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1 Introduction

In this paper, we present several recent results [15–17] concerning
periodic solutions of autonomous, in a sense, functional differential
equations. The exposition follows basically [15] and [16].

Let us first consider the autonomous ordinary differential system

x′ = f(x) (1)

with x : R → R
n and f : R

n → R
n such that

‖f(x1) − f(x2)‖ ≤ l ‖x1 − x2‖ (2)
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for some l ∈ (0,+∞) and all {x1, x2} ⊂ R
n. It is important that, in

relation (2), the symbol ‖·‖ stands for the Euclidean norm in R
n.

In 1969, James Yorke proved the following remarkable statement
(see [22]):

Theorem 1 (Yorke, 1969) If x is an ω-periodic solution of (1) and
f satisfies the Lipschitz condition (2), then either ω = 0 or

ω ≥ 2π/l. (3)

It is interesting that the constant 2π in relation (3) is the best
possible one, in the sense that the relation ω ≥ (2π + ε)/l, where ε is
positive, may not hold for some systems (1). This fact becomes even
more surprising when we notice, following Yorke, that the strictness
of estimate (3) can be justified by the simplest example of the linear
oscillator equation.

Yorke’s Theorem 1 generalises an unpublished result of Sibuya re-
ferred to in [22], which, under the same conditions, states the inequal-
ity ω ≥ 2/l.

Later on, Theorem 1 was subject to numerous generalisations. It
was extended, in particular, to the case of an arbitrary Hilbert space
by Lasota and Yorke [10], in which case the above-mentioned pro-
perty of the constant 2π in estimate (3) had been retained. In [3],
Busenberg, Fisher, and Martelli obtained a similar result for Eq. (1)
considered in a general Banach space; in that case, the exact value
of the constant in the corresponding inequality was shown to be 6—
the fact justified by an essentially infinite-dimensional example, which
leads one to another interesting problem [3]. Vidossich [21] proved
statements similar to those from [10] in the case when the non-linear
term in Eq. (1) may be non-Lipschitzian. In [11], Tien-Yien Lee used
a result of Vidossich [21] and the infinite-dimensional version [10] of
Yorke’s Theorem 1 to establish similar propositions for non-linear de-
lay differential equations. Some results, amongst which there is a
generalisation of Theorem 1.3 from [3], are obtained by Medveď [13].

An approach to the problem of obtaining lower estimates for the
periods of periodic motions in autonomous systems, different from
those developed in the papers cited above, was suggested in [15–17].
We had discovered that statements of that kind can be established
by applying the general scheme of the so-called method of periodic
successive approximations (see, e. g., [19]).

In this paper, we show some results on the periods of periodic solu-
tions of a class functional differential equations in a partially ordered
Banach space. A new formalism for the two-sided Lipschitz condition
has allowed us to obtain estimates sometimes more efficient than those
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involving the scalar Lipschitz conditions of the type (2) in terms of
the (inner product) norm. All the necessary definitions can be found
in Section 3.

2 Method of periodic successive approxima-

tions for equations with argument deviations

The results of this paper are based upon the statement which may be
regarded as an abstract formulation of the equivalence principle of the
so-called method of periodic successive approximations suggested by
Samoilenko in 1960s (see, e. g., [19]).

Theorem 2 given below was borrowed from [15], while Lemma 2 of
Section 4 had been established in [16] under similar assumptions.

Let us consider the abstract ω-periodic kth order boundary value
problem

x(k) = Fx, (4)

x(ν)(0) = x(ν)(ω), ν = 0, 1, . . . , k − 1, (5)

where x : [0, ω] → X, X is a Banach space, and F : Ck−1([0, ω], X) →
C([0, ω], X) is a mapping. We outline that no other properties of F
are required as yet.

Theorem 2 A continuous function x : [0, ω] → X is a solution of
problem (4), (5) if, and only if

x = ξ + (PωJ )kFx, (6)

QωJFx = 0 (7)

with ξ = x(0), where

J x :=

∫ ·

0
x(τ)dτ, (8)

[Pωx](t) := x(t) −
t

ω
[x(ω) − x(0)] , t ∈ [0, ω], (9)

and Qωx := x −Pωx for all x ∈ C ([0, ω], X).

