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1 Introduction

In this work we are dealing with the delay differential equation (DDE) of the form:

ẋ(t) = −µ · x(t) + λ · x(t− 1) · (1 + x(t− 1)) , x ∈ R. (1.1)

Equation (1.1) is a special form of the delayed feedback equation:

ẋ(t) = −µ · x(t) + f (x(t− τ)) , x ∈ R, (1.2)

which is extensively studied in the literature under various assumptions on the feedback
function f , both analytically and numerically.

Numerical studies show that complex dynamics is common in nonlinear systems of the
form (1.2). A famous example was proposed by Mackey and Glass, for which there is an
evidence of a series of period doubling bifurcations that apparently lead to a chaotic attrac-
tor [17]. Losson, Mackey and Longtin numerically studied multistability for Equation (1.1),
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which was named there as so-called “logistic” DDE, as it is obtained by a singular perturba-
tion limit procedure on the famous logistic map [16]. The authors of [16] found that the basins
of attraction for different stable periodic orbits may have a fractal structure.

Analytic investigation of dynamics in Equation (1.2) usually proves extremely difficult for
arbitrary feedback function f , so many analytical results, despite being very impressive, are
proved only for f close to a piecewise constant function. For such systems we can find sev-
eral important results. Mallet-Paret and Sell proposed to use discrete Lyapunov functionals
to prove a Poincaré–Bendixson type theorem in the case of monotone systems close to a step
function [18]. The conditions for existence and the shape of a global attractor were studied
by Krisztin, Walther and Wu for systems with positive monotone feedback i.e. for monotone
functions such that x · f (x) > 0 for x 6= 0, see [8] and references therein. Under the same
assumptions, Krisztin and Vas constructed equations for which large-amplitude, slowly os-
cillatory periodic solutions (LSOPs) exist, such that they revolve around more than one equi-
librium [9]. A global picture of the attractor was also obtained. Vas showed that a positive
monotone feedback function f may be chosen such that the global attractor contains any num-
ber of unstable LSOPs. [27]. Earlier, Vas also showed that systems with negative monotone
feedback (i.e. x · f (x) < 0 for x 6= 0) can exhibit multistability and that the number of stable
periodic orbits can be infinite [26]. Lani-Wayda and Walther were able to construct systems
of the form ẋ = f (x(t− 1)) for which they proved the existence of dynamics conjugated to
a symbol shift (Smale’s horseshoe) [10]. Srzednicki and Lani-Wayda proved the existence of
multiple periodic orbits and the existence of chaos for some tooth-shaped (piecewise affine)
periodic function f by the use of the generalized Lefshetz fixed point theorem [11]. There are
some results for equations with unimodal feedback function (i.e. smooth f that has a unique
extremum), such as in Equation (1.1) see [14, 15] and references therein.

Most of the mentioned works concentrate on the construction of special kinds of feedback
functions for which it is possible to analytically compute the action of a semiflow associ-
ated with (1.2). Then, the system may be studied by an application of arguments from the
geometric theory of dynamical systems, namely, by construction of suitable Poincaré maps.
A possible approach to treat arbitrary equations such as (1.1) is to use rigorous (validated)
numerical methods. In recent years, there were many computer assisted proofs of various
properties of dynamical systems ranging from ordinary differential equations to (dissipative)
partial differential equations, see for example [2, 19, 21, 25, 31] and references therein. A com-
puter assisted proof is a computer program which rigorously checks assumptions of abstract
theorems. Such results, in the context of continuous dynamical systems, usually require some
kind of an algorithm for rigorous integration of the flow forward in time.

In this paper we present an application of the recently developed [22, 23] forward in time
integration algorithm for rigorous solving of Initial Value Problems (IVPs) of the form:

ẋ = f (x(t− 1), x(t)) , t ≥ 0, (1.3)

x(t) = ψ(t), t ∈ [−1, 0]. (1.4)

By the rigorous integration we understand a computer procedure which, given some a priori
bounds on ψ, produces bounds for the solution x(t) to (1.3) with x|[−1,0] ≡ ψ (we assume the
r.h.s. f to be such that this solution is unique). Using the integrator, we rigorously construct
images of sets by Poincaré maps, then we show, under some assumptions, that those maps are
compact. Finally, we apply Schauder fixed point theorem to obtain existence of periodic orbits.
We do not prove that the orbits are attracting, as this would require some C1-computations
(see [30]) which are for now beyond the scope of our methods.
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There are several papers that deal with computer assisted proofs of periodic solutions to
DDEs [12, 13, 28], however their approach is very different from our method. These works
transform the question of the existence of periodic orbits into a boundary value problem
(BVP). The BVP is then solved by using either Newton–Kantorovich theorem [12, 13] or the
local Brouwer degree [28]. It is clear that rigorous integration in the phase space may be used
to obtain a more diverse spectrum of results such as connecting orbits and the existence of
chaos.

