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Abstract. This paper is concerned with a stochastic delay competition system driven
by Lévy noise under regime switching. Both the existence and uniqueness of the global
positive solution are examined. By comparison theorem, sufficient conditions for ex-
tinction and non-persistence in the mean are obtained. Some discussions are made to
demonstrate that the different environment factors have significant impacts on extinc-
tion. Furthermore, we show that the global positive solution is stochastically ultimate
boundedness under some conditions, and an important asymptotic property of system
is given. In the end, numerical simulations are carried out to illustrate our main results.
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1 Introduction

The stochastic Lotka–Volterra model has been an important topic in mathematical ecology
and widely investigated (see e.g. [4, 5, 13, 27–29, 31, 37] and the references therein) by many
scholars. Meng Liu and Ke Wang [16] investigated a stochastic two-species Lotka–Volterra
model in the competition case, just as

dx1(t) = x1(t)[r1 − a11x1(t)− a12x2(t− τ1)]dt + σ1x1(t)dB1(t),

dx2(t) = x2(t)[r2 − a21x1(t− τ2)− a22x2(t)]dt + σ2x2(t)dB2(t),
(1.1)

with initial conditions

xi(s) = ϕi(s) > 0, s ∈ [−τ, 0]; ϕi(0) > 0, i = 1, 2,

where xi(t) (i = 1, 2) represent the ith population size at time t; ri (i = 1, 2) are positive
constants which represent the intrinsic growth rate of the ith species; a11 and a22 denote the
density-dependent coefficients of the 1th species and 2th species, respectively; a12 and a21
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denote the interspecific competition coefficients between the 1th species and 2th species; σ2
i

(i = 1, 2) denote the intensity of white noise; τ = max{τ1 ≥ 0, τ2 ≥ 0}, and ϕi(s) (i = 1, 2) are
continuous functions on [−τ, 0]; B(t) = (B1(t), B2(t))T denotes a two-dimensional standard
Brownian motion which is defined on a complete probability space (Ω,F ,P) with a filtration
{F}t∈R satisfying the usual conditions. Liu and Wang obtained the stability in time average
and extinction of the system.

In the real world, however, the population systems may suffer sudden environmental
shocks, such as earthquakes, epidemics, soaring, tsunamis, hurricanes and so on, see [1, 2, 6,
17,18]. These natural calamities are so abrupt that they can change the population size greatly
at short notice, and these phenomenon can’t be accurately described by the white noise. So,
introducing Lévy noise into the underlying population systems may be a reasonable way to
explain these phenomena, see [18,21,23,24,36]. In [23], Qun Liu, Qingmei Chen and Zhenghai
Liu considered the following stochastic delay Lotka–Volterra system driven by Lévy noise

dx1(t) = x1(t−)[r1 − a11x1(t−)− a12x2(t− − τ1)]dt

+ σ1x1(t−)dB1(t) + x1(t−)
∫

Y
γ1(u)Ñ(dt, du),

dx2(t) = x2(t−)[r2 − a21x1(t− − τ2)− a22x2(t−)]dt

+ σ2x2(t−)dB2(t) + x2(t−)
∫

Y
γ2(u)Ñ(dt, du),

(1.2)

with initial conditions

xi(s) = ϕi(s) > 0, s ∈ [−τ, 0]; ϕi(0) > 0, i = 1, 2.

In the model, xi(t−) (i = 1, 2) represent the left limit of xi(t) (i = 1, 2); N denotes a
position counting measure with characteristic measure λ on a measurable subset Y of (0, ∞)

with λ(Y) < ∞; Ñ(dt, du) = N(dt, du)− λ(du)dt is the corresponding martingale measure.
The pair (B, N) represents a Lévy noise.

The authors [23] studied the model in two types:

(i) competition system (1.2), that is r1 > 0, r2 > 0, a12 > 0, a21 > 0;

(ii) predator–prey system (1.2), that is r1 > 0, r2 < 0, a12 > 0, a21 < 0.

For each case, they obtained some sufficient and necessary criteria for stability in time
average and extinction of each population, under some assumptions.

The above systems only consider that the intrinsic growth rate is perturbed by white noise.
In practice, other system’s parameters are also affected by white noise, such as the density-
dependent coefficients and the interspecific competition coefficients. So far as our knowledge
is concerned, another important type of environmental noise, the color noise, also called
telegraph noise, has been widely studied by many famous scholars [25, 26, 34, 35]. The color
noise can be regarded as a switching between two or more regimes of environment, which
differ by factors such as rain falls or nutrition [3, 33], and the regime switching is always
modelled by a right-continuous Markov chain γ(t) with finite state space S = {1, 2, . . . , N}.
System (1.2) does not incorporate the effect of Markov chain.

Motivated by the above discussions and based on system (1.2), we consider the following
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stochastic delay competition system driven by Lévy noise under regime switching

dx1(t) = x1(t−)[r1(γ(t))− a11(γ(t))x1(t−)− a12(γ(t))x2(t− − τ1(t))]dt

+ σ1(γ(t))x1(t−)dB1(t) + σ2(γ(t))x2
1(t
−)dB2(t)

+ x1(t−)
∫

Y
θ1(γ(t), u)N(dt, du),

dx2(t) = x2(t−)[r2(γ(t))− a21(γ(t))x1(t− − τ2(t))− a22(γ(t))x2(t−)]dt

+ σ3(γ(t))x2(t−)dB3(t) + σ4(γ(t))x2
2(t
−)dB4(t)

+ x2(t−)
∫

Y
θ2(γ(t), u)N(dt, du).

(1.3)

Introduced by [15] and [35], we know that the mechanism of the ecosystem described by
(1.3) can be explained by follows. If the initial state γ(0) = i ∈ S, then (1.3) obeys

dx1(t) = x1(t−)[r1(i)− a11(i)x1(t−)− a12(i)x2(t− − τ1(t))]dt + σ1(i)x1(t−)dB1(t)

+ σ2(i)x2
1(t
−)dB2(t) + x1(t−)

∫
Y

θ1(i, u)N(dt, du),

dx2(t) = x2(t−)[r2(i)− a21(i)x1(t− − τ2(t))− a22(i)x2(t−)]dt + σ3(i)x2(t−)dB3(t)

+ σ4(i)x2
2(t
−)dB4(t) + x2(t−)

∫
Y

θ2(i, u)N(dt, du),

until the Markov chain switches from state i to a new state j, then the system (1.3) obeys the
following equation

dx1(t) = x1(t−)[r1(j)− a11(j)x1(t−)− a12(j)x2(t− − τ1(t))]dt + σ1(j)x1(t−)dB1(t)

+ σ2(j)x2
1(t
−)dB2(t) + x1(t−)

∫
Y

θ1(j, u)N(dt, du),

dx2(t) = x2(t−)[r2(j)− a21(j)x1(t− − τ2(t))− a22(j)x2(t−)]dt + σ3(j)x2(t−)dB3(t)

+ σ4(j)x2
2(t
−)dB4(t) + x2(t−)

∫
Y

θ2(j, u)N(dt, du),

until the next switching. The switch of the system (1.3) will be as long as the Markov chain
switch. Meanwhile, the Markov chain has significant impacts on the system’s analysis and
many scholars (see [3, 15, 25, 26, 33–35]) have given many important results which reveal the
effect of the environmental noise to the population system.

The distinguish between system (1.2) and system (1.3) is that system (1.3) not only consid-
ered the impacts of the white noise on the intrinsic growth rate, but also imposed the effect
of the white noise on the density-dependent coefficients. In order to make our research more
practical, we considered time-varying delay in system (1.3). In addition, the effects of color
noise are also considered by system (1.3).

In this paper, we attempt to research how the different environmental factors affect the
dynamical properties of system (1.3). So, the remaining part of this paper is organized as
follows. The proof of the existence and the uniqueness for the global positive solution of
system (1.3) for any initial value is given in Section 2. In Section 3, sufficient conditions for
extinction and non-persistence in the mean of system (1.3) are established. The stochastically
ultimate boundedness of the positive solution is examined in Section 4. An important asymp-
totic property of the system is obtained in section 5. Numerical simulations under certain
parameters are presented to illustrate our main results in Section 6. Finally, a few comments
will conclude the paper.
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2 Global positive solution

Throughout this paper, let γ(t) be a right-continuous Markov chain taking values in a finite
state space S = {1, 2, . . . , N} with the generator Q = (qij)N×N given by

P = {γ(t + ∆t) = j | γ(t) = i} =
{

qij∆t + o(∆t), j 6= i,

1 + qii∆t + o(∆t), j = i.

where ∆t ≥ 0, qij ≥ 0 is transition rate from i to j. If i 6= j, then ∑N
j=1 qij = 0. Furthermore, we

should assume that Markov chain γ(t) is irreducible which means that the Markov chain has
a unique stationary distribution π = (π1, π2, . . . , πN) ∈ R1×N satisfying πQ = 0 and

N

∑
i=1

πi = 1 and πi > 0, for all i ∈ S.

For simplicity and convenience, throughout this article the following assumption will be
essential:

(A1) ři > 0, ǎij > 0, σ̌i > 0, where f̌ = mini∈s f (i), f̂ = maxi∈s f (i).

(A2) τi(t)(i = 1, 2) are nonnegative, bounded and continuous differential function on [0, ∞];
τ′i (t)(i = 1, 2) are bounded function and τu = supt∈[0,+∞] τ′(t) < 1.

(A3) Let τ = maxi=1,2 supt≥0 τi(t) and denotes by C = C([−τ, 0]; R+) the family of continu-
ous function defined on [−τ, 0]. For any given ϕi(s) ∈ C, the initial condition of system
(1.3) is

xi(s) = ϕi(s) ≥ 0, s ∈ [−τ, 0]; sup
−τ≤s≤0

ϕi(s) < ∞, i = 1, 2. (2.1)

(A4) There exists a positive constant c such that
∫

Y[ln(1 + γ(i, u))]2λ(du) < c, for all i ∈ S.