Remarks. — 1. The pair (x(·), ξ) ∈ C([0, ω], X)×X is unknown in
system (6), (7). Although it suffices to consider ξ ∈ X as a parameter
artificially introduced in Eq. (6), the scheme described by Theorem 2
can be shown to be in quite a natural relation with the well-known
Lyuapunov–Schmidt method (see, e. g., [8, 12]).
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2. It can be readily verified that the mapping Pω involved in
Eq. (6) is a projection operator in C([0, ω], X). All the functions z
from imPω thus satisfy the condition z(0) = z(ω), whence it follows
that the mapping (PωJ )kF preserves kerQω.The latter circumstance
is rather important, because it allows one to study Eq. (6) restricted
to the kernel of Qω.

Considering the equivalence theorem above, we can formulate the
idea of the method of periodic successive approximations as follows:

Seek for a solution of the ω-periodic boundary value
problem (4), (5) via solving Eq. (6) by iteration on kerQω

and then excluding the parameter ξ using Eq. (7).

The name of this method is explained by the fact that the functions
xl : [0, ω] × X → X (l = 1, 2, . . . ) defined by the formula

xl(·, ξ) = ξ + (PωJ )kFxl−1(·, ξ) (ξ ∈ X, l = 1, 2, . . . )

satisfy the relations

xl(0, ξ) = xl(ω, ξ) (x ∈ X, l = 1, 2, . . . )

whatever x0 ∈ C([0, ω], X) be. The latter property, in turn, is due to
Pω being a projector of C([0, ω], X) onto the subspace of the (restric-
tions of) ω-periodic functions.

A statement justifying application of the techniques of such kind
to differential functional equations with “sufficiently smooth” non-
linearities will be given in Section 4. Prior to this, several definitions
and subsidiary results will be stated.

3 Some notions of the theory of cones

Here, we follow basically the survey of Krein and Rutman [9] and the
book of Krasnosel’skii [7], which are common reference on the topic.
The notion of abstract modulus introduced in [15] with axioms (m1)–
(m5), as well as the related Theorem 3 of this section seem to be new
(see Remark 4).

Let 〈X,4X , ‖·‖X〉 be a partially ordered Banach space (POBS for
short). Let X+ denote the positive cone corresponding to the partial
ordering 4X :

X+ := {x ∈ X : x <X 0}.

Recall that a non-empty subset X+ of X is called a cone if it is
closed in X and
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(i) X+ + X+ ⊂ X+;

(ii) λX+ ⊂ X+ for every λ ∈ [0,+∞);

(iii) (−X+) ∩ X+ = {0}.

The following standard notation will be used in the sequel: for
every pair {x1, x2} ⊂ X, the relation x1 <X x2 or, which is the same,
x2 4X x1, by definition, means that x1 − x2 ∈ X+.

A cone X+ ⊂ X is said to be:

• reproducing if X+ − X+ = X;

• normal if the number

νX+
:= inf{ν > 0 : 0 4X x1 4X x2 implies ‖x1‖X ≤ ν‖x2‖X}

is finite.

It is well-known (see, e. g., [7]) that when the cone X+ has fi-
nite normality constant νX+

, every order bounded subset of X is also
bounded with respect to the norm ‖·‖X . (A set M ⊂ X is called order
bounded if there exist some {u, v} ⊂ X such that u 4X x 4X v for all
x ∈ M .)

Given an operator L : X → X, we say that L preserves a set
M ⊂ X if L(M) ⊂ M .

Let us fix two POBS, 〈X,4X , ‖·‖X〉 and 〈E,4E , ‖·‖E〉. In the
sequel, an important rôle will be played by the mappings m : X →
E+ which may be called “vector-valued norms.” More precisely, the
following definition will be used.

Definition 1 A mapping m : X → E+ is said to be a modulus if

(m1) m(x) = 0 implies x = 0;

(m2) m(λx) = |λ|m(x) for all x ∈ X and λ ∈ R;

(m3) m(x1 + x2) 4E m(x1) + m(x2) for all {x1, x2} ⊂ X (“subad-
ditivity”).

Remarks. — 3. Obviously, conditions (m2) and (m3) themselves
imply that a mapping m satisfying them has range in E+.

4. The history of the notion described by Definition 1 is so long
that it can hardly be traced back. We note that the conception of a
K-norm extensively used by Professor Zabreiko and his collaborators
is rather similar to that of the E+-valued modulus as it is defined in
this paper and in [15].