Recently Bánhelyi et al. made progress towards proving the long-standing Wright’s conjec-
ture, by combining analytical and computer-assisted arguments [3]. In their paper, the global
attractivity of the stationary solution to Wright’s equation was shown to be equivalent to the
non-existence of slowly oscillating periodic (SOP) solutions with amplitudes greater than a
certain constant ε > 0. Next, a procedure to find a set of bounding piecewise constant func-
tions for any SOP solution to the equation was presented. Finally, the bounding functions
were used to show that the SOP solution, if it exists, has an amplitude less than ε. The idea
of obtaining bounds for a solution in a form suitable for rigorous computations is similar
in spirit to our methods, however we use more general representation of the phase space.
Moreover, the authors of [3] use the validated numerical integration to obtain the bounds of
the solution only over a fixed interval and it is not clear if their method may be adopted to
construct Poincaré maps.

This paper is organized as follows. In Section 2, we summarize the algorithm for rigor-
ous construction of Poincaré maps for DDEs. In Section 3, we apply our method to prove
the existence of several attracting periodic orbits in (1.1) for various values of parameter λ

near 5.81, for which multistability occurs. In Section 4, we apply our method to find nu-
merical approximations of apparently unstable orbits in the system by direct application of
Newton algorithm to a nonrigorous version of our integrator. Finally in Section 5, we discuss
possible future developments of the rigorous integration methods.

1.1 Notation

In this work we use the following notation. For a function f : R → R, by f (k) we denote the
k-th derivative of f . By f [k] we denote the term 1

k! · f (k). In the context of piecewise smooth
maps by f (k)(t−) and f (k)(t+) we denote left and right one sided derivatives of f w.r.t. t,
respectively.

For a given set A by cl(A) and int A we denote the closure and interior of A, respectively
(in a given topology e.g. defined by the norm in the considered Banach space).

We will abuse notation and we will write Cr = Cr ([−τ, 0], R) for the space of all functions
of class Cr over [−τ, 0] equipped with the supremum norm: ‖g‖ = ∑r

i=0 supx∈[−τ,0] |g(i)(x)|.
By R0 we denote the set R+ ∪ {0}.
For a given function x : [−1, a)→ R, a ∈ R0 ∪ {∞} for any t ∈ [0, a) we denote by xt ∈ C0

the function such that xt(s) = x(t + s) for all s ∈ [−1, 0].
For v ∈ Rn by πiv for i ∈ {1, 2, . . . , n}we denote the projection of v onto the i-th coordinate.

For vectors u, v ∈ Rn by u · v we denote the standard scalar product: u · v = ∑n
i=1 πiv ·πiu. We

will sometimes use the usual notation vi = πiv, but only when the context is absolutely clear,
as not to confuse it with the notation of xt ∈ C0.

Let A = Πn
i=1[ai, bi], for ai ≤ bi, ai, bi ∈ R. We call A an interval set (a product of closed

intervals in Rn). For any A ⊂ Rn we denote by hull(A) a minimal interval set, such that
A ⊂ hull(A). If A ⊂ R is bounded then hull(A) = [inf(A), sup(A)]. For any set X by m(X)
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we denote the midpoint of interval set hull(X) and by diam(X) the diameter of hull(X).

1.2 Set arithmetic and rigorous numerics

By its very nature, the numerical computations done in computers are finite, so only a small
subset of real numbers can be stored in an exact manner. We call them representable numbers.
Other real values must be approximated to the nearest representable number. The commonly
used standard for those operations is IEEE 754 [7]. The idea of rigorous interval numerics
is to replace operators and elementary functions (+,−,÷,×, sin, cos, exp, etc.) with their set-
valued versions such that they operate on intervals. The interval counterpart [�] of a given
operator � gurantees that the result contains all possible outcomes of applying the operator
on any two possible arguments, i.e.

{x � y : x ∈ [a1, b1], y ∈ [a2, b2]} ⊂ [a1, b1][�][a2, b2].