(A5) For the sake of convenience and simplicity, we introduce the following notations:

f (t) =
1
t

∫ t

0
f (s)ds, f ∗ = lim sup

t→+∞
f (t), f∗ = lim inf

t→+∞
f (t)

Before the properties of the solutions are considered, we should guarantee the existence of
positive solutions, firstly. Then, the following result will be obtained.

Theorem 2.1. Under assumptions (A1)–(A4), for any given initial value γ(0) ∈ S and (2.1), system
(1.3) admits a unique positive solution X(t) = (x1(t), x2(t)) on t ∈ [−τ,+∞) and the solution
remains in R2

+ with probability 1.

Proof. Our proof is inspired by [2] and [35]. Since the coefficients of system (1.3) are local
Lipschitz continuous, then for any given initial state ϕ1(s) ≥ 0, ϕ2(s) ≥ 0, −τ ≤ s ≤ 0, system
(1.3) has a unique local positive solution X(t) on [ 0, τe), where τe is the explosion time. To
show this positive solution is global, we only need to show τe = ∞. a.s. Let k0 > 0 be
sufficiently large for ϕ1(t), ϕ2(t) lying within the interval [ 1

k0
, k0]. For each integer k > k0, we

define a sequence of stopping time described by

τk = inf
{

t ∈ [ 0, τe) : xi(t) /∈
( 1

k , k
)
, for some i = 1, 2

}
.
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Clearly, τk increase as k→ ∞. If τ∞ = limk→∞ τk, then τ∞ ≤ τe a.s.
For any constant p ∈ (0, 1), we define a Lyapunov function V : R2

+ −→ R+ as

V(X) = xp
1 + xp

2 .

Now, in order to make the following writing more efficient and convenient, we omit t− in
x(t−). Let T be arbitrary positive constant, for any 0 ≤ t ≤ τk ∧ T, making use of general Itô
formula with jumps to system (1.3) leads to

dV(X) = xp
1

{
pr1(γ(t))− pa11(γ(t))x1 − pa12(γ(t))x2(t− τ1(t))

+
∫

Y
[(1 + θ1(γ(t), u))p − 1]λ(du)

}
dt

+ xp
2

{
pr2(γ(t))− pa21(γ(t))x1(t− τ2(t))− pa22(γ(t))x2

+
∫

Y
[(1 + θ2(γ(t), u))p − 1]λ(du)

}
dt

+
1
2

p(p− 1)xp
1 (σ

2
1 (γ(t)) + σ2

2 (γ(t))x2
1)dt + pxp

1 σ1(γ(t))dB1(t)

+ pxp+1
1 σ2(γ(t))dB2(t) +

1
2

p(p− 1)xp
2 (σ

2
3 (γ(t)) + σ2

4 (γ(t))x2
2)dt

+ pxp
2 σ3(γ(t))dB3(t) + pxp+1

2 σ4(γ(t))dB4(t)

+ xp
1

∫
Y
[(1 + θ1(γ(t), u))p − 1]Ñ(dt, du)

+ xp
2

∫
Y
[(1 + θ2(γ(t), u))p − 1]Ñ(dt, du)

= LV(x1, x2)dt + pxp
1 σ1(γ(t))dB1(t) + pxp+1

1 σ2(γ(t))dB2(t)

+ pxp
2 σ3(γ(t))dB3(t) + pxp+1

2 σ4(γ(t))dB4(t)

+ xp
1

∫
Y
[(1 + θ1(γ(t), u))p − 1]Ñ(dt, du)

+ xp
2

∫
Y
[(1 + θ2(γ(t), u))p − 1]Ñ(dt, du),

(2.2)

where

LV(x1, x2)

= xp
1

{
pr1(γ(t))− pa11(γ(t))x1 − pa12(γ(t))x2(t− τ1(t))

+
∫

Y
[(1 + θ1(γ(t), u))p − 1]λ(du) +

1
2

p(p− 1)(σ2
1 (γ(t)) + σ2

2 (γ(t))x2
1)

}
+xp

2

{
pr2(γ(t))− pa21(γ(t))x1(t− τ2(t))− pa22(γ(t))x2 (2.3)

+
∫

Y
[(1 + θ2(γ(t), u))p − 1]λ(du) +

1
2

p(p− 1)(σ2
3 (γ(t)) + σ2

4 (γ(t))x2
2)

}
≤ xp

1

{
1
2

p(p− 1)σ̌2
2 x2

1 − pǎ11x1 + pr̂1 +
1
2

p(p− 1)σ̌2
1 +

∫
Y
[(1 + θ̂1(u))p − 1]λ(du)

}
+xp

2

{
1
2

p(p− 1)σ̌2
4 x2

2 − pǎ22x2 + pr̂2 +
1
2

p(p− 1)σ̌2
3 +

∫
Y
[(1 + θ̂2(u))p − 1]λ(du)

}
.
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As p ∈ (0, 1), there exist two constants k1 and k2 such that

xp
1

{
1
2

p(p− 1)σ̌2
2 x2

1 − pǎ11x1 + pr̂1 +
1
2

p(p− 1)σ̌2
1 +

∫
Y
[(1 + θ̂1(u))p − 1]λ(du)

}
≤ k1,

and

xp
2

{
1
2

p(p− 1)σ̌2
4 x2

2 − pǎ22x2 + pr̂2 +
1
2

p(p− 1)σ̌2
3 +

∫
Y
[(1 + θ̂2(u))p − 1]λ(du)

}
≤ k2.

Thus, we can get that

LV(x1, x2) ≤ k1 + k2. (2.4)

Applying inequality (2.4) to equation (2.2), and integrating from 0 to τk ∧ T, yields

∫ τk∧T

0
dV(x1, x2) ≤

∫ τk∧T

0
(k1 + k2)dt +

∫ τk∧T

0
pσ̂1xp

1 dB1(t) +
∫ τk∧T

0
pσ̂2xp+1

1 dB1(t)

+
∫ τk∧T

0
pσ̂3xp

2 dB3(t) +
∫ τk∧T

0
xp

1

∫
Y
[(1 + θ̂1(u))p − 1]Ñ(dt, du)

+
∫ τk∧T

0
pσ̂4xp+1

2 dB4(t) +
∫ τk∧T

0
xp

2

∫
Y
[(1 + θ̂2(u))p − 1]Ñ(dt, du),

Taking expectations, the above inequality changes into

EV(X(τk ∧ T))−V(X(0)) ≤ E[(k1 + k2)(τk ∧ T)],

that is to say

EV(x1(τk ∧ T), x2(τk ∧ T)) ≤ V(x1(0), x2(0)) + (k1 + k2)E(τk ∧ T)

≤ V(x1(0), x2(0)) + (k1 + k2)T.
(2.5)

For each u ≥ 0, we define µ(u) = inf{V(X), |xi| ≥ u, i = 1, 2}. Clearly, if u → ∞, then
µ(u)→ ∞. Let us set Ωk = τk ≤ T and P(Ωk) ≥ ε, for any ω ∈ Ωk, then it is easy to see that

µ(k)P(τk ≤ T) ≤ E(V(X(τk))IΩk) ≤ V(X(0)) + (k1 + k2)T.

When k → ∞, we can get that P(τ∞ ≤ T) = 0. Due to the arbitrariness of T, then
P(τ∞ = ∞) = 1. So, this completes the proof.

Basing the view of biomathematics, the positivity and nonexplosion property of the solu-
tions are often not good enough in the population dynamical system. Then, the critical value
between extinction and persistence of the system (1.3) will be investigated in the next.

3 Critical value between extinction and persistence

Now, in order to obtain our main results, several lemmas and definitions which play an
important role in our article will be given.
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Lemma 3.1 ([12]). Under assumption (A4) and x(t) ∈ C(Ω × [0,+∞), R+), then the following
statements hold.

(i) If there exist two positive constants T and δ0 such that

ln x(t) ≤ δt− δ0

∫ t

0
x(s)ds + αB(t) +

2

∑
i=1

δi

∫ t

0

∫
Y

ln(1 + γi(u))Ñ(ds, du), a.s.

for all t ≥ T, where α, δ1 and δ2 are constants, thenx̄∗ ≤ δ
δ0

, a.s. δ ≥ 0,

lim
t→+∞

x(t) = 0, a.s. δ ≤ 0.

(ii) If there exist three positive constants T, δ and δ0 such that

ln x(t) ≥ δt− δ0

∫ t

0
x(s)ds + αB(t) +

2

∑
i=1

δi

∫ t

0

∫
Y

ln(1 + γi(u))Ñ(ds, du), a.s.

for all t ≥ T, then x̄∗ ≥ δ
δ0

a.s.

Lemma 3.2 ([35]). Suppose that M(t), t ≥ 0, is a local martingale vanishing at zero, then

lim
t→+∞

ρM(t) < ∞⇒ lim
t→+∞

M(t)
t

= 0 , a.s.

where

ρM(t) =
∫ t

0

d〈M〉(s)
(1 + s)2 , t ≥ 0,

and 〈M〉(t) is Meyer’s angle bracket process.

Definition 3.3.

(i) Population x(t) is said to go to extinction, if limt→+∞ x(t) = 0.

(ii) Population x(t) is said to be non-persistence in the mean, if limt→+∞ x(t) = 0.

