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Abstract. We show, by way of an example, that numerical bifurcation tools for ODE
yield reliable bifurcation diagrams when applied to the pseudospectral approximation
of a one-parameter family of nonlinear renewal equations. The example resembles
logistic- and Ricker-type population equations and exhibits transcritical, Hopf and pe-
riod doubling bifurcations. The reliability is demonstrated by comparing the results
to those obtained by a reduction to a Hamiltonian Kaplan–Yorke system and to those
obtained by direct application of collocation methods (the latter also yield estimates for
positive Lyapunov exponents in the chaotic regime). We conclude that the methodol-
ogy described here works well for a class of delay equations for which currently no
tailor-made tools exist (and for which it is doubtful that these will ever be constructed).
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1 Introduction

In the field of population dynamics renewal equations (i.e., integral equations of Volterra
type) abound [1,29,32,35,37]. In fact they form the core of the theory of structured population
models, see [20, 22] and also [21, 33, 43, 48]. The mathematical theory for such equations
is extensive as well as comprehensive [16, 19, 31]. And yet there are relatively few simple
examples for which a detailed analysis reveals interesting nonlinear dynamics.
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A key reason might be the lack of tools for numerical bifurcation studies. A. M. de Roos
developed various pieces of code that are available at [27, 44], and these are used extensively
in the many interesting studies of well-motivated models reported in his book [45] with
L. Persson, see also [46]. Yet it is fair to say that at present no toolbox exists for showing
numerically that a nonlinear renewal equation exhibits a rich repertoire of dynamical behav-
ior. Recently, a new branch of research has emerged, addressing the numerical stability and
bifurcation properties of delay equations (renewal equations and delay differential equations)
through their pseudospectral approximation, see, e.g., [3–9]. Initially the focus was on linear
problems, but now it is extended to nonlinear problems, aiming at providing tools for the
systematic discretization and analysis of general delay equations.

Very recently we claimed that this pseudospectral discretization offers new prospects for
numerical bifurcation analysis [2], simply since it allows to exploit well-established ODE tools.
Indeed, the area of renewal equations is definitely too small to expect that special purpose
tools will be built and maintained as in the case, e.g., of the package DDE-BIFTOOL [14, 26]
for delay differential equations. Nevertheless, some effort by the authors and colleagues in
this direction is currently ongoing, targeted to specific objectives in the ample framework of
continuation techniques. See, e.g., [4] for the stability analysis of equilibria and [47] for more
general aspects of pseudospectral methods in the context of structured population models.

The aim of the present paper is to contribute to substantiating this claim by way of the
analysis of a simple (yet attractive and interesting, we think) example. It derives from a
demographic equation that was introduced in [49]. A simplified version of that equation
appears in [43, Section VI 3.2]. The stability of slowly oscillating solutions of an even more
stylized equation was established in [12]. As far back as 1985 one of us conjectured that a
branch of symmetric periodic solutions of fixed period would lose stability by a symmetry-
breaking period doubling bifurcation. But how to verify the conjecture? This is the kind of
questions we address in this work.

A very special feature of the example is that the branch of symmetric periodic solutions
can be characterized by simple Hamiltonian systems in the plane, as first demonstrated by
Kaplan and Yorke [34] for delay differential equations. Here we need to consider a one-
parameter family of Hamiltonian systems, each having a one-parameter family of periodic
solutions, with an additional equation relating the two parameters to each other. Apart from
its intrinsic beauty, this characterization is very useful, as it allows us to check the accuracy of
the “pseudospectral plus ODE tool” approach by computing the same periodic solutions in a
completely different manner.

The paper is structured as follows. We start in Section 2 by illustrating the results we can
obtain, both qualitative and quantitative. In Section 3 we present the analytical results about
the renewal equation of interest. In Section 4 we first follow Kaplan and Yorke in showing that
periodic solutions of certain planar Hamiltonian systems satisfy a delay differential equation
and next show how to extend this idea to obtain solutions of renewal equations. Reliability and
accuracy of the numerical method used in Section 2 are investigated in Section 5. Eventually,
conclusions and prospects are given in Section 6. The work is completed with Appendix A,
where we derive exact periodic solutions for a quadratic nonlinearity, and with the movie
quadratic.mp4* available as supplementary material, which visualizes some of the numerical
results.

*http://www.math.u-szeged.hu/ejqtde/upload/supplements/id5273/quadratic.mp4
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2 The equation and the numerical results

Let h : R→ R be a C1 function with h(0) = 0 and h(z) ≥ 0 for z ≥ 0. We are interested in the
renewal equation

z(t) =
∫ +∞

0
A(τ)h(z(t− τ))dτ, (2.1)

where A : [0,+∞) → R takes nonnegative values. We want A to have compact support and
to be reflection symmetric with respect to the midpoint of the support. In order to facilitate
reference to Kaplan and Yorke [34], we choose the midpoint to be τ = 2. More precisely, from
now on we assume that A is a bounded, nonnegative and measurable function satisfying
A(τ) = 0 for τ > 4,