When studying the so-called lattice normed spaces [6], a mapping
m with properties similar to (m1)–(m3) is considered. However, it is
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then usually assumed that the partial ordering induced by the cone
E+ turns E to a lattice, which may not be the case here. When
E = X, E+ = X+, and the cone X+ is minihedral in the sense of
M. Krein [9] (i.e., X is a conditionally complete lattice, in G. Birkhoff’s
terminology [2]), both conceptions reduce to the standard notion of
modulus in such spaces. As to the collection of axioms (m1)–(m5),
where (m4) and (m5) are listed below, we deem it to be new.

We also need a theorem which, under fairly general conditions,
establishes the continuity of a subadditive mapping. The statement
to be formulated below follows the line of some results of M. Krein
and V. Shmul’yan which, according to the information provided in [7],
had already been obtained in early 1940s. Theorem 3 below, which is
in fact a generalised Theorem 2 of [1] in the case of a single partial
ordering, is borrowed from our paper [15].

Theorem 3 Assume that X+ is reproducing, E+ is normal, and, be-
sides assumptions (m1)–(m3), the modulus m : X → E+ also satisfies
the following conditions:

(m4) 0 4X x1 4X x2 implies m(x1) 4E m(x2);

(m5) α(m) := infx∈X\{0}
‖x‖X

‖m(x)‖E
< +∞.

Then the mapping m is continuous.

Being satisfied in many applications, condition (m4) seems to be
quite a natural one; it means that the restriction of m to X+ is isotonic
with respect to the partial orderings 4X and 4E. Note also that
condition (m5) is not so very restrictive as it may seem on the first
sight. It is always fulfilled, e. g., when X = E, the cone X+ = E+ is
normal, and there exists a δ ∈ (0,+∞) such that m(x) <X δx for all
x ∈ X.

One may say not without reason that conditions (m1)–(m5) intro-
duced above are in a good agreement with the usual understanding of
the conception of modulus.

Corollary 1 Under conditions of Theorem 3, for an arbitrary func-
tion x ∈ C([0, ω], X), one has

m

(
∫ ω

0
x(τ)dτ

)

4E

∫ ω

0
m(x(τ))dτ,

where the integral is understood in the Riemann sense.

Corollary 1 allows one, roughly speaking, to estimate the “modulus
of an integral” by the “integral of the modulus.” This statement is
needed to guarantee the validity of Lemma 2 in Section 4.
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We also quote here a version of the Banach fixed point theorem for
an operator satisfying a kind of the two-sided Lipschitz condition with
respect to some abstract modulus. The statement under consideration
is essentially a consequence of Theorem 6.2 from [8]; the presentation
here follows the paper [15].

Theorem 4 Let the partially ordered normed space 〈X,4X , ‖·‖X〉 be
complete with respect to the norm |·|m generated by the abstract mo-
dulus m : X → E+ according to the formula

|x|m := ‖m(x)‖E (x ∈ X). (10)

Assume that, moreover, the cone E+ is normal, and a mapping T :
X → X satisfies the abstract Lipschitz condition

m(Tx1 − Tx2) 4E Lm(x1 − x2) for all {x1, x2} ⊂ X (11)

with some linear and continuous operator L : E → E preserving the
cone E+ and having the property that1 r(L) < 1.

Then T has a unique fixed point in X.

The possibility to apply Theorem 4 in the situation considered
below is justified by the following corollary of Theorem 3 (see [15]):

Lemma 1 If, under conditions of Theorem 3, the modulus m also
possesses property (m5), then the norms ‖·‖X and |·|m

2 are equivalent.

4 Convergence of periodic sucessive approxi-

mations

Based on Theorem 4 and Corollary 1, we are now able to establish
the solvability of Eq. (6) corresponding to the kth order ω-periodic
problem (4), (5).

We assume that, in (4), the non-linear mapping F : C([0, ω], X) →
C([0, ω], X) satisfies the abstract Lipschitz condition of the form

M(Fx1 −Fx2) 4E ΛM(x1 − x2), {x1, x2} ⊂ C([0, ω], X). (12)

Remark. — 5. Here and below, one and the same symbol 4E is
used to denote both the partial ordering of E and the natural, point-
wise partial ordering of the space C([0, ω], E) induced by that of E:

1Here and below, the symbol r(L), as usual, denotes the spectral radius of a linear,
continuous operator L.