In order to obtain the above results, we will consider the following stochastic competition
system driven by Lévy noise under regime switching

dy1(t) = y1(t−)[r1(γ(t))− a11(γ(t))y1(t−)]dt + σ1(γ(t))y1(t−)dB1(t)

+ σ2(γ(t))y2
1(t
−)dB2(t) + y1(t−)

∫
Y

θ1(γ(t), u)N(dt, du),

dy2(t) = y2(t−)[r2(γ(t))− a22(γ(t))y2(t−)]dt + σ3(γ(t))y2(t−)dB3(t)

+ σ4(γ(t))y2
2(t
−)dB4(t) + y2(t−)

∫
Y

θ2(γ(t), u)N(dt, du),

(3.1)

with initial condition y1(0) > 0, y2(0) > 0 and γ(0) ∈ S.

Lemma 3.4. Let assumption (A4) hold, then for the initial value y1(0) > 0, y2(0) > 0 and γ(0) ∈ S,
the solution (y1(t), y2(t)) of system (3.1) satisfies

lim sup
t→+∞

ln y1(t)
t

≤
N

∑
i=1

h1(i)πi and lim sup
t→+∞

ln y2(t)
t

≤
N

∑
i=1

h2(i)πi,
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where
h1(i) = r1(i)−

1
2

σ2
1 (i) +

∫
Y

ln(1 + θ1(i, u))λ(du),

and
h2(i) = r2(i)−

1
2

σ2
3 (i) +

∫
Y

ln(1 + θ2(i, u))λ(du).

Proof. Our proof is motivated by [14] and [19]. For system (2.5), making use of generalized
Itô’s formula with jumps [20–22] to ln y1 and ln y2, then

d ln y1(t) =
[

r1(γ(t))−
1
2

σ2
1 (γ(t)) +

∫
Y

ln(1 + θ1(γ(t), u))λ(du)
]

dt− a11(γ(t))y1(t)dt

+ σ1(γ(t))dB1(t) + σ2(γ(t))y1(t)dB2(t)−
1
2

σ2
2 (γ(t))y

2
1(t)dt

+
∫

Y
ln[1 + θ1(γ(t), u)]Ñ(dt, du),

d ln y2(t) =
[

r2(γ(t))−
1
2

σ2
3 (γ(t)) +

∫
Y

ln(1 + θ2(γ(t), u))λ(du)
]

dt− a22(γ(t))y2(t)dt

+ σ3(γ(t))dB3(t) + σ4(γ(t))y2(t)dB4(t)−
1
2

σ2
4 (γ(t))y

2
2(t)dt

+
∫

Y
ln[1 + θ2(γ(t), u)]Ñ(dt, du).

Integrating from 0 to t, leads to

ln y1(t)− ln y1(0) =
∫ t

0

[
r1(γ(s))−

1
2

σ2
1 (γ(s)) +

∫
Y

ln(1 + θ1(γ(s), u))λ(du)
]

ds

−
∫ t

0
a11(γ(s))y1(s)ds +

∫ t

0
σ1(γ(s))dB1(s)

+
∫ t

0
σ2(γ(s))y1(s)dB2(s)−

∫ t

0

1
2

σ2
2 (γ(s))y

2
1(s)ds + M1,

(3.2)

ln y2(t)− ln y2(0) =
∫ t

0
[r2(γ(s))−

1
2

σ2
3 (γ(s)) +

∫
Y

ln(1 + θ2(γ(s), u))λ(du)]ds

−
∫ t

0
a22(γ(s))y2(s)ds +

∫ t

0
σ3(γ(s))dB3(s)

+
∫ t

0
σ4(γ(s))y2(s)dB4(s)−

∫ t

0

1
2

σ2
4 (γ(s))y

2
2(s)ds + M2,

(3.3)

where

M1 =
∫ t

0

∫
Y

ln[1 + θ1(γ(s), u)]Ñ(ds, du) and M2 =
∫ t

0

∫
Y

ln[1 + θ2(γ(s), u)]Ñ(ds, du).

According to assumption (A4) and Lemma 3.2, we can get

lim
t→+∞

M1(t)
t

= 0 a.s. and lim
t→+∞

M2(t)
t

= 0 a.s. (3.4)

Let p1(t) =
∫ t

0 σ2(γ(s))y1(s)dB2(s), p2(t) =
∫ t

0 σ4(γ(s))y2(s)dB4(s), then the quadratic
variations of p1(t) and p2(t) are

〈p1(t), p1(t)〉 =
∫ t

0
σ2

2 (γ(s))y
2
1(s)ds and 〈p2(t), p2(t)〉 =

∫ t

0
σ2

4 (γ(s))y
2
2(s)ds.
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An application of exponential martingale inequality [12, 35] gives

P

{
sup

0≤t≤k

[
p1(t)−

1
2
〈p1(t), p1(t)〉

]
> 2 ln k

}
≤ 1

k2 ,

and

P

{
sup

0≤t≤k

[
p2(t)−

1
2
〈p2(t), p2(t)〉

]
> 2 ln k

}
≤ 1

k2 ,

making use of the classical Borel–Cantelli Lemma, we have that for almost all ω ∈ Ω, there is
a random integer k0 = k0(ω) such that for k ≥ k0

sup
0≤t≤k

[
p1(t)−

1
2
〈p1(t), p1(t)〉

]
≤ 2 ln k,

and

sup
0≤t≤k

[
p2(t)−

1
2
〈p2(t), p2(t)〉

]
≤ 2 ln k.

They are equivalent to

p1(t) ≤ 2 ln k +
1
2
〈p1(t), p1(t)〉 = 2 ln k +

1
2

∫ t

0
σ2

2 (γ(s))y
2
1(s)d(s), (3.5)

and

p2(t) ≤ 2 ln k +
1
2
〈p2(t), p2(t)〉 = 2 ln k +

1
2

∫ t

0
σ2

4 (γ(s))y
2
2(s)d(s), (3.6)

for all 0 ≤ t ≤ k, k ≥ k0. According to (3.5), (3.6) and assumption (A1), equations (3.2) and
(3.3) change into

ln y1(t)− ln y1(0) ≤
∫ t

0
h1(γ(s))ds−

∫ t

0
a11(γ(s))y1(s)dt

+
∫ t

0
σ1(γ(s))dB1(s) + 2 ln k + M1,

(3.7)

and

ln y2(t)− ln y2(0) ≤
∫ t

0
h2(γ(s))ds−

∫ t

0
a22(γ(s))y2(s)dt

+
∫ t

0
σ3(γ(s))dB3(s) + 2 ln k + M2,

(3.8)

where
h1(γ(s)) = r1(γ(s))−

1
2

σ2
1 (γ(s)) +

∫
Y

ln(1 + θ1((γ(s)), u))λ(du),

and
h2(γ(s)) = r2(γ(s))−

1
2

σ2
3 (γ(s)) +

∫
Y

ln(1 + θ2((γ(s)), u))λ(du).

Dividing (3.7) and (3.8) by t, for k− 1 ≤ t ≤ k, k ≥ k0, we obtain

t−1[ln y1(t)− ln y1(0)] ≤
1
t

∫ t

0
h1(γ(s))ds− 1

t

∫ t

0
a11(γ(s))y1(s)dt

+
1
t

∫ t

0
σ1(γ(s))dB1(s) +

2 ln k
t

+
M1

t
,

t−1[ln y2(t)− ln y2(0)] ≤
1
t

∫ t

0
h2(γ(s))ds− 1

t

∫ t

0
a22(γ(s))y2(s)dt

+
1
t

∫ t

0
σ3(γ(s))dB3(s) +

2 ln k
t

+
M2

t
.
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In the case of using the property of the Markov chain and (3.4), taking the superior limit,
we have

lim sup
t→+∞

ln y1(t)
t

≤
N

∑
i=1

h1(i)πi,

lim sup
t→+∞

ln y2(t)
t

≤
N

∑
i=1

h2(i)πi.

Then, this completes the proof.

Theorem 3.5. Let assumption (A4) hold, then for any given initial value γ(0) ∈ S and (2.1), the
solution X(t) = (x1(t), x2(t)) of system (1.3) satisfies

lim sup
t→+∞

ln x1(t)
t

≤
N

∑
i=1

h1(i)πi and lim sup
t→+∞

ln x2(t)
t

≤
N

∑
i=1

h2(i)πi,

where
h1(i) = r1(i)−

1
2

σ2
1 (i) +

∫
Y

ln(1 + θ1(i, u))λ(du),

and
h2(i) = r2(i)−

1
2

σ2
3 (i) +

∫
Y

ln(1 + θ2(i, u))λ(du).

Proof. By the comparison theorem for stochastic differential equation with jumps [30], we have

x1(t) ≤ y1(t) and x2(t) ≤ y2(t).

Applying Lemma 3.4, we can obtain

lim sup
t→+∞

ln x1(t)
t

≤
N

∑
i=1

h1(i)πi and lim sup
t→+∞

ln x2(t)
t

≤
N

∑
i=1

h2(i)πi.

Theorem 3.6. If ∑N
i=1 h1(i)πi < 0 and ∑N

i=1 h2(i)πi < 0, then the species x1(t) and x2(t) will go to
extinction a.s.

Proof. Basing the result of Theorem 3.5, if ∑N
i=1 h1(i)πi < 0 and ∑N

i=1 h2(i)πi < 0, then
lim supt→+∞

ln x1(t)
t < 0 and lim supt→+∞

ln x2(t)
t < 0. It is easy to find that limt→+∞ x1(t) = 0,

a.s. and limt→+∞ x2(t) = 0 a.s. So, species x1(t) and x2(t) go to extinction a.s.

Theorem 3.7. If ∑N
i=1 h1(i)πi = 0 and ∑N

i=1 h2(i)πi = 0, then the species x1(t) and x2(t) will be
non-persistence in the mean a.s.