A(τ) = A(4− τ), 0 ≤ τ ≤ 4, (2.2)

and ∫ 4

0
A(τ)dτ = 1. (2.3)

In particular, for the numerical simulations we combine the step function

A(τ) =

{
1
2 , 1 ≤ τ ≤ 3,

0, 0 ≤ τ < 1 or τ > 3,
(2.4)

with either the quadratic nonlinearity

h(z) = γz(1− z) (2.5)

or the exponential Ricker-type nonlinearity

h(z) = γze−z, (2.6)

where γ > 0 is a free parameter, which we will consider as the bifurcation parameter.
The main advantage of the pseudospectral method considered in [2] is that a generic non-

linear delay equation is reduced to a low-dimensional system of ODE, which can be written
in a convenient way using the right-hand side of the original equation and an additional block
of linear equations that depends only on the discretization mesh and on the delay (hence, it
is independent of the specific problem under a suitable scaling of time). The dynamical prop-
erties of the approximating system can be easily analyzed through well-established software
for numerical bifurcation of ODE (e.g., MATCONT or AUTO, to name a couple). Hence the
approach yields an interesting resource for users without a solid numerical background who
are interested in gaining insights in the properties of delay equations. More in this regard will
be said in Section 5.

The results in this paper are obtained with MATCONT [15, 42], a MATLAB continuation
and bifurcation package. The outcome of the bifurcation analysis with respect to γ of the
pseudospectral approximation of (2.1) with the quadratic nonlinearity (2.5) is plotted in Fig-
ure 2.1a: we observe the nontrivial steady state bifurcating into a periodic orbit through a
Hopf bifurcation, followed by the starting of a period doubling cascade. Some periodic tra-
jectories for parameter values in the regime of the period doubling cascade are plotted in
Figure 2.1b (panels A–C, with reference to the corresponding values in Figure 2.1a).

An important advantage of the approximation through a system of ODE is that, in prin-
ciple, the trajectories of the corresponding initial value problems can be simulated by using
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Figure 2.1: quadratic nonlinearity (2.5): (a) numerical bifurcation diagram, with transcritical
(BP, γ = 1), Hopf (H, γ ≈ 3.57) and period doubling bifurcations (PD, γ ≈ 4.32, 4.49, 4.53);
(b) trajectories for (A) γ ≈ 4.00, with period T ≈ 4.00, (B) γ ≈ 4.40, with period T ≈ 8.02, (C)
γ ≈ 4.52, with period T ≈ 16.11, (D) γ = 5 (chaotic).

ordinary numerical solvers (we used ode45 and ode23s, available in MATLAB). The simula-
tions produced for parameter values in the range of the period doubling cascade (panels A–C
in Figure 2.1b) agree with those approximated by MATCONT. In addition, the simulation of
the initial value problem allows us to investigate the dynamical behavior beyond the range
of the period doubling cascade. In particular, the system seems to show chaotic behavior for
larger values of γ, see, e.g., panel D of Figure 2.1b for γ = 5, as well as Figure 2.3.

The numerical bifurcation analysis of the exponential nonlinearity (2.6) has similar features
as the quadratic case. The bifurcation diagram with respect to log γ is plotted in Figure 2.2a.
The nontrivial equilibrium undergoes a Hopf bifurcation, followed by the starting of a period
doubling cascade. Some trajectories are plotted in Figure 2.2b for parameter values in the
range of the period doubling cascade (panels A–C, with reference to the corresponding values
in Figure 2.2a). Again, the simulation of the initial value problem for larger values of γ shows
the appearance of chaotic behavior, visible, e.g., in panel D of Figure 2.2b for log (γ) = 4.3.

There are, unfortunately, too few values of γ at period doubling points to check whether
they display the Feigenbaum universality [28].

The results described above are, for the quadratic nonlinearity, visualized in the movie
quadratic.mp4* available as supplementary material. Combining the pseudospectral dis-
cretization with a different method described in Section 5 and the methodology of [9] we
were able to numerically compute Lyapunov exponents for the quadratic nonlinearity. The
results are depicted in Figure 2.3, and they clearly reveal the signature of chaotic behavior for
values of γ beyond 4.55.

Summarizing, the numerical results for both the quadratic and exponential nonlinearities
support the conjecture, formulated 30 years ago by O. D. but never verified, of a period dou-

*http://www.math.u-szeged.hu/ejqtde/upload/supplements/id5273/quadratic.mp4
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Figure 2.2: exponential nonlinearity (2.6): (a) numerical bifurcation diagram, with tran-
scritical (BP, log γ = 0), Hopf (H, log γ ≈ 2.57) and period doubling bifurcations (PD,
log γ ≈ 3.79, 3.99, 4.02); (b) trajectories for (A) log γ ≈ 3.00, with period T ≈ 4.00, (B)
log γ ≈ 3.90, with period T ≈ 7.92, (C) log γ ≈ 4.00, with period T ≈ 15.72, (D) log γ = 4.3
(chaotic).
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Figure 2.3: numerically computed Lyapunov exponents for the quadratic nonlinearity (2.5):
trivial one due to translation invariance (thin line) and dominant one among the others (thick
line).

bling bifurcation which breaks the original symmetry of the periodic solutions arising from
the Hopf bifurcation (see Figure 2.1b or Figure 2.2b, as well as Sections 3–4). For larger pa-
rameter values, chaos is observed. This behavior is in line with the results obtained in [49]
through numerical simulations of initial value problems.