2See (10).
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if {x1, x2} ⊂ C([0, ω], X), the relation x1 4X x2, by definition, means
that x1(t) 4X x2(t) for all t ∈ [0, ω].

It is pretty unlikely that there may arise any confusion in connexion
with this convention.

In formula (12), Λ is a linear mapping of C([0, ω], E) into itself,
which preserves the cone C([0, ω], E+), and M : C([0, ω], X) → E+ is
the “point-wise modulus” (see Definition 1) generated by a modulus
m : X → E+ satisfying conditions (m4) and (m5):

[M(x)] (t) := m(x(t)) for all t ∈ [0, ω]. (13)

It is supposed that the cone X+ is reproducing, whereas E+ is normal.

Remark. — 6. A special class of equations (4) is introduced here,
for which the mapping F , instead of being considered as an operator
with domain in Ck−1([0, ω], X) only, is assumed to be defined on all
of C([0, ω], X). The class mentioned contains, in particular, equations
with inner superpositions of the type

x(k)(t) = f (x(ϑ1(t)), x(ϑ2(t)), . . . , x(ϑm(t))) , (14)

where ϑν : [0, ω] → [0, ω] (ν = 1, 2, . . . ,m) are some continuous func-
tions. The latter, in turn, include equations of the form

x(k) = f(x) (15)

with x : [0, ω] → X and f : X → X. We note that equations of such
kind arise in some applications.

Lemma 2 Let us suppose that r(Ak
ω ◦Λ) < 1, where the linear opera-

tor Aω : C([0, ω], E) → C([0, ω], E) preserving the cone C([0, ω], E+)
is defined with the formula

[Aωy] (t) :=

(

1 −
t

ω

)
∫ t

0
y(τ)dτ +

t

ω

∫ ω

t

y(τ)dτ, t ∈ [0, ω]. (16)

Then Eq. (6) can be uniquely solved by iteration for every value of
the parameter ξ ∈ X.

The assertion of Lemma 2 is not difficult to be proved [16] by
applying Theorem 4, for which purpose the estimations should be
carried out with respect to the “point-wise” abstract modulus, M,
defined by formula (13). The comparison operator (16) arises due to
the following statement [15]:
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Lemma 3 If, under the conditions listed above, the modulus m satis-
fies condition (m4), then, for an arbitrary x ∈ C([0, ω], X), the point-
wise order relation

m(PωJ x) 4E Aωm(x) (17)

holds true, where the operators Pω, J , and Aω are given by formulæ
(9), (8), and (16), respectively.

The proof of Lemma 3 is based upon conditions (m1)–(m4) and
Corollary 1.

5 An estimate for the period ω

Keeping the notations and assumptions of the preceding sections, here
we establish some results concerning the periodic solutions of func-
tional differential equations with non-linearities satisfying a certain
Lipschitz condition in the sense described in Section 3.

First, we introduce a definition. Let Ω be a linear set in C([0, ω], X).

Definition 2 An operator F : Ω → Ω is said to be autonomous if it
preserves the set of all constant functions belonging to Ω.

The autonomous Nemytskii operator, [Fx](t) := f(x(t)), t ∈ [0, ω],
and the inner superposition, [Sϑx] (t) := x(ϑ(t)), t ∈ [0, ω], where
ϑ : [0, ω] → [0, ω], are typical examples of the mappings autonomous
in the sense of Definition 2.

The following statement from [15] is crucial for the proof of The-
orem 5 below.

Lemma 4 For an arbitrary k ≥ 1, one has ker(PωJ )k ' X.

Remark. — 7. In Lemma 4, the isomorphism is that identifying
the constant functions [0, ω] → X with the corresponding elements of
the space X.

Return now to the ω-periodic problem (4), (5). We have the fol-
lowing

Theorem 5 Assume that, in Eq. (4), the operator F is autonomous
and satisfies the Lipschitz condition (12), where Λ is a linear, continu-
ous operator preserving the cone C([0, ω], E+). Let the cone X+ be re-
producing, E+ be normal and, furthermore, the mapping m : X → E+

satisfy conditions (m1)–(m5).
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Then either problem (4), (5) has no non-constant solutions or the
inequality3

r(Ak
ω ◦ Λ) ≥ 1 (18)

holds true.