Proof. For system (1.3), making use of generalized Itô’s formula with jumps to ln x1(t) and
ln x2(t), and integrating from 0 to t, we have

ln x1(t)− ln x1(0) =
∫ t

0
[r1(γ(s))−

1
2

σ2
1 (γ(s)) +

∫
Y

ln(1 + θ1(γ(s), u))λ(du)]ds

−
∫ t

0
a11(γ(s))x1(s)ds−

∫ t

0
a12(γ(s))x2(s− τ1(s))ds +

∫ t

0
σ1(γ(s))dB1(s)

+
∫ t

0
σ2(γ(s))x1(s)dB2(s)−

∫ t

0

1
2

σ2
2 (γ(s))x2

1(s)ds + N1,
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ln x2(t)− ln x2(0) =
∫ t

0
[r2(γ(s))−

1
2

σ2
3 (γ(s)) +

∫
Y

ln(1 + θ2(γ(s), u))λ(du)]ds

−
∫ t

0
a22(γ(s))x2(s)ds−

∫ t

0
a21(γ(s))x1(s− τ2(s))ds +

∫ t

0
σ3(γ(s))dB3(s)

+
∫ t

0
σ4(γ(s))x2(s)dB4(s)−

∫ t

0

1
2

σ2
4 (γ(s))x2

2(s)ds + N2,

where

N1 =
∫ t

0

∫
Y

ln[1 + θ1(γ(s), u)]Ñ(dt, du),

and

N2 =
∫ t

0

∫
Y

ln[1 + θ2(γ(s), u)]Ñ(dt, du).

According to assumption (A4) and Lemma 3.2, we can get

lim
t→+∞

N1(t)
t

= 0 a.s. and lim
t→+∞

N2(t)
t

= 0 a.s.

Let p′1(t) =
∫ t

0 σ2(γ(s))x1(s)dB2(s), p′2(t) =
∫ t

0 σ4(γ(s))x2(s)dB4(s), making use of expo-
nential martingale inequality, we have

P

{
sup

0≤t≤k

[
p′1(t)−

1
2
〈p′1(t), p′1(t)〉

]
> 2 ln k

}
≤ 1

k2 ,

and

P

{
sup

0≤t≤k

[
p′2(t)−

1
2
〈p′2(t), p′2(t)〉

]
> 2 ln k

}
≤ 1

k2 ,

by the classical Borel–Cantelli lemma, we have that for almost all ω ∈ Ω, there is a random
integer k0 = k0(ω) such that for k ≥ k0

sup
0≤t≤k

[
p′1(t)−

1
2
〈p′1(t), p′1(t)〉

]
≤ 2 ln k,

and

sup
0≤t≤k

[
p′2(t)−

1
2
〈p′2(t), p′2(t)〉

]
≤ 2 ln k.

Obviously,

p′1(t) ≤ 2 ln k +
1
2
〈p′1(t), p′1(t)〉 = 2 ln k +

1
2

∫ t

0
σ2

2 (γ(s))x2
1(s)ds,

and

p′2(t) ≤ 2 ln k +
1
2
〈p′2(t), p′2(t)〉 = 2 ln k +

1
2

∫ t

0
σ2

2 (γ(s))x2
2(s)ds,

for all 0 ≤ t ≤ k, k ≥ k0.
According to the above discussion, we obtain

ln x1(t)− ln x1(0) ≤
∫ t

0
h1(γ(s))ds−

∫ t

0
a11(γ(s))x1(s)ds

+
∫ t

0
σ1(γ(s))dB1(s) + 2 ln k + N1,

(3.9)
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and

ln x2(t)− ln x2(0) ≤
∫ t

0
h2(γ(s))ds−

∫ t

0
a22(γ(s))x2(s)ds

+
∫ t

0
σ3(γ(s))dB3(s) + 2 ln k + N2.

(3.10)

Dividing (3.9) and (3.10) by t, for k− 1 ≤ t ≤ k, k ≥ k0, we obtain

t−1[ln x1(t)− ln x1(0)] ≤
1
t

∫ t

0
h1(γ(s))ds− 1

t

∫ t

0
a11(γ(s))x1(s)dt

+
1
t

∫ t

0
σ1(γ(s))dB1(s) +

2 ln k
t

+
N1

t
,

t−1[ln x2(t)− ln x2(0)] ≤
1
t

∫ t

0
h2(γ(s))ds− 1

t

∫ t

0
a22(γ(s))x2(s)dt

+
1
t

∫ t

0
σ3(γ(s))dB3(s) +

2 ln k
t

+
N2

t
.

Based on the fact that limt→+∞t−1
∫ t

0 h1(γ(s))ds=∑N
i=1h1(i)πi and limt→+∞t−1

∫ t
0 h2(γ(s))ds=

∑N
i=1 h2(i)πi, for arbitrary ε ≥ 0, there exists a constant T1 > 0 such that

t−1
∫ t

0
h1(γ(s))ds ≤

N

∑
i=1

h1(i)πi +
ε

4
=

ε

4
, t > T1,

t−1
∫ t

0
h2(γ(s))ds ≤

N

∑
i=1

h2(i)πi +
ε

4
=

ε

4
, t > T1,

and
N1

t
≤ ε

4
and

N2

t
≤ ε

4
.

By the strong laws of large numbers, we have

t−1
∫ t

0
σ1(γ(s))dB1(s) ≤

ε

4
and t−1

∫ t

0
σ3(γ(s))dB3(s) ≤

ε

4
.

Then, for T1 < t ≤ k, k ≥ k0, (3.9) and (3.10) change into

ln x1(t)− ln x1(0) ≤
εt
4
− ǎ11

∫ t

0
x1(s)dt +

εt
4
+ 2 ln k +

εt
4

,

ln x2(t)− ln x2(0) ≤
εt
4
− ǎ22

∫ t

0
x2(s)dt +

εt
4
+ 2 ln k +

εt
4

.

Note that for sufficiently large t with T1 < k− 1 ≤ t ≤ k, k ≥ k0, we have t−1 ln k ≤ ε
8 . Due

to the above results, we obtain

ln x1(t)− ln x1(0) ≤ εt− ǎ11

∫ t

0
x1(s)dt,

ln x2(t)− ln x2(0) ≤ εt− ǎ22

∫ t

0
x2(s)dt.

Making use of Lemma 3.1, we have x̄∗1 ≤ ε
ǎ11

and x̄∗2 ≤ ε
ǎ22

, by the arbitrariness of ε, we
obtain our result.
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Remark 3.8. Theorem 3.6 and Theorem 3.7 have an obvious biological interpretation. It is
that the extinction and non-persistence in the mean of the system (1.3) only depend on the
values of ∑N

i=1 h1(i)πi and ∑N
i=1 h2(i)πi, where h1(i) = r1(i)− 1

2 σ2
1 (i) +

∫
Y ln(1 + θ1(i, u))λ(du)

and h2(i) = r2(i)− 1
2 σ2

3 (i) +
∫

Y ln(1 + θ2(i, u))λ(du). We can see that the white noise σ2 and
σ4 imposed on the interspecific competition coefficients have no impact on the extinction and
non-persistence in the mean of system (1.3).

Remark 3.9. Let us consider the effect of time delay on the extinction and non-persistence
in the mean of system (1.3). It is clearly that time-delay has no impact on the values of
∑N

i=1 h1(i)πi and ∑N
i=1 h2(i)πi, so the same to extinction and non-persistence in the mean of

system (1.3).

Remark 3.10. Let us consider the effect of jump-diffusion coefficients θ1(i, u) and θ2(i, u) on
the extinction of system (1.3). If θ1(i, u) < 0 and θ2(i, u) < 0, which mean that the jump noise
are always disadvantageous for the ecosystem, such as earthquakes and tsunamis, so the jump
noise can make the system extinctive. If θ1(i, u) > 0 and θ2(i, u) > 0, which imply that the
jump noise are always advantageous for the ecosystem, for example, ocean red tide, this case
is very complex, so we will study it in the future.

Remark 3.11. When γ(t) = i, i ∈ S, we can see the different subsystems of system (1.3).
Similarly, we can obtain the same results as Theorem 3.6 and Theorem 3.7.

Remark 3.12. By Remark 3.11, we can consider the impact of Markovian switching on system
(1.3) easily. If every subsystem of system (1.3) is extinctive, then as a result of Markovian
switching, the overall behavior of system (1.3) remains extinctive. But, if only some subsys-
tems of (1.3) are extinctive, then the values of ∑N

i=1 h1(i)πi and ∑N
i=1 h2(i)πi compared with

zero may be not clear, so the overall behavior of system (1.3) is uncertain.

Theorem 3.13. If ∑N
i=1 h1(i)πi > 0 and ∑N

i=1 h2(i)πi > 0, then x̄∗1 ≤
∑N

i=1 h1(i)πi
ǎ11

and x̄∗2 ≤
∑N

i=1 h2(i)πi
ǎ22

.

Proof. Basing Theorem 3.7, we have

t−1[ln x1(t)− ln x1(0)] ≤
1
t

∫ t

0
h1(γ(s))ds− 1

t

∫ t

0
a11(γ(s))x1(s)dt

+
1
t

∫ t

0
σ1(γ(s))dB1(s) +

2 ln k
t

+
N1

t
,

t−1[ln x2(t)− ln x2(0)] ≤
1
t

∫ t

0
h2(γ(s))ds− 1

t

∫ t

0
a22(γ(s))x2(s)dt

+
1
t

∫ t

0
σ3(γ(s))dB3(s) +

2 ln k
t

+
N2

t
.

By assumption (A1) and the fact that

lim
t→+∞

t−1
∫ t

0
h1(γ(s))ds =

N

∑
i=1

h1(i)πi

and

lim
t→+∞

t−1
∫ t

0
h2(γ(s))ds =

N

∑
i=1

h2(i)πi,
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for arbitrary ε ≥ 0, there exists a constant T1 > 0 such that

t−1
∫ t

0
h1(γ(s))ds ≤

N

∑
i=1

h1(i)πi +
ε

4
, t > T1,

t−1
∫ t

0
h2(γ(s))ds ≤

N

∑
i=1

h2(i)πi +
ε

4
, t > T1,

and
N1

t
≤ ε

4
and

N2

t
≤ ε

4
.