The results presented in this section demonstrate how the pseudospectral approximation
allows to gain valuable information about the dynamical properties of nonlinear renewal equa-
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tions. The convergence of the method when increasing the number of approximating ODE is
proved in [2] for the steady states and their stability. There, the authors also conjecture the
same convergence properties for periodic solutions and more complicated dynamical objects
together with their stability and relevant bifurcations. The proof of convergence for periodic
solutions and their stability is currently ongoing work. For this reason, in Section 5 we shall
validate the numerical outcome presented in this section in two ways: first, by exploiting the
analytical results guaranteed by the symmetry property (2.2); second, by comparing it with
the numerical results obtained through a more sophisticated and specific approach, which is
based on the principle of linearized stability.

3 The renewal equation: some analytical aspects

In the following, we shall study equation (2.1) under the assumptions (2.2)–(2.3), and we shall
pay particular attention to solutions of period 4. Note that “solutions of period 4” includes
solutions of minimal period 4

k for some integer k ≥ 1. When we mean minimal period 4, we
shall say so explicitly. Moreover, we shall pay particular attention to solutions with some
symmetry. Our first result establishes a connection between symmetry and period 4.

Lemma 3.1. Let z be a solution of (2.1) on (−∞,+∞). If z is even, it has period 4.

Proof. From (2.1) it follows that

z(t + 4) =
∫ 4

0
A(τ)h(z(t + 4− τ))dτ

=
∫ 4

0
A(4− σ)h(z(t + σ))dσ

=
∫ 4

0
A(τ)h(z(t + τ))dτ

=
∫ 4

0
A(τ)h(z(−t− τ))dτ

= z(−t),

proving the claim since z is even.

Note that the renewal equation (2.1) is translation invariant: if z is a solution, so is z(·+ t0)

for every choice of t0. To make a solution even, one has to choose the translate appropriately,
if possible at all.

Our second result gives the connection between period 4 and symmetry in translation-
invariant form for the specific kernel (2.4).

Lemma 3.2. Assume (2.4) and let z be a solution of (2.1) of period 4. Then there exists θ ∈ R such
that

z(t)− θ = θ − z(t + 2). (3.1)
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Proof.

z(t) + z(t + 2) =
1
2

(∫ 3

1
h(z(t− τ))dτ +

∫ 3

1
h(z(t + 2− τ))dτ

)
=

1
2

(∫ 3

1
h(z(t− τ))dτ +

∫ 1

−1
h(z(t− τ))dτ

)
=

1
2

∫ 3

−1
h(z(t− τ))dτ

=
1
2

∫ t+1

t−3
h(z(σ))dσ.

Hence,

2
d
dt

[z(t) + z(t + 2)] = h(z(t + 1))− h(z(t− 3)) = 0,

i.e., z(t) + z(t + 2) is constant. If we call 2θ this constant value, we arrive at (3.1).

The next, rather important, result indicates the relation between the symmetric periodic
solutions of (2.1) and a particular delay differential equation.

Theorem 3.3. Assume (2.4) and let z be a solution of (2.1) of period 4. Then there exists θ ∈ R such
that

x(t) := z(t)− θ (3.2)

satisfies
x(t + 2) = −x(t) (3.3)

and
ẋ(t) = − fθ(x(t− 1)), (3.4)

where

fθ(x) :=
1
2
(h(θ − x)− h(θ + x)) . (3.5)

Conversely, if x satisfies (3.3) and (3.4) with fθ defined by (3.5), then

z(t) := x(t) + θ

is periodic of period 4 and satisfies

z(t) =
1
2

∫ 3

1
h(z(t− τ))dτ + x(0) + θ − 1

2

∫ 3

1
h(θ + x(−τ))dτ. (3.6)

In particular, z is a solution of (2.1) if and only if the additional condition

x(0) + θ =
1
2

∫ 3

1
h(θ + x(−τ))dτ (3.7)

is satisfied.

Proof. Combining (3.1) and (3.2) we obtain (3.3). By (3.3) we have

θ + x(t− 3) = θ − x(t− 1)
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and, since z satisfies (2.1),

ẋ(t) = ż(t)

=
1
2
[h(z(t− 1))− h(z(t− 3))]

=
1
2
[h(θ + x(t− 1))− h(θ + x(t− 3))]

=
1
2
[h(θ + x(t− 1))− h(θ − x(t− 1))] .

So, the delay differential equation for x amounts to (3.4) with (3.5).
Conversely, (3.3) implies that x, and hence z, has period 4. Moreover, from (3.4) with (3.5)

we deduce that

ż(t) =
1
2
[h(z(t− 1))− h(z(t− 3))] =

1
2

d
dt

∫ t−1

t−3
h(z(σ))dσ

and by integration we obtain (3.6).

In the next section we shall take (3.4) and (3.7) as the key equations for the construction of
4-periodic solutions of (2.1) when (2.4) holds. In the remainder of this section we derive Hopf
bifurcation conditions for the general class of kernels A satisfying (2.2)–(2.3).