Therefore, by using interval arithmetic in our computations, we are sure that they contain
all possible results – they are validated. To be able to implement such interval operations on
computers, we need closedness, that is, we require [a1, b1][�][a2, b2] to be again an interval with
ends being representable numbers. Fortunately, this can be simply done under the IEEE 754
standard [6], and many software packages already exist (see [1] and references therein). We
use [4] for this purpose.

To stress the fact that we are using set arithmetic we will often put a variable name in
square brackets, e.g., we will write [r] to denote a set in Rm. Usually it will happen in
formulas used in algorithms. If both variables r and [r] are used simultaneously then usually
r represents a value in [r], however this is not implied by default and it will be always stated
explicitly. Please note that the notion [r] has no additional meaning and [r] may be simply
regarded as a name of another variable.

Further, we will put explicit numerical values into square brackets to stress the fact that in
their place we are using an interval with ends being representable numbers that contains the
given value. For example [0.3333] should be understand as a representable interval obtained
by the rigorous numerical computation of the division operator: [3333, 3333]÷ [10000, 10000].
If the explicit value in a numerical formula is put without brackets then it is in fact a closest
representable IEEE floating point number in a given precision. This happen in formulation of
some computer-assisted proofs in Sections 3 and 4.

2 Rigorous forward in time integration and construction of Poincaré
maps for DDEs

For the rest of this paper we assume that τ = 1 in (1.3). All computations can be easily redone
for any delay τ.

The semiflow ϕ associated with Equation (1.3) is defined as:

ϕ : R0 × C0([−1, 0], R) 3 (t, ψ) 7→ xψ
t ∈ C0([−1, 0], R). (2.1)

where xψ : [−1, aψ) → R denotes the solution to the Cauchy problem (1.3)-(1.4), such that
the solution exists for all t < aψ. Under some mild assumptions on the r.h.s. f of (1.3) xψ is
unique for all initial function ψ and the (local) semiflow ϕ is continuous on C0([−1, 0], R) [5].
Also, from the classical method of steps, one can obtain the following lemma, which we state
without proof.
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Lemma 2.1 (Smoothing property). Assume f is of class Cm, let n ∈ N, t ≥ n. If x0 ∈ C0, then
xt = ϕ(t, x0) is of class at least Cmin(m+1,n).

In our computer assisted proofs, we follow a standard algorithm to construct Poincaré
maps for flows:

1. Select a finite representation of the initial condition x0 ∈ C0, i.e. a set X0 ⊂ C0 such that
x0 ∈ X0 and X0 can be described with a finite number of parameters.

2. Define a section S in the phase space such that x0 ∈ S and the semiflow ϕ is transversal
to S in the neighbourhood of x0.

3. Compute estimates on the transition time to section tS ∈ [tS] for tS > 0 such that
ϕ(tS, x0) ∈ S.

4. Return a (finite representation of) set XtS such that ϕ(tS, X0) ⊂ XtS .

Our rigorous integration scheme will be given by a family of operators {I∆t}∆t∈[0,h] such that

ϕ(∆t, X0) ⊂ I∆t(X0).

If [ts] = q · h + [ε1, ε2] for 0 ≤ ε1 ≤ ε2 < h then Step 4 can be implemented as:

Xts := I[ε1,ε2] ◦ Iq
h (X0) , (2.2)

where
I[ε1,ε2](·) =

⋃
ε∈[ε1,ε2]

Iε(·). (2.3)

Notice that, the value of q can be obtained by counting the number of iterations of the
operator Ih before the algorithm detects a crossing of the section. Then [ε1, ε2] may be found
by application of any bisection algorithm.

In [22, 23], a rigorous algorithm for construction of Ih for the constant step size h = 1
p

for some p ∈ N+. was proposed. Also, under some assumptions, it is possible to obtain a
rigorous version of Iε for 0 < ε < h. The original algorithm extensively relies on the smooth-
ing property of DDEs (Lemma 2.1) so from now on we assume that r.h.s. f of Equation (1.3)
is “sufficiently smooth” for various expressions to make sense. In fact, we can assume that
f ∈ C∞ as this is usually true in the context of the classical equations defined by a finite com-
position of elementary C∞ functions. The “logistic” (Eq. (1.1)) and Mackey–Glass equations
are both good examples.

Let us recall basic definitions and results from [23]. We assume that integers n ≥ 0 and
p > 0 are given and we set h = 1

p .