The proof of Theorem 5 is based upon Lemmata 2 and 4. This
proof is similar to the argument used in [15, 17], and therefore is not
given here. We note only that the operator F being autonomous allows
one to claim that the standard iteration method for solving Eq. (6)
does not “shift” the starting approximation unless the latter depends
on time explicitly. It then suffices to make use of Lemma 4 in order to
prove that there can exist no non-constant solutions of the ω-periodic
problem (4)), (5) with ω not satisfying (18).

Corollary 2 Let us suppose that, under the assumptions above, the
mapping F is autonomous in the sense of Definition 2 and satisfies
the Lipschitz condition (12), in which the operator Λ commutes with
Aω. Assume also that

0 < r(Λ) <
(κ

ω

)k

, (19)

where

κ := 1/max

{

λ > 0 : λ =

∫ 1

2

0
exp

τ(τ − 1)

λ
dτ

}

≈ 3.4161.

Then the ω-periodic problem (4), (5) has no non-constant solu-
tions.

The proof of the latter result is obtained by using the well-known
estimate for the spectral radius of the composition of two linear con-
tinues operators that commute (see, e. g., § 149 in [14]). Note that the
assumption of Corollary 2 that the operators Λ and Aω should com-
mute, is rather a technical one and may be significantly weakened.
However, we do not consider this problem here.

Corollary 2 implies, in particular, that, under the conditions spec-
ified, the minimal period ω of every non-constant solution of problem
(4), (5) is estimated from below as

ω ≥
κ

k

√

r(Λ)
(20)

3In relation (18), Ak
ω stands for the kth iteration of the linear comparison operator

(16).
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provided that the spectrum of Λ contains non-zero points.

Remark. — 8. The constant κ ≈ 3.4161 from (19), (20) was used
independently by Samoilenko and Laptinskii [18], Evkhuta and Za-
breiko [4,5], and E. Trofimchuk [20] in connexion with the analysis of
convergence of the method of periodic successive approximations.

For the reader’s convenience, we formulate separately the assertion
of Corollary 2 in the particular case when Eq. (4) is the ordinary
differential equation (1) considered in the POBS X.

Corollary 3 If the mapping f : X → X satisfies the Lipschitz condi-
tion

m(f(x1) − f(x2)) 4E Lm(x1 − x2) for all {x1, x2} ⊂ X (21)

with a linear and continuous L : E → E such that σ(L) 6= {0}, and
there exists an ω-periodic solution of Eq. (1) different from constant,
then necessarily

ω ≥
κ

r(L)
.

The latter result can also be derived from Theorem 2 of [17]. It
states, roughly speaking, that, once the non-linear term in (1) is known
to be smooth enough, no periodic solutions with “small” periods can
be discovered in such a system.

Corollary 4 Let us suppose that, under the assumptions above, F
is autonomous and satisfies condition (12), in which the operator Λ
commutes with Aω and is quasi-nilpotent.

Then problem (4), (5) does not have but constant solutions.

The proof of this statement is easily obtained by using Corollary 2.
Indeed, in this case, the fraction in the right-hand side of inequality
(20) should have zero denominator, which formally corresponds to the
period ω equal to +∞.

In the case when Eq. (4) has form (1), Corollary 4 takes the fol-
lowing form:

Corollary 5 If, in Eq. (1), f : X → X satisfies (21) with m having
properties (m1)–(m5) and L : X → X quasi-nilpotent, then Eq. (1)
has no non-constant periodic solutions of any period.

The latter statement may be regarded as an “easy test” for the
absence of non-constant periodic solutions in the autonomous system
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(4) with a sufficiently smooth right-hand side term. For example,
given some {n,m} ⊂ N, m > 1, consider the system

x′
ν =

m
∑

µ=ν+1

aν,µ(xµ), ν = 1, 2, . . . ,m − 1, (22)

x′
m = 0 (23)

with aν,µ : R
n → R

n satisfying the component-wise relations

|aν,µ(y1) − aν,µ(y2)| ≤ Lν,µ|y1 − y2|

for all {y1, y2} ⊂ R
n and ν, µ = 1, 2, . . . ,m such that µ ≥ ν +1, where

Lν,µ are square n-matrices with non-negative components. It follows,
e. g., from Lemma 5 of [16] that the nm-matrix













0 L1,2 L1,3 . . . L1,m−1 L1,m

0 0 L2,3 . . . L2,m−1 L2,m

. . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 Lm−1,m

0 0 0 . . . 0 0













has no non-zero eigen-values. Corollary 4 then implies immediately
that system (22), (23) has no any periodic solutions except equilibria.