The linearized version of (2.1) in z is

ξ(t) = p
∫ 4

0
A(τ)ξ(t− τ)dτ, (3.8)

where p = h′(z) is considered as a parameter. The corresponding characteristic equation is
obtained by substituting ξ(t) = eλt and reads

1 = pA(λ), (3.9)

where

A(λ) =
∫ 4

0
e−λτ A(τ)dτ

is the Laplace transform of A.

Lemma 3.4. λ = iω, with ω > 0, is a root of (3.9) if and only if

ω = ωk :=
kπ

2
(3.10)

and

p = pk :=
(

2
∫ 2

0
A(τ) cos

(
kπτ

2

)
dτ

)−1

(3.11)

for an integer k ≥ 1.

Proof. Because of (2.2)–(2.3), for general φ = φ(τ) we have the identity

∫ 4

0
A(τ)φ(τ)dτ =

∫ 2

0
A(τ) (φ(τ) + φ(4− τ))dτ.
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Now, take φ(τ) = sin ωτ and use the trigonometric identities

sin(4ω−ωτ) = sin 4ω cos ωτ − cos 4ω sin ωτ,

sin 4ω = 2 sin 2ω cos 2ω,

1− cos 4ω = 2 sin2 2ω

to conclude that ∫ 4

0
A(τ) sin ωτ dτ = B(ω) sin 2ω,

with

B(ω) := 2
[

sin 2ω
∫ 2

0
A(τ) sin ωτ dτ + cos 2ω

∫ 2

0
A(τ) cos ωτ dτ

]
.

Analogously, take φ(τ) = cos ωτ and use the trigonometric identities

cos(4ω−ωτ) = sin 4ω sin ωτ + cos 4ω cos ωτ,

sin 4ω = 2 sin 2ω cos 2ω,

1 + cos 4ω = 2 cos2 2ω

to conclude that ∫ 4

0
A(τ) cos ωτ dτ = B(ω) cos 2ω.

In order to satisfy (3.9) we should choose ω such that

0 =
∫ 4

0
A(τ) sin ωτ dτ = B(ω) sin 2ω,

while

1 = p
∫ 4

0
A(τ) cos ωτ dτ = pB(ω) cos 2ω. (3.12)

Hence we are forced to choose ω such that sin 2ω = 0, which amounts to (3.10). For such
ω = ωk we have ∫ 4

0
A(τ) cos ωkτ dτ = 2(cos 2ωk)

2
∫ 2

0
A(τ) cos ωkτ dτ

and, consequently, equation (3.12) amounts to (3.11).

For positive p, the rightmost root of (3.9) is real and hence roots on the imaginary axis are
not crucial for stability. Therefore we are especially interested in negative values of p.

If (2.4) holds, p2l = +∞ and

p2l+1 = (−1)l+1
(

l +
1
2

)
π,

showing that l needs to be even in order to obtain negative p. When l = 2m we can nar-
row (3.10) and (3.11) down to

ω = ω̃m :=
4m + 1

2
π, p = p̃m := −4m + 1

2
π, (3.13)

with corresponding period

T = Tm :=
4

4m + 1
,
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showing that 4 is always a period, but it is the minimal period only for the primary branch
m = 0.

Consider the particular nonlinear functions analyzed in Section 2. For the quadratic
case (2.5), we first of all observe that the nontrivial steady state z = 1− 1

γ is positive if and
only if γ > 1 and it is stable for γ slightly larger than 1 (see [16] for the dynamical system per-
spective and the principle of linearized stability). Linearization in this steady state yields (3.8)
with p = 2− γ, which, combined with (3.13), allows to recover

γ = γm := 2 +
(4m + 1)π

2
. (3.14)

Observe now that γ0 = 2 + π
2 is approximated correctly by the numerical bifurcation analysis

of Section 2, see Figure 2.1a. In the exponential case (2.6) the nontrivial steady state is z = log γ

and the corresponding linearization is (3.8) with p = 1− log γ, so that Hopf bifurcations occur
at parameter values

γ = γm := e1+ 4m+1
2 π.

Observe again that log (γ0) = 1 + π
2 is approximated correctly by the numerical bifurcation

analysis of Section 2, see Figure 2.2a. The book [18] provides a detailed Hopf bifurcation
analysis that applies also to (2.1), see [16]. Alternatively, see [17]. Also see [43, Section VI 3.2]
for a formula giving the direction of the Hopf bifurcation.

We claim that the period remains 4 (possibly divided by an integer of the form 4m + 1)
along the m-th branch. We sketch a proof.

The key idea is to consider, independently of the Hopf bifurcation approach described
above, equation (2.1) as a fixed point problem for an integral operator H defined by

H(z)(t) :=
∫ 4

0
A(τ)h(z(t− τ))dτ

on a space of even 4-periodic functions, e.g., continuous functions provided with the supre-
mum norm. To verify that H maps even 4-periodic functions to even 4-periodic functions,
define

R(z)(t) := z(−t)

and verify that H(R(z)) = R(H(z)) if (2.2)–(2.3) hold and z has period 4. It follows that
H(z) = R(H(z)) if R(z) = z.

In this setting one can apply the Crandall–Rabinowitz theory for local bifurcation at a
simple eigenvalue and the Krasnosel’skii theory for global bifurcation, see [36]. The result of
uniqueness modulo translation, derived from the dynamical systems approach, implies that
a suitably chosen translate equals the even fixed point of period 4. It follows that the period
does not vary along the branch.