Then the inequalities will be changed into

t−1[ln x1(t)− ln x1(0)] ≤
N

∑
i=1

h1(i)πi +
ε

4
− ǎ11

t

∫ t

0
x1(s)dt +

σ̂1

t
B1(t) +

2 ln k
t

+
ε

4
,

t−1[ln x2(t)− ln x2(0)] ≤
N

∑
i=1

h2(i)πi +
ε

4
− ǎ22

t

∫ t

0
x2(s)dt +

σ̂3

t
B3(t) +

2 ln k
t

+
ε

4
.

Note that for sufficiently large t with T1 < k − 1 ≤ t ≤ k, k ≥ k0, we have t−1 ln k ≤ ε
4 .

Then

t−1[ln x1(t)− ln x1(0)] ≤
N

∑
i=1

h1(i)πi + ε− ǎ11

t

∫ t

0
x1(s)dt +

σ̂1

t
B1(t),

t−1[ln x2(t)− ln x2(0)] ≤
N

∑
i=1

h2(i)πi + ε− ǎ22

t

∫ t

0
x2(s)dt +

σ̂3

t
B3(t).

Let ε be sufficiently small, if ∑N
i=1 h1(i)πi > 0 and ∑N

i=1 h2(i)πi > 0, making use of

Lemma 3.1, we can derive that x̄∗1 ≤
∑N

i=1 h1(i)πi
ǎ11

and x̄∗2 ≤
∑N

i=1 h2(i)πi
ǎ22

.

Theorem 3.14.

i) If ∑N
i=1 h1(i)πi < 0 and ∑N

i=1 h2(i)πi > 0, then species x1(t) will go to extinction and species

x2(t) will satisfy x̄∗2 ≤
∑N

i=1 h2(i)πi
ǎ22

.

ii) If ∑N
i=1 h1(i)πi > 0 and ∑N

i=1 h2(i)πi < 0, then species x2(t) will go to extinction and species

x1(t) will satisfy x̄∗1 ≤
∑N

i=1 h1(i)πi
ǎ11

.

Proof. According to Theorem 3.7, we obtain the following inequalities

t−1[ln x1(t)− ln x1(0)] ≤
1
t

∫ t

0
h1(γ(s))ds− 1

t

∫ t

0
a11(γ(s))x1(s)ds

− 1
t

∫ t

0
a12(γ(s))x2(s− τ1(s))ds

+
1
t

∫ t

0
σ1(γ(s))dB1(s) +

2 ln k
t

+
N1

t
,

t−1[ln x2(t)− ln x2(0)] ≤
1
t

∫ t

0
h2(γ(s))ds− 1

t

∫ t

0
a21(γ(s))x1(s− τ2(s))ds

− 1
t

∫ t

0
a22(γ(s))x2(s)ds +

1
t

∫ t

0
σ3(γ(s))dB3(s) +

2 ln k
t

+
N2

t
.
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By assumption (A1) and the fact that

lim
t→+∞

t−1
∫ t

0
h1(γ(s))ds =

N

∑
i=1

h1(i)πi

and

lim
t→+∞

t−1
∫ t

0
h2(γ(s))ds =

N

∑
i=1

h2(i)πi,

for arbitrary ε ≥ 0, there exists a constant T1 > 0 such that

t−1
∫ t

0
h1(γ(s))ds ≤

N

∑
i=1

h1(i)πi +
ε

4
, t > T1,

t−1
∫ t

0
h2(γ(s))ds ≤

N

∑
i=1

h2(i)πi +
ε

4
, t > T1,

and
N1

t
≤ ε

4
and

N2

t
≤ ε

4
.

We can obtain

t−1[ln x1(t)− ln x1(0)] ≤
N

∑
i=1

h1(i)πi +
ε

4
− ǎ11

t

∫ t

0
x1(s)ds− ǎ12

t

∫ t

0
x2(s− τ1(s))ds

+
σ̂1

t
B1(t) +

2 ln k
t

+
ε

4
,

t−1[ln x2(t)− ln x2(0)] ≤
N

∑
i=1

h2(i)πi +
ε

4
− ǎ21

t

∫ t

0
x1(s− τ2(s))ds− ǎ22

t

∫ t

0
x2(s)ds

+
σ̂3

t
B3(t) +

2 ln k
t

+
ε

4
.

Note that for sufficiently large t with T1 < k − 1 ≤ t ≤ k, k ≥ k0, we have t−1 ln k ≤ ε
4 .

Then

t−1[ln x1(t)− ln x1(0)] ≤
N

∑
i=1

h1(i)πi + ε− ǎ11

t

∫ t

0
x1(s)ds− ǎ12

t

∫ t

0
x2(s− τ1(s))ds +

σ̂1

t
B1(t),

t−1[ln x2(t)− ln x2(0)] ≤
N

∑
i=1

h2(i)πi + ε− ǎ21

t

∫ t

0
x1(s− τ2(s))ds− ǎ22

t

∫ t

0
x2(s)ds +

σ̂3

t
B3(t).

i) Let ε be sufficiently small, and ∑N
i=1 h1(i)πi < 0, one can derive that limt→+∞ x1(t) = 0.

Then, for arbitrary ε > 0, there exists a constant T2 > T1 such that −ε ≤ x1(t) ≤ ε, for t > T2.
So, we can have

t−1[ln x2(t)− ln x2(0)] ≤
N

∑
i=1

h2(i)πi + ε + ǎ21ε− ǎ22

t

∫ t

0
x2(s)ds +

σ̂3

t
B3(t).

According to Lemma 3.1 and ∑N
i=1 h2(i)πi > 0, one can derive that x̄∗2 ≤

∑N
i=1 h2(i)πi+(1+ǎ21)ε

ǎ22
.

Let ε be sufficiently small, then x̄∗2 ≤
∑N

i=1 h2(i)πi
ǎ22

.
ii) The proof is similar to that of i), so we omit it.
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Remark 3.15. According to Theorem 3.13, we know that if ∑N
i=1h1(i)πi >0 and ∑N

i=1h2(i)πi >0,

then x̄∗1 ≤
∑N

i=1 h1(i)πi
ǎ11

and x̄∗2 ≤
∑N

i=1 h2(i)πi
ǎ22

.
That is to say, species x1 and species x2 are no longer extinct. Based on Theorem 3.14, if

∑N
i=1 h1(i)πi < 0 and ∑N

i=1 h2(i)πi > 0, then species x1 will go to extinction, a.s. and species x2

may not be extinct; if ∑N
i=1 h1(i)πi > 0 and ∑N

i=1 h2(i)πi < 0, then species x1 may not be extinct
and species x2 will go to extinction a.s.

Theorem 3.16.

i) If ∑N
i=1 h1(i)πi < 0 and ∑N

i=1 h2(i)πi = 0, then species x1(t) will go to extinction a.s. and
species x2(t) will be non-persistence in the mean a.s.

ii) If ∑N
i=1 h1(i)πi = 0 and ∑N

i=1 h2(i)πi < 0, then species x1(t) will be non-persistence in the
mean a.s. and species x2(t) will go to extinction a.s.

Proof. By the proof of Theorem 3.14, we obtain

t−1[ln x1(t)− ln x1(0)] ≤
N

∑
i=1

h1(i)πi + ε− ǎ11

t

∫ t

0
x1(s)ds− ǎ12

t

∫ t

0
x2(s− τ1(s))ds +

σ̂1

t
B1(t),

t−1[ln x2(t)− ln x2(0)] ≤
N

∑
i=1

h2(i)πi + ε− ǎ21

t

∫ t

0
x1(s− τ2(s))ds− ǎ22

t

∫ t

0
x2(s)ds +

σ̂3

t
B3(t).

i) The proof is similar to that of Theorem 3.14 i), if ∑N
i=1 h1(i)πi < 0, we can derive that

limt→+∞ x1(t) = 0. Then, for arbitrary ε > 0, there exists a constant T2 > T1 such that
−ε ≤ x1(t) ≤ ε, for t > T2. So, we can have

t−1[ln x2(t)− ln x2(0)] ≤
N

∑
i=1

h2(i)πi + ε + ǎ21ε− ǎ22

t

∫ t

0
x2(s)ds +

σ̂3

t
B3(t).

Making use of Lemma 3.1 and ∑N
i=1 h2(i)πi = 0, then x̄∗2 ≤

(1+ǎ21)ε
ǎ22

, by the arbitrariness of
ε, we know the species x2(t) will be be non-persistence in the mean a.s.

ii) The proof is similar to that of i), so we omit it.

Theorem 3.17.

i) If ∑N
i=1 h1(i)πi = 0 and ∑N

i=1 h2(i)πi > 0, then species x1(t) will be non-persistence in the

mean a.s. and species x2(t) will satisfy x̄∗2 ≤
∑N

i=1 h2(i)πi
ǎ22

.

ii) If ∑N
i=1 h1(i)πi > 0 and ∑N

i=1 h2(i)πi = 0, then species x1(t) will satisfy x̄∗1 ≤
∑N

i=1 h1(i)πi
ǎ11

and
species x2(t) will be non-persistence in the mean a.s.

