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Abstract

Time-periodic reaction-diffusion equations can be discussed in the
context of discrete-time strongly monotone dynamical systems. It fol-
lows from the general theory that typical trajectories approach stable
periodic solutions. Among these periodic solutions, there are some
that have the same period as the equation, but, possibly, there might
be others with larger minimal periods (these are called subharmonic
solutions). The problem of existence of stable subharmonic solutions
is therefore of fundamental importance in the study of the behav-
ior of solutions. We address this problem for two classes of reaction
diffusion equations under Neumann boundary conditions. Namely,
we consider spatially inhomogeneous equations, which can have sta-
ble subharmonic solutions on any domain, and spatially homogeneous
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equations, which can have such solutions on some (necessarily non-
convex) domains.

1 Introduction

Consider the following parabolic problem

ut = ∆u + f(u, x, t), x ∈ Ω,

∂u

∂ν
= 0, x ∈ ∂Ω,

(1)

where u = u(x, t) ∈ R, Ω is a bounded domain in R
N with smooth boundary,

f : R×Ω̄×R → R is a smooth function that is periodic in t with period τ > 0
and ν is the unit outward normal vector field on ∂Ω. We are interested in the
existence of linearly stable subharmonic solutions of (1). By a subharmonic
solution we mean a solution p(x, t) that is periodic in t with minimal period
kτ for some integer k > 1. Such a p(x, t) is said to be linearly stable if the
period map (that is, the time-kτ map) of the linearized problem

vt = ∆v + fu(p(x, t), x, t)v, x ∈ Ω,

∂v

∂ν
= 0, x ∈ ∂Ω,

(2)

has all eigenvalues inside the unit circle in the complex plane.
The existence of stable subharmonic solutions is a fundamental problem

in the study of dynamics of (1). As we explain in the next section, most
bounded solutions of (1) approach a stable kτ -periodic solution, where k is a
positive integer. Absence of stable subharmonic solutions thus implies that
most solutions eventually oscillate with the asymptotic period equal to τ , the
period of the equation. On the other hand, the existence of linearly stable
subharmonic solutions implies that orbits with larger asymptotic periods fill
a nonempty open set in the state space.

We present theorems answering the above basic problem in two situations.
Theorem 2 in Section 3 asserts that for any bounded domain Ω one can find
a nonlinearity f = f(u, x, t) such that (1) has a linearly stable subharmonic
solution. This extends earlier results of Takáč [20, 21] and Dancer and Hess
[3], where the theorem is proved for special domains.
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It is well known that a similar theorem is not true for the class of spatially
homogeneous problems

ut = ∆u + f(u, t), x ∈ Ω,

∂u

∂ν
= 0, x ∈ ∂Ω.

(3)

Indeed, there are domains Ω such that (3) has no stable subharmonic so-
lutions for any nonlinearity f(u, t). Examples include convex or radially
symmetric domains. On the other hand, Theorem 3 in Section 3 shows that
there do exist domains and spatially homogeneous nonlinearities such that
(3) admits linearly stable subharmonic solutions.

2 Typical behavior of solutions

We choose X = C(Ω̄) as the state space for (1). For any u0 ∈ X there exists a
unique (local) solution u := u(·, t; u0) of (1) that satisfies the initial condition
u(·, 0) = u0. In this section we recall a theorem describing the behavior of
typical solutions of (1), that is, solutions emanating from an open and dense
set of initial conditions. For a simple formulation we assume the following
hypothesis:

lim sup
|u|→∞

f(u, t)

u
< 0. (4)

This dissipativity condition in particular implies that for any u0 ∈ X the
solution u(·, t; u0) is defined on [0,∞) and its orbit {u(·, t; u0) : t ≥ 0} is
relatively compact in X.

Theorem 1. Let f be of class C1, τ -periodic in t, and let (4) be satisfied.

Then there exists an open and dense subset G ⊂ X such that for any u0 ∈ G
there is a solution p(x, t) of (1) with the following properties:

(i) limt→∞ ‖u(·, t; u0) − p(·, t)‖X = 0,

(ii) p(·, t) is kτ -periodic with k ≥ 1,

(iii) p(·, t) is at least linearly neutrally stable.
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Here at least linearly neutrally stable means that the eigenvalues of the
period map of (2) are contained on or inside the unite circle.