Note that, for A given by (2.4), the approach of the next section yields an alternative proof
that the period is fixed along the branch.

4 Periodic solutions of delay differential equations generated by
Hamiltonian systems (d’après Kaplan & Yorke)

In this section, in view of (3.4), our aim is to find 4-periodic solutions of the delay differential
equation

ẋ(t) = − f (x(t− 1)), (4.1)
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where the continuous function f : R→ R is assumed to be odd, i.e.,

f (−x) = − f (x). (4.2)

In fact, we shall guarantee that x has period 4 by requiring the symmetry property (3.3), i.e.,

x(t + 2) = −x(t). (4.3)

Theorem 4.1. Assume (4.1), (4.2) and (4.3). Define

y(t) := x(t− 1). (4.4)

Then, (x, y) is a 4-periodic solution of the planar Hamiltonian system

ẋ = − f (y), ẏ = f (x). (4.5)

Conversely, if (x, y) is a periodic solution of (4.5) such that (4.4) holds, then both (4.1) and (4.3) are
satisfied, provided that x and y have mean zero.

Proof. Clearly (4.1) and (4.4) imply that ẋ = − f (y). Moreover, ẏ(t) = ẋ(t− 1) = − f (x(t− 2))
and hence (4.3) and (4.2) imply ẏ = f (x).

Now assume that (4.5) and (4.4) hold. Then (4.1) holds as well. Moreover,

ẋ(t) = ẏ(t + 1) = f (x(t + 1)) = f (y(t + 2)),

hence
ẋ(t) + ẋ(t + 2) = f ((y(t + 2))− f (y(t + 2)) = 0,

showing that x(t) + x(t + 2) is constant. If the mean of x is zero, then the constant has to be
zero.

Remark 4.2. Given the symmetry properties explained below, the condition that the mean of
x equals zero can alternatively be formulated as: the orbit corresponding to (x, y) encloses the
origin, see Figure 4.1b.

Because of (4.2), the Hamiltonian system (4.5) is equivariant with respect to the dihedral
group of order 8 corresponding to the symmetry of a square. Let

r =
(

0 −1
1 0

)
be the counterclockwise rotation over π

2 and let

s =
(

0 1
1 0

)
be the reflection in the line y = x. Then r4 = e = s2, for e the identity matrix, and the 8
elements of the group are e, r, r2, r3, s, rs, r2s, r3s.

Assume that the graph of f has the features depicted in Figure 4.1a, i.e., assume that
f ∈ C1 and

f ′(0) > 0,

∃ x > 0 such that f (x) = 0 and f ′(x) < 0,

f (x) > 0 for 0 < x < x.

(4.6)
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Figure 4.1: (a) qualitative graph of a function f satisfying (4.6); (b) qualitative phase portrait
of the Hamiltonian system (4.5) with f as in panel (a), with centers (•), saddle points (◦),
periodic (solid line) and heteroclinic (dashed line) orbits.

Then, system (4.5) has, in addition to (0, 0), the eight steady states (±x, 0), (0,±x), (±x,±x),
that form a group orbit.

The Hamiltonian H of (4.5) is

H(x, y) :=
∫ x

0
f (s)ds +

∫ y

0
f (s)ds.

We observe that

• (0, 0) is a minimum of H, so a center for (4.5). The limiting period is 2π
f ′(0) ;

• (±x, 0) and (0,±x) are saddle points;

• (±x,±x) are maxima of H, so centers for (4.5). The limiting period is 2π
− f ′(x) .

The qualitative phase portrait for (4.5) with f satisfying (4.6) is depicted in Figure 4.1b.
In Theorem 4.1 we focused on closed orbits of period 4. This is, of course, a severe re-

striction. However, when the right-hand side of the delay equation involves a multiplicative
parameter γ (recall (2.5) and (2.6)), we can eliminate that parameter in the Hamiltonian sys-
tem by a scaling of time. It follows that any periodic solution (with the right symmetry) of
the Hamiltonian system without parameter yields a periodic solution of the delay equation of
exactly period 4 by choosing appropriately the value of the parameter γ. In other words, we
can parametrize branches of 4-periodic solutions of the delay differential equation with the
parameter specifying the members of a one-parameter family of closed orbits of a Hamiltonian
system that does not involve γ.

Theorem 4.3. Assume that the solutions (ξ, η) = (ξ(t; ξ0), η(t; ξ0)) of

ξ̇ = − f (η), η̇ = f (ξ)
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with initial condition
ξ(0) = ξ0, η(0) = 0

are periodic with minimal period T(ξ0) for ξ0 ∈ (0, ξmax
0 ). For any integer m and for ξ0 ∈ (0, ξmax

0 ),
define

γm(ξ0) :=
4m + 1

4
T(ξ0)

and
xm(t; ξ0) := ξ(γm(ξ0)t; ξ0).

Then xm(·; ξ0) satisfies (4.3) as well as

ẋ(t) = −γ f (x(t− 1)) (4.7)

with γ = γm(ξ0).