Definition 2.2 (Definition 1 in [23]). By Cn
p we denote the set of all functions g : [−1, 0] → R

such that for i ∈ {1, . . . , p} we have:

• g is (n + 1)-times differentiable on (−i · h,−i · h + h),

• g(k) (−i · h+) exists for all k ∈ {0, . . . , n + 1},

• g(n+1) is continuous and bounded on (−i · h,−i · h + h).
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In other words, g ∈ Cn
p is given by a piecewise Taylor expansion on each of the intervals

[−i · h,−i · h + h). For t = −i · h + ε and 1 ≤ i ≤ p, 0 ≤ ε < h we can write:

g(t) =
n

∑
k=0

g[k](−i · h) · εk + g[n+1] (−i · h + ξ(ε)) · εn+1, (2.4)

Definition 2.3 (Definition 2 in [23]). Let g ∈ Cn
p and let I : {1, . . . , p} × {0, . . . , n} →

{1, . . . , p · (n + 1)} be any bijection.
A (p, n)-representation of g is a pair ḡ = (a, B) such that

a ∈ Rp·(n+1)+1, B ⊂ Rp is an interval set

π1a = g(0), πiB =

[
inf

ξ∈(0,h)
g[n+1] (−ih + ξ) , sup

ξ∈(0,h)
g[n+1] (−ih + ξ)

]
π1+I(i,k)a = g[k](−ih+), for 1 ≤ i ≤ p, 0 ≤ k ≤ n

The graphical presentation of the idea of a (p, n)-representation of some exemplary func-
tion is given in Figure 2.1. The following notation is used for any (p, n)-representation ḡ:

ḡ0,[0] := π1a, ḡi,[k] := π1+I(i,k)a, ḡi,[n+1] := πiB

The term ḡi,[k] is called the (i, k)-th coefficient of the representation and ḡi,[n+1] the i-th remainder of
the representation. The interval set B is called the remainder of the representation. We will call the
constant M = p · (n + 2) + 1 the size of the (p, n)-representation. The parameters n and p are
omitted when known from the context.

Definition 2.4 (Definition 3 in [23]). Let Ḡ = (A, C) ⊂ Rp·(n+1)+1 ×Rp = Rm be a bounded
set. Then, we define (p, n)-f-set (or (p, n)-functions set) fset(Ḡ) ⊂ Cn

p as

fset(Ḡ) =
{

f ∈ Cn
p : f̄ ⊂ Ḡ for the (p, n)-representation f̄ of f

}
. (2.5)

Conversely, given a set G ⊂ Cn
p we will say that Ḡ is a (p, n)-representation of G if G = fset(Ḡ).

The two concepts are strongly linked but, formally, a (p, n)-representation is an object in
a finite dimensional space, where a (p, n)-f-set contains elements of an infinite dimensional
functional space.

The next lemma follows simply from the definitions of (p, n)-representations and (p, n)-f-
sets.

Lemma 2.5 (Lemma 4 in [23]). Let G, F be (p, n)-f-sets with representations Ḡ and F̄, respectively.
The following statements hold.

• If Ḡ ⊂ F̄, then G ⊂ F.

• If Ḡ ⊂ Rm is convex, then G is convex in Cn
p .

• If Ḡ ⊂ Rm is convex, then G ∩ Ck is convex for any k ≥ 0.

In [23], the authors proposed an algorithm for obtaining a (p, n)-f-set that contains all solu-
tions to (1.3), given initial functions defined in an another (p, n)-f-set. Namely, they developed
a procedure to compute:

x̄h = Ih(x̄0).
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a)

t
x[0](t)

(0, 0)

t = − 1
2

− 2
2

•

x[0](t) = −0.167

•

x[0](t) =−0.021

•

x[0](t) =0

c)

t
x[2](t)

(0, 0)

t =− 2
2

− 1
2

x[2](t)=
[−0.5,−0.25]

x[2](t)=
[−0.25,0]

b)

t

x[1](t)

(0, 0)

t =− 2
2

− 1
2

•

x[1](t) =0.5

•

x[1](t) =0.125

d)

t

x(t)

(0, 0)

•

• •

t =− 2
2

− 1
2

x(t) = 1
6
· t3

e)

x2,[0] = −0.167 x1,[0] = −0.021 x0,[0] = 0.0

x2,[1] = 0.5 x1,[1] = 0.125

x2,[2] = [−0.5,−0.25] x1,[2] = [−0.25, 0]