This theorem is a consequence of an abstract result on discrete strongly
monotone dynamical systems. See [13, 14] for the proof under a slightly
stronger assumption of f ∈ C1,α; [22] contains a different proof for f ∈ C1.
An additional information follows from [6]: under the dissipativity condition
(4), the minimal period of the solution p in Theorem 1 is bounded above by
a constant independent of u0 ∈ G (of course, p itself may depend on u0).

The theorem says that most solutions are asymptotically periodic, leaving
open a possibility for some of these solutions to have large asymptotic periods.
The latter can occur only if there exist subharmonic solutions that are at least
neutrally linearly stable. The possibility can often be ruled out in specific
applications. For example, if (1) is a small perturbation of an autonomous
equation no stable subharmonic solutions exist (see [6] for the proof and
other examples). The situation may be more complex, however, in different,
not too restricted classes of equations. The existence of stable subharmonic
solutions is an interesting problem then.

Let us mention for completeness that there is no similar meaningful prob-
lem for autonomous equations. If f = f(u, x), then a typical trajectory of
(1) converges to an equilibrium. This fact was first proved in [7] invoking the
variational structure of the problem. The result has later been extended to
a much broader class of differential equations (see [18] for a general abstract
theorem and a background on strongly monotone semiflows).

3 Spatially inhomogeneous equations

First examples of stable subharmonic solutions in spatially heterogeneous
reaction-diffusion equations were found by Takáč [20, 21] and Dancer and
Hess [3]. They gave independent constructions for a specially chosen domain
Ω. The following theorem extends their results to any domain.

Theorem 2. For any integers N ≥ 2 and k ≥ 1, and for any bounded

domain Ω ⊂ R
N there is a smooth function f = f(u, x, t), τ -periodic in t,

such that (1) has a linearly stable subharmonic solution of minimal period

kτ .

The proof uses a perturbation argument that can roughly be described
as follows. Assume that f : R

N → R is a smooth function, periodic in t,
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such that for some smooth bounded domain Ω0 ⊂ R
N the following Dirichlet

problem

ut = ∆u + f(u, x, t), x ∈ Ω0,

u = 0, x ∈ ∂Ω0,
(5)

has a linearly stable periodic solution p0. Now let Ω ⊂ R
N be an arbitrary

bounded domain. With an appropriate scaling of Ω0 we may assume that
Ω̄0 ⊂ Ω. Consider the following Neumann problem on Ω

ut = ∆u − γb(x) + f(u, x, t), x ∈ Ω,

∂u

∂ν
= 0, x ∈ ∂Ω.

(6)

Here b(x) is a smooth function on R
N such that b ≡ 0 on Ω0 and b > 0

on R
3 \ Ω̄0, and γ is a large positive parameter. Letting γ → ∞, (1) with

Ω = Ω0 turns out to be a “good limit problem” for (6). In particular,
for large γ problem (6) has a linearly stable periodic solution pγ such that
pγ(x, t) → p0(x, t) for (x, t) ∈ Ω0 × [0, τ ], the convergence being uniform
on compact subsets of Ω0 × [0, τ ]. It follows that if p0 is a subharmonic
solution, then so is pγ . This way we construct equations with linearly stable
subharmonic solutions on an arbitrary domain Ω, as soon as we can do it on
a particular domain Ω0. The same idea applies to the Dirichlet problem.

The details of the proof will be given in a forthcoming paper [15]. As
a particular problem (5) with linearly stable subharmonic solutions one can
use the one given in [21] or an independent one given in [15].

We remark that the idea of using perturbations with localized potentials
has been used before in a different context by Prizzi and Rybakowski [17].
See also [12, 11] for a discussion of different localized perturbations.

4 Spatially homogeneous equations

In this section we consider the homogeneous problem (3). It is known that
on some domains no stable subharmonic solutions may exist, no matter how
the nonlinearity f = f(u, t) is chosen. For example, if Ω is convex, then
any periodic solution p of (3) that is at least neutrally linearly stable must
be τ -periodic. This follows from a result of Hess [5] which says that p must
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be spatially homogeneous: p = p(t). Consequently, p solves the ODE ut =
f(t, u), hence it cannot be subharmonic.