Proof. By the above Theorem 3.13, we have

t−1[ln x1(t)− ln x1(0)] ≤
N

∑
i=1

h1(i)πi + ε− ǎ11

t

∫ t

0
x1(s)ds +

σ̂1

t
B1(t),

t−1[ln x2(t)− ln x2(0)] ≤
N

∑
i=1

h2(i)πi + ε− ǎ22

t

∫ t

0
x2(s)ds +

σ̂3

t
B3(t).

i) Basing on Lemma 3.1 and ∑N
i=1 h1(i)πi = 0, we have x̄∗1 ≤ ε

ǎ11
, by the arbitrariness of

ε, we know the species x1(t) will be non-persistence in the mean a.s. If ∑N
i=1 h2(i)πi > 0, by

Lemma 3.1 we have x̄∗2 ≤
∑N

i=1 h2(i)πi+ε
ǎ22

. Let ε be sufficiently small, we get x̄∗2 ≤
∑N

i=1 h2(i)πi
ǎ22

. So,
this proof is completed.

ii) The proof is similar to i), so we omit it.
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4 Stochastically ultimate boundedness

In this section, we continue to examine another important asymptotic property: stochastically
ultimate boundedness which means that the solution is ultimately bounded with the large
probability. Firstly, its definition will be given.

Definition 4.1. The solution of system (1.3) is said to stochastically ultimately bounded if
for any ε ∈ (0, 1), there is a positive constant H = Hε, such that for any initial state xi(s) =

ϕi(s) ≥ 0, −τ ≤ s ≤ 0 and γ(0) ∈ S, the solution X(t) = (x1(t), x2(t)) of system (1.3) satisfies
limt→+∞ P{|X(t)| > H} < ε.

We provide a useful lemma from which the stochastically ultimate boundedness follows
directly.

Lemma 4.2. For any p ∈ (0, 1], there exists a constant C such that the solution of system (1.3) has
the property

lim sup
t→+∞

E|X(t)|p ≤ C,

where C is independent of the initial state.

Proof. Let V be defined by Theorem 2.1. For any |xi(0)| < k (i = 1, 2.), we define a stopping
time

σk = inf{t ≥ 0, |x1(t)| > k or |x2(t)| > k}.

Then σk → ∞ a.s. as k→ ∞.
Applying the Itô formula to etV(X(t)), where V(X(t)) = xp

1 (t) + xp
2 (t), yields

d(etV(X(t)))

= et(xp
1 + xp

2 )dt + etdV(X(t))

= etxp
1 [1 + pr1(γ(t))− pa11(γ(t))x1 − pa12(γ(t))x2(t− τ1(t)) +

1
2

p(p− 1)σ2
1 (γ(t))

+
1
2

p(p− 1)σ2
2 (γ(t))x2

1]dt + etxp
2 [1 + pr2(γ(t))− pa21(γ(t))x1(t− τ2(t))

− pa22(γ(t))x2 +
1
2

p(p− 1)σ2
3 (γ(t)) +

1
2

p(p− 1)σ2
4 (γ(t))x2

2]dt

+ petxp
1 σ1(γ(t))dB1(t) + petxp+1

1 σ2(γ(t))dB2(t) + petxp
2 σ3(γ(t))dB3(t)

+ petxp+1
2 σ4(γ(t))dB4(t) + petxp

1

∫
Y
[(1 + θ1(γ(t), u))p − 1]N(dt, du)

+ petxp
2

∫
Y
[(1 + θ2(γ(t), u))p − 1]N(dt, du),

making use of assumption (A1), we obtain

d(etV(X(t)))

≤ etxp
1

[
1
2

p(p− 1)σ̌2
2 (γ(t))x2

1 − pǎ11(γ(t))x1 + 1 + pr̂1(γ(t)) +
1
2

p(p− 1)σ̌2
1 (γ(t))

+
∫

Y
[(1 + θ̂1(γ(t), u))p − 1]λ(du)

]
dt + etxp

2

{
1
2

p(p− 1)σ̌2
4 (γ(t))x2

2 − pǎ22(γ(t))x2

+ 1 + pr̂2(γ(t)) +
1
2

p(p− 1)σ̌2
3 (γ(t)) +

∫
Y
[(1 + θ̂2(γ(t), u))p − 1]λ(du)

}
dt
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+ petσ̂1(γ(t))xp
1 dB1(t) + petσ̂2(γ(t))xp+1

1 dB2(t)

+ petσ̂3(γ(t))xp
2 dB3(t) + petxp

1

∫
Y
[(1 + θ̂1(γ(t), u))p − 1]Ñ(dt, du)

+ petσ̂4(γ(t))xp+1
2 dB4(t) + petxp

2

∫
Y
[(1 + θ̂2(γ(t), u))p − 1]Ñ(dt, du). (4.1)

By the value p ∈ (0, 1], there exist two constants k′1 and k′2 such that

etxp
1

[
1
2

p(p− 1)σ̌2
2 (γ(t))x2

1 − pǎ11(γ(t))x1 + 1 + pr̂1(γ(t))

+
1
2

p(p− 1)σ̌2
1 (γ(t)) +

∫
Y
[(1 + θ̂1(γ(t), u))p − 1]λ(du)

]
dt ≤ k′1,

and

etxp
2

[
1
2

p(p− 1)σ̌2
4 (γ(t))x2

2 − pǎ22(γ(t))x2 + 1 + pr̂2(γ(t))

+
1
2

p(p− 1)σ̌2
3 (γ(t)) +

∫
Y
[(1 + θ̂2(γ(t), u))p − 1]λ(du)

]
dt ≤ k′2.

By the above two inequalities and integrating (4.1) from 0 to t ∧ σk, we have∫ t∧σk

0
d(esV(X(s)))

≤
∫ t∧σk

0
(k′1 + k′2)dt +

∫ t∧σk

0
petσ̂1(γ(s))xp

1 dB1(s) +
∫ t∧σk

0
pesσ̂2(γ(s))xp+1

1 dB2(s)

+
∫ t∧σk

0
pesσ̂3(γ(s))xp

2 dB3(s) +
∫ t∧σk

0
pesσ̂4(γ(s))xp+1

2 dB4(s)

+
∫ t∧σk

0
pesxp

1

∫
Y
[(1 + θ̂1(γ(s), u))p − 1]Ñ(ds, du)

+
∫ t∧σk

0
pesxp

2

∫
Y
[(1 + θ̂2(γ(s), u))p − 1]Ñ(ds, du).

Taking expectation, yields

E[et∧σk V(X(t ∧ σk))] ≤ V(X(0)) + E

∫ t∧σk

0
(k′1 + k′2)e

sdt.

Hence,
E[etV(X(t))] ≤ V(X(0)) + (k′1 + k′2)(e

t − 1).

Clearly,
E[V(X(t))] ≤ e−tV(X(0)) + (k′1 + k′2)(1− e−t).

For X ∈ R2
+ and p > 0, we have inequality 2(1−

p
2 )∧0|X|p ≤ xp

1 + xp
2 . Taking the superior

limit for both sides, we obtain

lim sup
t→+∞

E|X(t)|p ≤ (
p
2
)(1−

1
2 )∧0 lim sup

t→+∞
E[xp

1 + xp
2 ].

That is to say

lim sup
t→+∞

E|X(t)|p ≤ (
p
2
)(1−

1
2 )∧0(k′1 + k′2)=̇C.

Then, this completes the proof.
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According to Chebyshev’s inequality and the application of Lemma 4.2, we have the fol-
lowing result.

Theorem 4.3. Under assumption (A1), system (1.3) is stochastically ultimate bounded.

Proof. By Lemma 4.2, we see that

lim sup
t→+∞

E{|X(t)|p} ≤ C.

For any ε ∈ (0, 1), let H = (C
ε )

1
p . Then according to Chebyshev’s inequality

P{|X(t)| > H} ≤ E|X(t)|p
Hp ,

obviously
lim sup

t→+∞
P{|X(t)| > H} ≤ ε

will be obtained. This proof is completed.

5 Asymptotic property

Before we investigate this asymptotic property of system (1.3), we need to provide some useful
conditions, firstly.

(A6) Let assumption (A4) hold, assume further that for any t ≥ 0 and i ∈ S,

sup
t≥0

∫ t

0

∫
Y

es−t(θ(i, u)− ln(1 + θ(i, u)))λ(du)ds < ∞.

Lemma 5.1 ([22]). Assume that g : [0, ∞) → R and h : [0, ∞) × Y → R are both predictable
Ft-adapted processes such that for any T > 0,

∫ T

0
|g(t)|2dt < ∞ a.s. and

∫ T

0

∫
Y
|h(t, u)|2λ(du)dt < ∞ a.s.

Then for any constants α, β > 0,

P

{
sup
t≥0

[ ∫ t

0
g(s)dB(s)− α

2

∫ t

0
|g(s)|2ds +

∫ t

0

∫
Y

h(s, u)Ñ(ds, du)

− 1
α

∫ t

0

∫
Y
[eαh(s,u) − 1− αh(s, u)]λ(du)ds

]
> β

}
≤ e−αβ.

Theorem 5.2. Let assumptions (A4) and (A6) hold, then for any given initial value γ(0) ∈ S and
(2.1), the solution X(t) = (x1(t), x2(t)) of system (1.3) has the property

lim sup
t→+∞

ln x1(t) + ln x2(t)
ln t

≤ 6 a.s.
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Proof. For any t ≥ 0, applying Itô’s formula to et ln(x1(t) + x2(t)) yields

et(ln x1(t) + ln x2(t))

= ln x1(0) + ln x2(0) +
∫ t

0
es[ln x1(s) + r1(γ(s))− a11(γ(s))x1(s)

− a12(γ(s))x2(s− τ1(s)) + ln x2(s) + r2(γ(s))− a21(γ(s))x1(s− τ2(s))

− a22(γ(s))x2(s) +
∫

Y
ln(1 + θ1(γ(s), u)))λ(du) +

∫
Y

ln(1 + θ2(γ(s), u)))λ(du)]ds

+
∫ t

0
esσ1(γ(s))dB1(s) +

∫ t

0

∫
Y

es ln(1 + θ1(γ(s), u))Ñ(ds, du)−
∫ t

0
esσ2

1 (γ(s))ds

+
∫ t

0
esσ2(γ(s))x1(s)dB2(s)−

∫ t

0
esσ2

2 (γ(s))x2
1(s)ds +

∫ t

0
esσ3(γ(s))dB3(s)

+
∫ t

0

∫
Y

es ln(1 + θ2(γ(s), u))Ñ(ds, du)−
∫ t

0
esσ2

3 (γ(s))ds

+
∫ t

0
esσ3(γ(s))x2(s)dB4(s)−

∫ t

0
esσ2

4 (γ(s))x2
2(s)ds. (5.1)

It is easy for us to see that there exists a constant C̃ such that

ln x1(s) + r1(γ(s))− a11(γ(s))x1(s)− a12(γ(s))x2(s− τ1(s)) + ln x2(s) + r2(γ(s))

− a21(γ(s))x1(s− τ2(s))− a22(γ(s))x2(s) +
∫

Y
ln(1 + θ1(γ(s), u)))λ(du)

+
∫

Y
ln(1 + θ2(γ(s), u)))λ(du) ≤ C̃.