It is worth mentioning that, theoretically, system (22), (23) with
n = 1 can be integrated, because, in that case, the form of Eq. (23)
allows one to split the variables. On the other hand, Corollary 5 gives
an immediate negative answer to the question on non-trivial peridic
orbits of this system, relieving one from the necessity of sequential
application of Barrow’s formula and thus reducing the amount of un-
productive computational work to a minimum.

Remarks. — 9. It follows from Theorem 3 of [21] that, for f : X →
X bounded and satisfying the one-sided Lipschitz condition

[f(x1) − f(x2), x1 − x2]− ≤ −α(‖x1 − x2‖X) for all {x1, x2} ⊂ X,

where α(u) := σ(u2) or α(u) := uσ(u) with σ : (0,+∞) → (0,+∞)
continuous and such that σ(u) = 0 ⇔ u = 0, has no non-constant
periodic solutions of any positive period. Corollary 5 thus can be
regarded as an analogue of this statement in the case of a two-sided
Lipschitz condition.

Since, in Corollary 4, the assumption that Λ should commute with
Aω seems to be rather a technical one, motivated solely by Lemma 3,
it is tempting to introduce the following
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Conjecture 1 Let us assume that the cone X+ is reproducing, E+ is
normal, the modulus m : X → E+ possesses properties (m4) and (m5),
and the mapping F : C([0, ω], X) → C([0, ω], X), besides being auto-
nomous in the sense of Definition 2, satisfies the Lipschitz condition
(12) with a quasi-nilpotent Lipschitz operator Λ.

Then, for an arbitrary positive ω, the ω-periodic problem (4), (5)
has no non-constant solutions.

The conjecture formulated above is, of course, true when Eq. (4)
has the form (15). (Indeed, in that case, the Lipschitz operator Λ for
the corresponding mapping F is uniquely determined by a linear map-
ping E → E; by (16), this implies that Λ : C([0, ω], E) → C([0, ω], E)
commutes with Aω, and it remains to apply Corollary 2.) We are
able, however, neither to prove Conjecture 1 in full nor to construct
any counterexamples at the moment.

6 Comments

Theorem 5 generalises a result from [17] to the case when the primary
differential equation may contain argument deviations. The assertions
of its Corollaries 2 and 4 can be extended to the case when the Lip-
schitz operator Λ for F may not commute with Aω. The assumption
that it should, however, will then be replaced by a weaker one, for it,
probably, cannot be dropped completely. Here, we do not discuss this
problem in more detail.

Unlike [3,10,22], the estimates provided by Theorem 5 and Corol-
lary 2 of this paper are, unfortunately, not the best possible ones.
The reason for this lies in the inequality (17) of Lemma 3, which is
essentially used in the proofs (more precisely, in the choice of the com-
parison operator Aω). However, it is not difficult to show by examples
that even in the present form the estimates mentioned may give more
substantial information on the period in question, because the spec-
tral radius of a linear operator (here, the Lipschitz operator, L), in
general, is less than its norm.

As is indicated in [15], the assertion of Corollary 3 concerning
ordinary differential equations can be significantly improved by ex-
tending Theorem 1.3 of [3] to the general case considered here. It
seems that such an extension is impossible for a functional differential
equation (at least, under similar assumptions). A statement of that
kind was obtained, e. g., in [13]; however, some additional conditions
should be assumed for it to be true. In particular, an estimate for
the period of a solution of Eq. (14) can be established by using the
method of [13] only under condition that the argument transforma-
tions ϑ1, ϑ2, . . . , ϑm be strictly monotone, continuously differentiable,
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and such that |ϑ′
ν(t)| ≤ 1 for all t and ν. Our results thus seem to

complement those mentioned above.
Although we still cannot claim that the estimates obtained are

exact (and they actually are not), it is reasonable to develop the ap-
proach suggested still further, because the only “deficiency” of the
method of proof of Theorem 5 consists in the use of Lemma 3. Thus,
having replaced inequality (17) in Lemma 3 by a sharper one, we shall
immediately obtain an improved version of Theorem 5 with no sig-
nificant changes in the proof. Another advantage of this approach
is that it is closely connected with the method of successive periodic
approximations, which may prove useful by itself in many situations.

The approach suggested in [15–17] and exploited here allows one
to obtain similar results to other kinds of equations. These generali-
sations will be described elsewhere.
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