(γσ + γ‖φ‖B(M̃ + 1) + γM̂|ỹ|+ 1)‖p‖L1

≤ σ.

Therefore, L(B̄(z∗, σ)) ⊂ B̄(z∗, σ). So, for any solution z ∈ B̄(z∗, ρ) to problem (1.1) and
t ∈ J, we have

|z(t)− z∗(t)| = |(Lz)(t)− (Lz∗)(t)|

≤
∫ t

0
‖U (t, s)‖B(E)

∣∣∣ f (s, zs + xs)− f (s, z∗s + xs)
∣∣∣ds

≤ M̂
∫ t

0
e−ω(t−s)p(t)

(
‖zs + xs‖B + ‖z∗s + xs‖B + 2

)
ds

≤ 2M̂(γσ + γ‖φ‖B(M̃ + 1) + γM̂|ỹ|+ 1)
∫ t

0
e−ω(t−s)p(t)ds.

Hence, from (H4), we conclude that

lim
t→∞
|z(t)− z̃(t)| = 0.

Consequently, the solutions of problem (1.1)–(1.2) are locally attractive.

5 An example

Consider the second order Cauchy problem

∂2

∂t2 y(t, τ) =
∂2

∂τ2 y(t, τ) + a(t)
∂

∂t
y(t, τ)

+
∫ t

−∞
b(t− s)y(s, τ)ds, t ∈ J := [0, ∞), τ ∈ [0, 2π],

y(t, 0) = y(t, 2π) = 0, t ∈ J,

y(θ, τ) = φ(θ, τ),
∂

∂t
y(0, τ) = ψ(τ), θ ∈ (−∞, 0], τ ∈ [0, 2π],

(5.1)
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where a, b : J → R are continuous functions and φ(θ, ·) ∈ B.
Let X = L2(R, C) the space of 2π-periodic square-integrable functions from R into C,

and let H2(R, C) denote the Sobolev space of 2π-periodic functions x : R → C such that
x′′ ∈ L2(R, C).

We consider the operator A1y(τ) = y′′(τ) with domain D(A1) = H2(R, C). In addition,
we take A2(t)y(s) = a(t)y′(s) defined on H1(R, C), and consider the closed linear operator
A(t) = A1 + A2(t) which generates an evolution operator U defined by

U (t, s) = ∑
n∈Z

zn(t, s)〈x, wn〉wn,

where zn is a solution to the scalar initial value problem{
z′′(t) = −n2z(t) + ina(t)z(t),

z(s) = 0, z′(s) = z1.
(5.2)

Define the operator f : J ×B → X by

f (t, ϕ)(τ) =
∫ t

−∞
b(t− s)ϕ(s)(τ)ds, τ ∈ [0, 2π],

w(t)(τ) = y(t, τ), t ≥ 0, τ ∈ [0, 2π],

φ(s)(τ) = y(s, τ), −∞ < s ≤ 0, τ ∈ [0, 2π],

and
d
dt

w(0)(τ) =
∂

∂t
y(0, τ), τ ∈ [0, 2π].

Then, (5.1) can be written in the abstract form (1.1)–(1.2) with A and f defined above. Now,
the existence and attractivity of a mild solution can be concluded from an application of
Theorem 3.2.
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