Figure 2.1: An example of constructing the (p, n)-representation x̄ = (a, B) for the function
x(t) = 1

6 · t3 (plotted in red in d)). Blue curves in a), b) and c) are x = x[0], x(1) = x[1] and
1
2 · x(2) = x[2], respectively. The remainder terms B are presented graphically as blue boxes,
while the values of a are presented as blue dots. In e) the coefficients a and B are organized
into a matrix that resembles their position w.r.t. indices i and k, e.g. element x̄i,[k] lies in i-th
column and k-th row. For the sake of the presentation, numbers are rounded up to three
decimal places. The reconstruction of the (p, n)-f-set represented by x̄ is shown as blue region
in d). We see that x is contained in fset(x̄). An animated version of this figure is available in
PDF format in [24].

where x̄0, x̄h are (p, n)-representations, such that ϕ(h, fset(x̄0)) ⊂ fset(x̄h) and h = 1
p .

Also, under assumption that the iteration time is “long enough”, they proposed a family
of algorithms Iε for 0 < ε < h for which the following is true:

Theorem 2.6 (Theorem 14 in [23]). Assume that ε ∈ [0, h] and x̄0 is a (p, n)-representation. Let
q ∈N be such that n · p ≤ q. Then

ϕ(q · h + ε, x) ∈ fset
(

Iε

(
Iq
h(x̄0)

))
(2.6)

for all x ∈ fset(x̄0) ∩ C0.

We skip the details of the construction here. We would like to note that the condition for
a “long enough” iteration is n · p ≤ q. If we denote the transition time q · h + ε in (2.6) by t,
then the condition transforms into t ≥ n. By Lemma 2.1 it guarantees that ϕ(t, x) is of class at
least Cn (we remind that we assumed τ = 1).

Finally, we recall the theorem which guarantee that Poincaré map is well defined and it is
a compact operator.
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Definition 2.7 (Definition 6 in [23]). Let n ∈ N, s : Cn → R be a bounded linear operator and
a ∈ R. We define a global Cn-section as a hyperplane:

Sa = {x ∈ Cn : s(x) = a}. (2.7)

Any convex, bounded subset Sa ⊂ Sa is called a local Cn-section (or simply a section).
Let W ⊂ Cn be a convex open set such that

U := W ∩ S , cl(U) = cl(S)

W− := {x ∈W : s(x) < a} 6= ∅,

W+ := {x ∈W : s(x) > a} 6= ∅.

A section Sa is said to be transversal on W if

s (ẋ) > 0, ∀x ∈W ∩ Cn+1. (2.8)

We will refer to (2.8) as the transversality condition.

Definition 2.8 (Definition 7 and Theorem 10 in [23]). Let ω ≥ n + 1, S be a section, V ⊂ C0

and assume there exist t1, t2 such that:

• ω ≤ t1 < t2,

• ϕ([t1, t2], V) ⊂W,

• S is transversal on W,

• ϕ(t1, V) ⊂W−,

• ϕ(t2, V) ⊂W+.

Then, the transition map to the section S after (at least) ω is well defied and given by:

P≥ω : V → S, P≥ω(x0) := ϕ (tS(x0), x0) . (2.9)

where tS(x) is a unique time such that ϕ(tS(x), x) ∈ S (see Theorem 10 in [23]).
If V ⊂ S, then the map P≥ω will be called the Poincaré return map on the section S after ω.

Note that the condition on the transition time given by ω is n+ 1 instead of n (as compared
to Theorem 2.6). This extra iteration time guarantees that the derivative of P(x) w.r.t. t is well
defined and of class at least Cn.

The main result that allows us to use the rigorous bounds in the actual proofs is as follows.

Theorem 2.9 (Theorem 11 in [23]). Let S be a Cn-section and let V ⊂ S be bounded in Cn. Assume
ω ≥ n + 1 and tS ∈ [t1, t2] as in Definition 2.8. If ϕ([t1, t2], V) is bounded then P≥ω : V → S is
continuous. Moreover, cl (P≥ω(V)) is compact in Cn.

3 Computer assisted proofs of attracting periodic orbits in the logis-
tic equation

We start this section with recall of Schauder’s fixed point theorem [20, 29]. We will use it to
prove existence of several periodic orbits to (1.1) for various values of parameter λ.
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Theorem 3.1 (Schauder’s fixed point theorem). Let X be a Banach space, let V ⊂ X be a non-
empty, convex, bounded set and let P : V → X be a continuous mapping such that P(V) ⊂ K ⊂ V
and K is compact. Then the map P has a fixed point in V.