Another example is a radially symmetric domain

Ω = {x ∈ R
N : a < |x| < b}

(with 0 < a < b). It is not difficult to show that any stable periodic solution
p must be radially symmetric (see [8, 9, 10, 19] for more general symmetry
results of this kind). Hence p solves the one-dimensional problem

ut = urr +
N − 1

r
ur + f(u, t), a < r < b,

ur(a, t) = 0, ur(b, t) = 0.

(7)

Again, this problem has no subharmonic solutions (see [1]), hence p must
have period τ .

On the other hand, the following theorem asserts that on some domains
linearly stable subharmonic solutions do occur.

Theorem 3. For any integers N ≥ 2 and k ≥ 1 there exist a domain Ω ⊂
R

N with smooth boundary and a smooth function f = f(u, t), τ -periodic in

t, such that (3) has a linearly stable subharmonic solution of minimal period

kτ .

We remark that here and likewise in Theorem 2 the condition N ≥ 2 is
necessary. In one space dimension no subharmonic solutions exist, see [1, 2].

The proof of Theorem 3, as given in [16], follows the following scenario.
First, a thin domain in R

N around a circle is considered. In two dimen-
sions, for example, the domain is given by

Ωµ = {x = (r cos θ, r sin θ) ∈ R
2 : θ ∈ [0, 2π), 1 < r < µd(θ)},

where µ > 0 is a parameter and d(θ) is a smooth positive 2π-periodic func-
tion.

Problem (3) on Ωµ is compared to the following problem on S1

vt =
1

d(θ)
(d(θ)vθ)θ + f(v, t), θ ∈ S1. (8)

It can be shown that to any linearly stable periodic solution of (8) there
corresponds a linearly stable periodic solution of problem (3) with Ω = Ωµ
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and µ sufficiently small. This is one aspect of the relation between the
one-dimensional equation and its thin domain approximation (see [4] for a
comprehensive discussion of thin domain problems and additional references).

The question of existence of stable subharmonic solutions for (3) is thus
reduced to that for (8). The gain is that the latter problem already has some
space dependence, although a very special one. In (8) we now choose f to
be equal to the bistable nonlinearity

f(u, t) = ε−2(v − εβ(t))(1 − v2),

where β(t) is a τ periodic function and ε is a positive constant. With ε
very small, the nonlinearity “dominates” over diffusion. This has the effect
that solutions that are initially close to 1 or −1 everywhere except for thin
transition layers will retain this shape for any t in large time intervals. The
dynamics of such solutions is, roughly speaking, governed by the motion
of the transition layers. This, in its turn, can be described in terms of
ordinary differential equations that reflect the interaction of the asymmetry
of the nonlinearity (β(t) is chosen close to a piecewise constant function with
nonzero values) and the spatial inhomogeneity d(θ) in the equation. For
example, assume a solution u(θ, t) has two transition layers, one from 1 to
−1 near p(t) ∈ S1, and the other one, from −1 to 1, near q(t) ∈ S1. The
motion of p(t) and q(t) is described by the ODEs

d

dt
p(t) = g(p(t)) + a(t), (9)

d

dt
q(t) = g(q(t)) − a(t). (10)

Here
g(θ) := −d′(θ)/d(θ)

and a(t) is determined by the speed of the traveling wave solution of the
following autonomous equation with artificial time s (and “frozen” time t)

vs = vxx + f(v, t), x ∈ R. (11)

(The precise correspondence is c = εa(t) where c is the unique speed of the
traveling wave.)

Equations (9), (10) are derived by formal asymptotic analysis but they
can effectively be used for rigorous description of solutions of (8). The con-
struction further proceeds as follows. With an appropriate choice of β(t)
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and d(θ), one finds linearly stable kτ -periodic solutions p(t), q(t) ∈ S1 of (9),
(10), respectively, such that p(t) 6= q(t) for any t. They are then used in a
definition of kτ -periodic supersolution and a kτ -periodic subsolution of (8).
This yields a stable kτ -periodic solution of (8). (It can also be ensured that
kτ is the minimal period.) With an additional perturbation of the nonlin-
earity it is finally arranged that the stable kτ -periodic solution perturbs to
a linearly stable one.

The details of the proof and a discussion of the related problem with
Dirichlet boundary condition can be found in [16].
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