Proof. For better readability, in the proof we do not write explicitly the dependence on ξ0 and
m when they are clear. The key point is that the symmetry and the fact that T(ξ0) is the
minimal period imply that

ξ

(
t +

T
2

)
= −ξ(t), η(t) = ξ

(
t− T

4

)
.

We first verify (4.3):

x(t + 2) = ξ(γt + γ2) = ξ

(
γt +

4m + 1
2

T
)
= ξ

(
γt +

T
2

)
= −ξ(γt) = −x(t).

Next we verify (4.7):

ẋ(t) = γξ̇(γt)

= − γ f (η(γt))

= − γ f
(

ξ

(
γt− T

4

))
= − γ f

(
ξ

(
γt− 4m + 1

4
T
))

= − γ f (ξ(γ(t− 1)))

= − γ f (x(t− 1)).

Note that, when the period is a monotone function of ξ0, we can invert ξ0 7→ γm(ξ0)

and hence parametrize the branch with γ. But in general it is rather difficult to establish
monotonicity of the period, see [13, 30] and the references therein. At this point we want to
mention that for (4.7) much is known about secondary bifurcations along the primary branch
of symmetric 4-periodic solutions, see the survey paper [52] and [23, 53].

Now recall Theorem 3.3. We want to apply Theorem 4.3 in the context of Theorem 3.3.
This means that we have an additional parameter, viz. θ, and an additional equation, viz. (3.7).
We can view (3.7) as determining θ as a function of ξ0, thus retaining the parametrization of a
branch of 4-periodic solutions by ξ0.

Therefore, we now consider the renewal equation

z(t) =
γ

2

∫ 3

1
h(z(t− τ))dτ (4.8)
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with parameter γ explicitly introduced and not incorporated in h (thus deviating from the
earlier convention (2.1) with (2.5) or (2.6)). We define fθ by (3.5) and assume that for a certain
relevant range of values of θ the Hamiltonian system

ξ̇ = − fθ(η), η̇ = fθ(ξ) (4.9)

has a one-parameter family of periodic orbits with minimal period T(ξ0, θ) intersecting the
positive ξ-axis at ξ0.

We rewrite (3.7) as

ξ0 + θ =
1
2

γ
∫ −1

−3
h (θ + ξ(γσ; ξ0, θ))dσ =

1
2

∫ −γ

−3γ
h (θ + ξ(τ; ξ0, θ))dτ. (4.10)

Defining

H1/2(ξ0, θ) :=
1
2

∫ − 1
4 T(ξ0,θ)

− 3
4 T(ξ0,θ)

h (θ + ξ(τ; ξ0, θ))dτ

and

H1(ξ0, θ) :=
1
2

∫ T(ξ0,θ)

0
h (θ + ξ(τ; ξ0, θ))dτ,

for
γ = γm(ξ0, θ) :=

4m + 1
4

T(ξ0, θ) (4.11)

we can write (4.10) as
ξ0 + θ = H1/2(ξ0, θ) + 2mH1(ξ0, θ) (4.12)

and (try to) solve the latter for θ as a function of ξ0.
Since

H1/2(0, θ) =
1
4

T(0, θ)h(θ)

and
H1(0, θ) =

1
2

T(0, θ)h(θ),

equation (4.12) reduces for ξ0 = 0 to

θ =
4m + 1

4
T(0, θ)h(θ).

If h(θ) = θg(θ), we can divide out the trivial root θ = 0 and arrive at

1 =
4m + 1

4
T(0, θ)g(θ). (4.13)

Because of (4.11), we may also write (4.13) as

1 = γg(θ),

which expresses that, for ξ0 = 0, θ should be a nontrivial steady state of (4.8).
Note that

T(0, θ) = − 2π

h′(θ)
. (4.14)

For the linearized equation (3.8), we have

p = γh′(θ) = γ
(

g(θ) + θg′(θ)
)

,
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allowing us to rewrite (4.14) as

T(0, θ) = −2πγ

p
= −2π

p
4m + 1

4
T(0, θ),

which reduces to

p = −4m + 1
2

π,

exactly as in (3.13). Thus we see that ξ0 = 0 corresponds, as expected, to Hopf bifurcations.
The discussion above, together with Theorem 3.3 and Theorem 4.1, allows us to character-

ize the 4-periodic solutions of the renewal equation (2.1) arising from the Hopf bifurcation as
solutions of the Hamiltonian system (4.9) and (4.11)–(4.12). In the next section we shall exploit
this relation to compare the numerical periodic solutions obtained in Section 2 for (2.6) with
the periodic solutions obtained by simulating the Hamiltonian system. Although the same
reasoning applies to (2.5), we stress that in this case the periodic solutions are explicitly avail-
able (since the Hamiltonian system is the harmonic oscillator), see Appendix A. Hence, the
quadratic case allows to compare the numerical solutions to the exact ones.

5 On reliability and accuracy

The pseudospectral discretization [2] starts from the reformulation of the initial value prob-
lem for a generic nonlinear delay equation as an equivalent abstract Cauchy problem, i.e., an
infinite-dimensional ODE. The state of the corresponding dynamical system, which belongs
to a suitable space of functions, is approximated with a polynomial of a chosen degree M,
obtained by collocating the infinite-dimensional ODE on a mesh of points. In principle, the
higher M, the smaller the error. In the sequel, we refer to M as discretization index.