We will be working in the space X = Cn. We will use routines described in the previous
Section to obtain bounds on the set K in Theorem 3.1 for some a priori estimated set V ∈
Cn

p ∩ Cn. Theorem 2.9 will guarantee compactness of operator P, thus compactness of the
set K.

Since we are using (p, n)-representations with n = 4 and p = 32 to describe sets in the
phase space, it would not be feasible to present data from the proofs directly, as the number
of coefficients is equal to the size of the (p, n)-representation: M = 193. Also, it would be
impossible to provide reasonable initial data by hand. Therefore, we discuss shortly how we
automatically obtain bounds on the set of initial functions V on a suitably chosen section Sa.

3.1 (p, n)-sections

We follow notation of [23]. Since we are using (p, n)-representations to describe functions
in Cn, it is advisable to define sections in the phase space in such a way that it would be
easy to rigorously check if x ∈ S for all functions represented by a given (p, n)-f-set (or its
(p, n)-representation). A straightforward way is to require s in Definition 2.7 to depend only
on representation coefficients x̄i,[k] for k ≤ n. This motivates the following definition.

Definition 3.2. Let l̂i,k ∈ R for (i, k) ∈ C = {1, . . . , p} × {0, . . . , n} ∪ {(0, 0)}. We assume that
at least one l̂i,k is not equal to zero. We define a bounded linear operator s(x) by:

s(x) = ∑
(i,k)∈C

l̂i,kx[k](−ih), x ∈ Cn. (3.1)

A section Sa = {x ∈ Cn, s(x) = a} (see Definition 2.7) is called a (p, n)-section. A sub-
set Sa ⊂ Sa is called a local (p, n)-section. A vector l ∈ RM−p+1 (where M is the size of
the (p, n)-representation) such that πI(i,k)l = l̂i,k for (i, k) ∈ C is called the representation of a
(p, n)-section.

Note that s(x) ≡ l · x̄ for the (p, n)-representation of a function x.

3.2 Selection of the initial conditions

To find good initial conditions, we will use an approximate flow ϕ̂ defined by:

ϕ̂(t, x) = Φε ◦Φq
h(x), x ∈ Rm, t = q · h + ε, (3.2)

where Φh, Φε denotes “truncated” versions of the rigorous integration algorithms Ih and Iε,
respectively. Algorithms Φh and Φε are called truncated, as they do not take into consideration
the effect of remainder terms B of (p, n)-representations (see Section 2.2 of [23] for details).
Despite this, we hope that a periodic solution x̂ to (3.2) would be close enough to the true
solution of (1.3), so that a small neighbourhood [x̂] of x̂ can be selected as V in Theorem 3.1.

We start the selection of the initial function by computing ϕ̂(T0, x̂) with x̂=A · sin(B · t)+C
for some A, B, C ∈ R (discussed later in Section 4) and T0 ∈ R+ large enough so that the
solution x̂T0 stabilizes as discussed in [16]. Then, we construct a Poincaré map P̂ with a
(p, n)-section defined by s(x) = πI(0,0)x and a = πI(0,0) x̂T0 . For the map P̂ we apply Newton
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algorithm to find x̄0 ∈ Rm such that ‖P̂(x̄0)− x̄0‖ ≤ 10−13. The vector x̄0 will be the middle
point of the (p, n)-representation of the initial set V.

In the next step we choose a (p, n)-section such that it minimizes the difference between
transition time tS for different x ∈ V. A heuristic algorithm to find such section exists (see
Section 3.4 in [23]).