(5.2)

By virtue of Lemma 5.1, for any α, β, T > 0, we have

P

{
lim sup

0≤t≤T

[ ∫ t

0
esσ1(γ(s))dB1(s)−

α

2

∫ t

0
e2sσ2

1 (γ(s))ds +
∫ t

0

∫
Y

es ln(1 + θ1(γ(s), u))Ñ(ds, du)

− 1
α

∫ t

0

∫
Y
[eαes ln(1+θ1(γ(s),u)) − 1− αes ln(1 + θ1(γ(s), u))]λ(du)ds

]
> β

}
≤ e−αβ.

Choose T = kη, α = εe−kη and β = θekη ln k
ε , where k ∈ N, 0 < ε < 1, η > 0 and θ > 1

in the above equation. Since ∑∞
k=1

1
kθ < ∞, then by the classical Borel–Cantelli lemma, one

can conclude that there is an Ω1 ⊆ Ω with P(Ω1) = 1 such that for any ε ∈ Ω1, an integer
k1 = k1(ω, ε) can be found such that∫ t

0
esσ1(γ(s))dB1(s) +

∫ t

0

∫
Y

es ln(1 + θ1(γ(s), u))Ñ(ds, du)

≤ 1
εe−kη

∫ t

0

∫
Y

[
ln(1 + θ1(γ(s), u))εes−kη − 1− εes−kη ln(1 + θ1(γ(s), u))

]
λ(du)ds

+
θekη ln k

ε
+

εe−kη

2

∫ t

0
e2sσ2

1 (γ(s))ds,

(5.3)

whenever k ≥ k1, 0 ≤ t ≤ kη. Next, for x ≥ 0, 0 ≤ r ≤ 1, there exists an inequality
xr ≤ 1 + r(x− 1) such that

1
εet−kη

∫ t

0

∫
Y
[ln(1 + θ1(γ(s), u))εes−kη − 1− εes−kη ln(1 + θ1(γ(s), u))]λ(du)ds

≤
∫ t

0

∫
Y

es−t(θ1(γ(s), u)− ln(1 + θ1(γ(s), u)))λ(du)ds.
(5.4)
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According to the exact calculation, one can derive that

εe−kη

2

∫ t

0
e2sσ2

1 (γ(s))ds− 1
2

∫ t

0
esσ2

1 (γ(s))ds =
1
2

∫ t

0
(εe2s−kη − es)σ2

1 (γ(s))ds ≤ 0. (5.5)

Combining the inequality (5.3) and (5.5) results in∫ t

0
esσ1(γ(s))dB1(s) +

∫ t

0

∫
Y

es ln(1 + θ1(γ(s), u))Ñ(ds, du)− 1
2

∫ t

0
esσ2

1 (γ(s))ds

≤ θekη ln k
ε

+
1

εe−kη

∫ t

0

∫
Y
[ln(1 + θ1(γ(s), u))εes−kη − 1− εes−kη ln(1 + θ1(γ(s), u))]λ(du)ds.

(5.6)

Similarly, making use of Lemma 5.1, we have∫ t

0
esσ3(γ(s))dB3(s) +

∫ t

0

∫
Y

es ln(1 + θ2(γ(s), u))Ñ(ds, du)

≤ 1
εe−kη

∫ t

0

∫
Y
[ln(1 + θ2(γ(s), u))εes−kη − 1− εes−kη ln(1 + θ2(γ(s), u))]λ(du)ds

+
θekη ln k

ε
+

εe−kη

2

∫ t

0
e2sσ2

3 (γ(s))ds,

(5.7)

and then

1
εet−kη

∫ t

0

∫
Y
[ln(1 + θ2(γ(s), u))εes−kη − 1− εes−kη ln(1 + θ2(γ(s), u))]λ(du)ds

≤
∫ t

0

∫
Y

es−t(θ2(γ(s), u)− ln(1 + θ2(γ(s), u)))λ(du)ds,
(5.8)

obviously

εe−kη

2

∫ t

0
e2sσ2

3 (γ(s))ds− 1
2

∫ t

0
esσ2

3 (γ(s))ds =
1
2

∫ t

0
(εe2s−kη − es)σ2

3 (γ(s))ds ≤ 0. (5.9)

Combining the inequality (5.7) and (5.9) leads to∫ t

0
esσ3(γ(s))dB3(s) +

∫ t

0

∫
Y

es ln(1 + θ2(γ(s), u))Ñ(ds, du)− 1
2

∫ t

0
esσ2

3 (γ(s))ds

≤ θekη ln k
ε

+
1

εe−kη

∫ t

0

∫
Y
[ln(1 + θ2(γ(s), u))εes−kη − 1− εes−kη ln(1 + θ2(γ(s), u))]λ(du)ds.

(5.10)

Let D1(t) =
∫ t

0 esσ2(γ(s))x1(s)dB2(s) and D2(t) =
∫ t

0 esσ4(γ(s))x2(s)dB4(s), applying the
exponential martingale inequality [12, 35], for any positive constants T, α and β, we have

P

(
sup

0≤t≤T

[
D1(t)−

α

2
〈D1(t), D1(t)〉

]
> β

)
≤ e−αβ,

and

P

(
sup

0≤t≤T

[
D2(t)−

α

2
〈D2(t), D2(t)〉

]
> β

)
≤ e−αβ.
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To maintain the value of T, α and β, we have

D1(t) ≤
θekη ln k

ε
+

εe−kη

2
〈D1(t), D1(t)〉

and

D1(t) ≤
θekη ln k

ε
+

εe−kη

2
〈D1(t), D1(t)〉,

that is to say ∫ t

0
esσ2(γ(s))x1(s)dB2(s) ≤

θekη ln k
ε

+
εe−kη

2

∫ t

0
e2sσ2

2 (γ(s))x2
1(s)ds, (5.11)

and ∫ t

0
esσ4(γ(s))x2(s)dB4(s) ≤

θekη ln k
ε

+
εe−kη

2

∫ t

0
e2sσ2

4 (γ(s))x2
2(s)ds. (5.12)

According to the precise calculation, we can obtain

εe−kη

2

∫ t

0
e2sσ2

2 (γ(s))x2
1(s)ds− 1

2

∫ t

0
esσ2

2 (γ(s))x2
1(s)ds

=
1
2

∫ t

0
(εe2s−kη − es)σ2

2 (γ(s))x2
1(s)ds ≤ 0, (5.13)

εe−kη

2

∫ t

0
e2sσ2

4 (γ(s))x2
2(s)ds− 1

2

∫ t

0
esσ2

4 (γ(s))x2
2(s)ds

=
1
2

∫ t

0
(εe2s−kη − es)σ2

4 (γ(s))x2
2(s)ds ≤ 0. (5.14)

Combining the inequality (5.11) and (5.13) gives∫ t

0
esσ2(γ(s))x1(s)dB2(s)−

1
2

∫ t

0
esσ2

2 (γ(s))x2
1(s)ds ≤ θekη ln k

ε
. (5.15)

Then combining the inequality (5.12) and (5.14) gives∫ t

0
esσ4(γ(s))x2(s)dB4(s)−

1
2

∫ t

0
esσ2

4 (γ(s))x2
2(s)ds ≤ θekη ln k

ε
. (5.16)

According to the inequalities (5.2), (5.4), (5.6), (5.8), (5.10), (5.15), (5.16) and dividing equa-
tion (5.1) by et ln t, for any ω ∈ Ω1 and (k − 1)η ≤ t ≤ kη with k ≥ k1 + 1, one can derive
that

ln x1(t) + ln x2(t)
ln t

≤ ln x1(0) + ln x2(0)
et ln t

+
C̃(1− e−t)

ln t
+

6θekη ln k
εe(k−1)η ln((k− 1)η)

+
1

ln t

∫ t

0

∫
Y

es−t(θ1(γ(s), u)− ln(1 + θ1(γ(s), u)))λ(du)ds

+
1

ln t

∫ t

0

∫
Y

es−t(θ2(γ(s), u)− ln(1 + θ2(γ(s), u)))λ(du)ds.

Letting k→ +∞, then combining with assumption (A5) results in

lim sup
t→+∞

ln x1(t) + ln x2(t)
ln t

≤ 6θeη

ε
.
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Letting η → 0, ε→ 1 and θ → 1 gives

lim sup
t→+∞

ln x1(t) + ln x2(t)
ln t

≤ 6 a.s.

So, this proof is completed.

6 Discussion and numerical simulations

In this section, some numerical simulations is given to support our main results. We assume
the Markov chain γ(t) takes values in the state space S = {1, 2}, and the generator Q be
expressed by Q =

( −7 7
5 −5

)
. According to equation πQ = 0 and exact calculation, the unique

stationary distribution π = (π1, π2) = ( 5
12 , 7

12 ) will be obtained. In Figure 1–2, we choose
a11(γ) ≡ 0.02, a12(γ) ≡ 0.01, a21(γ) ≡ 0.03, a22(γ) ≡ 0.03,σ1(γ) ≡ 2.0, σ3(γ) ≡ 2.2 σ2(γ) ≡
0.04, σ4(γ) ≡ 0.03. The initial values are x1(0) = 0.8, x2(0) = 10 and λ(Y) = 1. The only
difference between conditions of Figure 1 and Figure 2 is in the values of θ1 and θ2.