As already mentioned, there are two main reasons that make this approach particularly
suitable for, say, pragmatic users: the straightforward formulation of the approximating ODE
system in terms of the original right-hand side, and the possibility of studying the bifurcation
properties by means of well-established software for ODE. For these reasons we shall also
informally refer to it as “pragmatic–pseudospectral” method (PP). However, a rigorous proof
of convergence of the approximation to periodic solutions for increasing M is still ongoing
research (included in the PhD program of F. S.). In this section, we provide numerical support
for the validity of the results of Section 2 by way of two different reference settings: on the
one hand, we exploit the Hamiltonian equivalence and the analytical results described in
Sections 3–4 and Appendix A; on the other hand, we consider a more sophisticated numerical
approach.

This second approach relies on the principle of linearized stability. As such, it requires,
first, a method to compute or approximate the solution of interest and, second, a method to
recover the stability information about the system linearized around this solution. Usually,
the latter is obtained from the spectrum of suitable operators. Concretely, we use this ap-
proach for steady states and periodic solutions, and their stability properties (in Section 2, we
briefly pushed the approach even further to demonstrate chaotic dynamics by way of positive
Lyapunov exponents). Concerning the renewal equations treated here, steady states can be
found analytically, so that one only needs to approximate the associated characteristic roots.
These can be obtained as eigenvalues of the corresponding infinitesimal generator, via the
pseudospectral techniques in [3, 4]. Both reduce the generator to a finite-dimensional matrix,
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whose eigenvalues are taken as approximations. As for periodic solutions, instead, their ana-
lytical expression is unattainable in general (the quadratic case (2.5) represents an exception,
the branch of periodic solutions arising from the Hopf bifurcation being explicitly known, see
Appendix A). To remedy, we extend to renewal equations the ideas of the collocation approach
proposed in [25] for delay differential equations. See also [39–41] for a modern and abstract
treatment. With a numerical approximation of the periodic solution at hand, again through
pseudospectral collocation, we construct a finite-dimensional version of the monodromy oper-
ator associated to the linearized problem, and we use its eigenvalues as approximations of the
characteristic multipliers. The latter method is inspired by [6], and it implicitly assumes that
Floquet theory can be extended to renewal equations, despite the current lack of a detailed
elaboration. The above techniques used to compute periodic solutions and their stability indi-
cators (as well as their extensions to chaotic trajectories) are part of ongoing research (included
in the PhD program of D. L.), targeted to coupled renewal and delay differential equations in
the spirit of [4].

The above description suggests that this alternative, more sophisticated technique is less
suitable for users who are not confident, or less expert, in numerical analysis, since it requires
different specific tools for the approximation of the solution first and of the spectrum of the lin-
earized system next. For this reason we shall informally refer to it as “expert–pseudospectral”
method (EP). At the same time, since this approach is specifically directed to delay equa-
tions, it allows to obtain considerably more accurate results and shorter computational times
compared with PP. Therefore it makes sense to use EP to validate the outcome of PP.

Notice that parts of EP are very recent and still under development, and their details are
indeed unpublished. Here we do not go into the theoretical justification. Neither do we
describe the implementation or the details of the observed numerical convergence. We intend
to present a convergence proof as well as the results of systematic testing on various problems
in future work. For now we consider the matching of the results of PP and EP as convincing
evidence that both are correct, at least when applied to the present problem.

In the spirit described above, we present in Figure 5.1 the periodic trajectories approxi-
mated by EP and PP compared with the reference trajectory. The latter is taken to be the
analytical solution in the quadratic case (see Appendix A) and the solution computed via
simulation of the Hamiltonian system (4.9) with (4.11)–(4.12) in the exponential case. Notice
the remarkable overlap of the trajectories, obtained after suitable translation as necessitated
by the different phase conditions imposed by the two approaches.

To make the comparison more quantitative, we study the convergence of both the trajec-
tories and their periods in terms of increasing M. The latter is the degree of the collocation
polynomial for both PP and EP. Recall from Section 3 that the concerned trajectories have
exact period 4. The errors are plotted in Figures 5.2 and 5.3 for, respectively, the quadratic
and the exponential case. We can clearly observe similar features: the approximations are
converging faster than polynomially in 1/M. This constitutes the main strength of the pseu-
dospectral approximation, also known as spectral accuracy (see, e.g., [50]): it guarantees high
accuracies with low discretization indices. Moreover, it is evident how EP allows to obtain
more accurate results than PP with lower computational effort, reaching, e.g., the machine
precision for already approximately M = 20 in the quadratic case. For discretization indices
up to roughly 10, the order of accuracy of the two methods is comparable, but, when increas-
ing M further, PP is affected by the limits imposed by the continuation tolerance we set in
MATCONT (TOL = 10−8 for the quadratic case and TOL = 10−6 for the exponential case).