In order to demonstrate the idea behind the heuristic algorithm, let us consider for a while
an ODE of the form:

x′ = f (x), f ∈ C1, x ∈ Rm. (3.3)

Let x0 be a periodic orbit of period T of the flow ϕ induced by (3.3). Then f (x0) is the right
eigenvector of the monodromy matrix A = ∂ϕ

∂x (T, x0) with eigenvalue λ = 1. Let l be the left
eigenvector of A corresponding to λ = 1, i.e. lT · A = lT. If x0 is hyperbolic then the left and
right eigenvectors of A are uniquely defined up to a multiplier and we can choose l such that

l · f (x0) = 1 (3.4)

Let us consider section S = {x | l · x = l · x0} in Rm. Then, from

l · ϕ(tS(x), x)− l · x0 = 0, (3.5)

we obtain
∂tS

∂x
(x0) = −

l · ∂ϕ
∂x (T, x0)

l · f (x0)
, (3.6)

Let l⊥ be the tangent space to l, i.e. l⊥ = {x ∈ Rn : l · x = 0}). Then, by direct computation,
we get:

∂tS

∂x
(x0) · b = 0, for b ∈ l⊥. (3.7)

Therefore, in the ODE setting, choosing left eigenvector of the monodromy matrix A to define
(linear) section guarantees that it is transversal to the flow and the return time is constant in
the first order approximation.

We use this fact to obtain a good candidate for a section by computing the left eigenvector
corresponding to eigenvalue 1 of the matrix ∂ϕ̂

∂x (T, x0). Let l ∈ RM−p+1 be this vector. We
define the matrix

Ĉ :=



l1 0 · · · 0 0 · · · 0
l2 1 0 · · · 0
...

. . .
...

. . .
...

lM−p+1 1 0 · · · 0
0 0 · · · 0 1
...

...
. . .

...
. . .

0 0 · · · 0 1


. (3.8)

This is a non-singular matrix. Let C be a matrix obtained from the procedure of orthonormal-
isation of Ĉ by the Gram–Schmidt algorithm, so that C is an orthonormal base for the phase
space of Rm. We choose the initial set V to be:

V := x̂0 + C · ξ · r0, ξ ∈ [−1, 1] (3.9)

for some r0 ∈ Rm, π1r0 = 0. Notice, that the set V is contained on the (p, n)-section defined by
l as a hyperplane in the phase space. Coefficients of r0 are chosen experimentally to follow an
exponential law in k, i.e. ri,[k]

0 ≈ d · qk for some q > 1 and d ∈ (0, 1). They are further refined
during the computations to obtain better initial bounds. A method of selecting the middle
point x̂0 for various values of the parameter λ in (1.1) is discussed in details in Section 4.
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3.3 Computer assisted proofs

Before we formulate theorems, we once more recall the problem of exact representation of
numbers in computer programs. Below we state theorems with floating-point (real) numbers
presented up to four digits after the decimal point, so they are not exactly the ones which the
software for computer-assisted proof produces. We have rounded them in such a way that
they are valid bounds (upper or lower where appropriate) for the values produced in rigorous
numerical procedures. Please also remember, that if we write [5.8], then we mean by that a
minimal interval with end points being representable numbers such that it contains 5.8.

The computer program and initial data used to obtain estimates in theorems may be found
online [24]. There, one can find also a detailed instruction on compiling and running the pro-
grams. The compilation requires CAPD library [4], as we use it in underlying rigorous interval
numerical procedures. Source codes were tested on a standard laptop PC with Intel® Core™

I7-2860QM CPU (2.50 GHz), 16 GB RAM under 64-bit Linux operating system (Ubuntu 12.04
LTS) and C/C++ compiler gcc version 4.6.3. In the sequel, we will refer to this configuration
as a reference machine. On this configuration the computation time for each of the proofs is
approximately one minute.

Before we state the theorems, we note that it is straightforward to check that ξ0 = 0 and
ξ1 = λ−1

λ are the stationary solutions to (1.1) for λ 6= 0. Moreover, if x is a bounded solution
to (1.1) with initial condition x0 and x0 ≡ xT for some T > 0, then x may be extended to the
whole R where it will satisfy (1.1) for any t. By x(R) we denote the image of the extended
function over R.

Now we can proceed to state the theorems, which are proved with computer assistance.

Theorem 3.3. There exists a periodic solution x to (1.1) with λ = 5.5 such that ξ1 ∈ x(R) and
ξ0 6∈ x(R).