Comparing Figure 1 with Figure 2, we can observe when the jumping function is positive,
the population size of species x1(t) and x2(t) will increase rapidly in a short period of time.
In addition, whether the jumping function identically equal to zero or is positive, the species
x1(t) always rapidly go to extinction. But, when the jumping function is positive, the species
x2(t) will go to extinction more slowly. That is to say, the species x2(t) is more likely to be
affected by the Lévy noise.

In Figure 3, the parameters of system (1.3) are given as follows a11(γ) ≡ 0.02, a12(γ) ≡ 0.01,
a21(γ) ≡ 0.3, a22(γ) ≡ 0.5,σ1(γ) ≡ 2.0, σ3(γ) ≡ 1.6 σ2(γ) ≡ 0.02, σ4(γ) ≡ 0.4. The initial values
are x1(0) = 0.3, x2(0) = 5 and λ(Y) = 1.

According to Figure 3, we can find that the species x2(t) go to extinction more quickly than
the species x1(t). However, the results of Figure 1 and Figure 2 shows that species x1(t) will be
extinct more rapidly, no matter the value of jumping function is positive or identically equal
to zero. That is to say, the Lévy noise can cause both favorable and unfavorable influence on
ecosystem. If the jumping function is positive, it indicates that the Lévy noise is advantage
for a ecosystem. Inversely, if the jumping function is negative, it indicates that the Lévy noise
is disadvantage for a ecosystem.

In Figure 4, the parameters of system (1.3) are given as follows a11(γ) ≡ 0.02, a12(γ) ≡ 0.04,
a21(γ) ≡ 0.03, a22(γ) ≡ 0.01, σ1(γ) ≡ 1.0, σ3(γ) ≡ 1.2 σ2(γ) ≡ 0.04, σ4(γ) ≡ 0.03. The initial
values are x1(0) = 0.8, x2(0) = 0.9 and λ(Y) = 1.

Comparing Figure 1 with Figure 4, the jumping function both identically equal to zero,
and the changes between species x1(t) and x2(t) in Figure 1 and Figure 4 are perfectly clear.
But, the important difference between conditions of Figure 1 and Figure 4 is that the values
of σ1 and σ3. In Figure 4 we choose σ1(γ) ≡ 1.0 and σ3(γ) ≡ 1.2, and in Figure 1 we give
σ1(γ) ≡ 2.0 and σ3(γ) ≡ 2.2. That is to say, when the jumping function identically equal to
zero, the values of σ1 and σ3 have great significance in the population size of species x1(t) and
species x2(t).

Figures 1–4 all describe the extinction of species x1(t) and species x2(t). Now, we will give
some simulations to substantiate that it is possible for species x1(t) and species x2(t) are no
longer extinct.

In Figure 5 the parameters of system (1.3) are given as follows a11(γ) ≡ 0.02, a12(γ) ≡ 0.01,
a21(γ) ≡ 0.3, a22(γ) ≡ 0.5, σ1(γ) ≡ 1.0, σ3(γ) ≡ 0.4 σ2(γ) ≡ 0.52, σ4(γ) ≡ 0.4. The initial
values are x1(0) = 0.8, x2(0) = 1.2 and λ(Y) = 1.
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In Figure 6.6 the parameters of system (1.3) are chosen as follows a11(γ) ≡ 0.2, a12(γ) ≡
0.01, a21(γ) ≡ 0.3, a22(γ) ≡ 0.4, σ1(γ) ≡ 0.8, σ3(γ) ≡ 1.2 σ2(γ) ≡ 0.01, σ4(γ) ≡ 0.25. The
initial values are x1(0) = 0.8, x2(0) = 5 and λ(Y) = 1.

In Figure 7 the parameters of system (1.3) are given as follows a11(γ) ≡ 0.2, a12(γ) ≡ 0.01,
a21(γ) ≡ 0.1, a22(γ) ≡ 0.4, σ1(γ) ≡ 0.8, σ3(γ) ≡ 0.8 σ2(γ) ≡ 0.01, σ4(γ) ≡ 0.05. The initial
values are x1(0) = 0.8, x2(0) = 1.2 and λ(Y) = 1.

In Figure 5, we choose the values of the parameters such that ∑2
i=1 h1(i)πi = −0.01 < 0

and ∑2
i=1 h2(i)πi = 1.37 > 0. In view of Theorem 3.14 i), we obtain that x1(t) is extinct and

x2(t) is no longer extinct. Similarly, in Figure 6, we choose the values of the parameters such
that ∑2

i=1 h1(i)πi = 0.4 > 0 and ∑2
i=1 h2(i)πi = −0.1 < 0. An application of Theorem 3.14

ii), species x2(t) is extinct and x1(t) is no longer extinct. In Figure 6.7, by simply calculation
about the values of parameters, ∑2

i=1 h1(i)πi = 0.88 > 0 and ∑2
i=1 h2(i)πi = 1.08 > 0 will be

obtained. It therefore from Theorem 3.13. That is to say, population x1(t) and x2(t) are no
longer extinct. Figure 7 just confirms these.

7 Conclusion and future directions

This paper studies a stochastic delay competition system driven by Lévy noise under regime
switching. The main results are as follows.

(1) For any initial value, the system exists an unique global positive solution.

(2) If ∑N
i=1 h1(i)πi < 0 and ∑N

i=1 h2(i)πi < 0, then both the species x1 and x2 go to extinction
a.s.

(3) If ∑N
i=1 h1(i)πi = 0 and ∑N

i=1 h2(i)πi = 0, then both the species x1 and x2 are non-
persistence in the mean a.s.

(4) If ∑N
i=1 h1(i)πi > 0 and ∑N

i=1 h2(i)πi > 0, then x̄∗1 ≤
∑N

i=1 h1(i)πi
ǎ11

and x̄∗2 ≤
∑N

i=1 h2(i)πi
ǎ22

.

(5) i) If ∑N
i=1 h1(i)πi < 0 and ∑N

i=1 h2(i)πi > 0, then species x1(t) goes to extinction and

species x2(t) satisfies x̄∗2 ≤
∑N

i=1 h2(i)πi
ǎ22

.

ii) If ∑N
i=1 h1(i)πi > 0 and ∑N

i=1 h2(i)πi < 0, then species x2(t) goes to extinction and

species x1(t) satisfies x̄∗1 ≤
∑N

i=1 h1(i)πi
ǎ11

.

(6) i) If ∑N
i=1 h1(i)πi < 0 and ∑N

i=1 h2(i)πi = 0, then species x1(t) goes to extinction and
species x2(t) is non-persistence in the mean a.s.

ii) If ∑N
i=1 h1(i)πi = 0 and ∑N

i=1 h2(i)πi < 0, then species x1(t) is non-persistence in the
mean a.s. and species x2(t) goes to extinction.

(7) i) If ∑N
i=1 h1(i)πi = 0 and ∑N

i=1 h2(i)πi > 0, then species x1(t) is non-persistence in the

mean a.s. and species x2(t) satisfies x̄∗2 ≤
∑N

i=1 h2(i)πi
ǎ22

.

ii) If ∑N
i=1 h1(i)πi > 0 and ∑N

i=1 h2(i)πi = 0, then species x1(t) satisfies x̄∗1 ≤
∑N

i=1 h1(i)πi
ǎ11

and species x2(t) is non-persistence in the mean a.s.

(8) Some asymptotic properties of system (1.3) have been given.

For stochastic population models, the persistence in the mean and weak persistence are
not good definitions of permanence. In recent years, some authors have introduced a more
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appropriate definition of permanence for stochastic population models, that is stochastically
persistent in probability (see [10,11,32]), which is a more appropriate definition of persistence.
Moreover, for system (1.3), we also consider its stochastically persistent in probability. Because
of the existence of time-varying delay in our model, it makes the task more complicated to
deal with. So far, we have looked up a lot of relevant known references, but we still can’t find
a suitable Lyapunov function to solve the problem of the system (1.3) with variable time delay.
It is a pity that we have to take it as our research work in the future.

Furthermore, the stability of the positive equilibrium state is a very interesting study for
population models. For models with noise, the stochastic models do not keep the positive
equilibrium state of the corresponding deterministic systems. Recently, the stability in distri-
bution of stochastic population models has been one of the most interest topics, and many
authors have studied the stability in distribution of various stochastic population models (see
[7–9]). Then, in order to increase the interest of our articles, we will study the stability in
distribution of stochastic population models in our future investigation.
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Figure 1: Numerical simulations for system (1.3) with θ1(γ, u) ≡ 0 and
θ2(γ, u) ≡ 0.
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Figure 2: Numerical simulations for system (1.3) with θ1(γ, u) ≡ 0.2 and
θ2(γ, u) ≡ 0.2.
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Figure 3: Numerical simulations for system (1.3) with θ1(γ, u) ≡ 0.01 and
θ2(γ, u) ≡ −0.15.
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Figure 4: Numerical simulations for system (1.3) with θ1(γ, u) ≡ 0 and
θ2(γ, u) ≡ 0.
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Figure 5: Numerical simulations for system (1.3) with θ1(γ, u) ≡ −0.51 and
θ2(γ, u) ≡ 0.25.
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Figure 6: Numerical simulations for system (1.3) with θ1(γ, u) ≡ 0.2 and
θ2(γ, u) ≡ −0.1.
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Figure 7: Numerical simulations for system (1.3) with θ1(γ, u) ≡ 0.2 and
θ2(γ, u) ≡ 0.2.
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