The last test we present aims at confirming the accuracy of EP in the approximation of the
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Figure 5.1: values of the periodic orbit in one period: (a) the quadratic nonlinearity (2.5) for
γ = 4; (b) the exponential nonlinearity (2.6) for log γ = 3 (gray line is the reference solution,
◦ = EP, × = PP).
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Figure 5.2: supremum norm of the difference between the numerical and the reference solu-
tion (solid line) and absolute value of the difference between the computed period and the
exact period 4 (dashed line) for the quadratic nonlinearity (2.5) for γ = 4: (a) PP; (b) EP.

periodic solutions and of their multipliers. We restrict the analysis to the quadratic nonlinear-
ity. Along the branch arising from the Hopf bifurcation (panel A in Figure 2.1b), the reference
solution is given by the analytical expression obtained in Appendix A. In the period doubling
range (panels B–C in Figure 2.1b), the reference solutions are computed with M = 80, so that
they can be considered sufficiently accurate. Moreover, we test the numerical approximation
of the exact multiplier 1, which is always present due to translation invariance (see, e.g., [11]).
The results reported in Figure 5.4 confirm the spectral accuracy of EP. They also show another
important property of the pseudospectral approximation: the larger the discretization inter-
val (in this case, the period), the slower the convergence. Indeed, we can observe that at least
twice the nodes are necessary to reach the same accuracy after every period doubling. This
is reasonably supported by standard collocation and interpolation results [10, 51]: the error
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Figure 5.3: supremum norm of the difference between the numerical and the reference solu-
tion (solid line) and absolute value of the difference between the computed period and the
exact period 4 (dashed line) for the exponential nonlinearity (2.6) for log γ = 3: (a) PP; (b) EP.

depends on both the length of the interval (in our case, the period) and bounds on higher
derivatives (in our case, related to the number of oscillations per period). This, in general,
makes the continuation of the period doubling cascade rather difficult beyond the first few
doubling points.
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Figure 5.4: errors for the quadratic nonlinearity (2.5) for values of γ corresponding to panel A
(•), panel B (◦) and panel C (×) in Figure 2.1b: (a) supremum norm of the difference between
the numerical and the reference solution; (b) absolute value of the difference between the exact
multiplier 1 and its approximation.

6 Discussion and outlook

The paper [2] announced new prospects for the numerical bifurcation analysis of delay equa-
tions. As dreams do not always come true, it is crucial to address test problems in order to
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ascertain the merit for the practice of applied mathematics. The current paper serves as a first
test case. We are happy to conclude that the methodology worked even better than expected:
we were able to accurately compute (with only moderate computational effort and standard
tools) a nontrivial one-parameter bifurcation diagram for a scalar renewal equation. This is
all the more gratifying since at present, as far as we know, no tailor-made tools for numerical
bifurcation analysis of renewal equations exist. So the approach reported here seems to be the
one and only option. And, once again, it worked well!

Subgroups of the authors, reinforced by others, plan to elaborate both the PP and the EP
approach (as described in the preceding section) and to test them on various other problems,
including equations with infinite delay. A more detailed exposition of the computation of
Lyapunov exponents is also on the “to do” list.

Concerning the special class of renewal equations studied here, we plan to perform a
two-parameter bifurcation analysis of

z(t) =
γ

2ε

∫ 2+ε

2−ε
h(z(t− τ))dτ (6.1)

with special attention to the limit ε→ 0. Note that, formally, (6.1) reduces to the map

z(t) = γh(z(t− 2))

with continuous, rather than discrete, time t. Here we expect to derive inspiration from [12]
and the work of J. Mallet-Paret and R. D. Nussbaum, see, e.g., [38] and the references given
there.
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A Explicit solutions for a quadratic nonlinearity

Let us consider the equation

z(t) =
γ

2

∫ t−1

t−3
z(τ)(1− z(τ))dτ (A.1)

with parameter γ > 0. We make the ansatz

z(t) = θ + A sin
kπ

2
t, (A.2)

that is, we aim to derive conditions on θ, A and k such that (A.2) yields a solution of (A.1).
Since ∫ t−1

t−3
sin2

(
kπ

2
τ

)
dτ = 1
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and ∫ t−1

t−3
sin
(

kπ

2
τ

)
dτ = (−1)k 4

kπ
sin
(

kπ

2

)
sin
(

kπ

2
t
)

,

substitution of (A.2) into (A.1) yields the system of two equations
A = (−1)k 4

kπ
sin
(

kπ

2

)
γ

2
(1− 2θ)A,

θ = γθ(1− θ)− γ

2
A2.

(A.3)

Since we are interested in A 6= 0, we reduce the first equation to

1 = (−1)k 4
kπ

sin
(

kπ

2

)
γ

2
(1− 2θ)

and conclude that k has to be odd. So we put k = 2l + 1 and rewrite (A.3) as
θ =

1
2
+ (−1)l (2l + 1)π

4γ
,

A2 = 2θ

(
1− 1

γ
− θ

)
,

(A.4)

thus obtaining an explicit representation of curves in the (θ, A2)-space, indexed by l and
parametrized by γ.

Points with A = 0 correspond to Hopf bifurcations, at which we have θ = 1− 1
γ . If we

substitute this into the first equation in (A.4) we find

γ = 2
(

1 + (−1)l (2l + 1)π
4

)
,

showing that odd l correspond to negative values of γ and are therefore of no relevance for
us. So we require that l = 2m and find Hopf bifurcations at (3.14).

For more results in this spirit we refer to [24].
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