Proof. We choose the (32,4)-representation of the phase space and we set λ = [5.5] in (1.1).
We choose the (p, n)-section and we construct representation of the (p, n)-f-set of initial

conditions V as described in Section 3.2. For those initial conditions we perform the rigorous
construction of the image of Poincaré map P≥ω as described in Section 2. Let W be the (p, n)-
f-set enclosing the image of P≥ω obtained from the integration procedure, i.e. P(V) ⊂ W =

Φ[ε] ◦Φq
h(V) for some q and [ε]. The program verified that:

• tS ∈ q · h + [ε1, ε2] = 209 · 1
32 + [0.0194046, 0.0194166],

• 209 = q > (n + 1) · p = 5 · 32 = 160,

• ϕ(q · h + ε1, V) ∈W− and ϕ(q · h + ε2, V) ∈W+, see the output of the program,

• s(ẋ) > 0.1269 for x ∈W ∩ Cn, which guarantees transversality,

• 0.2260 < inft∈R x(t) < 0.2284, 1.0850 < supt∈R x(t) < 1.0862, ξ1 ∈ [0.8181, 0.8182],

so by the Theorem 2.9 the Poincaré map is well defined and compact on V.
Next, the program checks inclusion W ⊂ V (see output of the program for details). By

Schauder theorem we get the existence of a fixed point in the (p, n)-f-set V which corresponds
to a periodic orbit (as ξ0, ξ1 6∈ V).

Since x is periodic, it suffices to compute lower and upper estimates on the value of x(t)
over an interval containing basic period to obtain estimates of inft∈R x(t) and supt∈R x(t). The
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program verifies that

ξ1 ∈ [0.8181, 0.8182] > 0.2284 > inf
t∈R

x(t) = inf
t∈[0,q·h+ε2]

x(t) > 0.2260 > 0 = ξ0,

ξ1 ∈ [0.8181, 0.8182] < 1.0850 < sup
t∈R

x(t) = sup
t∈[0,q·h+ε2]

x(t),

which proves ξ0 6∈ x(R) and ξ1 ∈ x(R).
The data for this proof can be found in a .zip file at [24] under logistic/5.5/0_B.initial.

The estimates obtained on the reference machine can be found under logistic/5.5/
0_C.proof.

The approximate orbit which defines the middle point of the initial set V in Theorem 3.3
is presented in Figure 3.1.
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Figure 3.1: Plot of the solution from Theorem 3.3. The dots mark the shift by a next full delay,
where the associated number is the corresponding time.

Theorem 3.4. There exists a periodic solution x to (1.1) with λ = 5.75 such that ξ1 ∈ x(R) and
ξ0 6∈ x(R).

Proof. We proceed in the same manner as in the proof of Theorem 3.3. We present those
numbers that are needed to verify assumptions:

• tS ∈ q · h + [ε1, ε2] = 259 · 1
32 + [0.000719, 0.000741],

• s(ẋ) > 0.2167 for x ∈W ∩ Cn, which guarantees transversality,

• 0.0163 < inft∈R x(t) < 0.0195, 1.1449 < supt∈R x(t) < 1.1461, ξ1 ∈ [0.8260, 0.8261]

The data for this proof can be found in a .zip file at [24] under logistic/5.75/1_B.initial.
The estimates obtained on the reference machine can be found under logistic/5.75/
1_C.proof.
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The approximate orbit which defines the middle point of the initial set V in Theorem 3.4
is presented in Figure 3.2.
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Figure 3.2: Plot of the solution from Theorem 3.4. The dots mark the shift by a next full delay,
where the associated number is the corresponding time.

Theorem 3.5. There exists a periodic solution x to (1.1) with λ = 5.8 such that ξ1 ∈ x(R) and
ξ0 ∈ x(R).

Proof. We proceed in the same manner as in the proof of Theorem 3.3. We present only
numbers needed to verify assumptions:

• tS ∈ q · h + [ε1, ε2] = 261 · 1
32 + [0.0005558, 0.0005740],

• s(ẋ) > 0.4290 for x ∈W ∩ Cn, which guarantees transversality,

• −0.0128 < inft∈R x(t) < −0.0101, 1.1523 < supt∈R x(t) < 1.1539, ξ1 ∈ [0.8275, 0.8276].

The data for this proof can be found in a .zip file at [24] under logistic/5.8/1_B.initial.
The estimates obtained on the reference machine can be found under logistic/5.8/
1_C.proof.

The approximate orbit which defines the middle point of the initial set V in Theorem 3.5
is presented in Figure 3.3.

4 Further numerical investigations of the logistic equation

As we have stated in Section 2, we have generated initial conditions by a very long, non-
rigorous integration of (1.1) for initial functions of the form A · sin(B · t) + C.
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Figure 3.3: Plot of the solution from Theorem 3.5. The dots mark the shift by a next full delay,
where the associated number is the corresponding time.

Initially we carried out multiple runs with

A ∈ {0.1 · i : i ∈ 0, . . . , 4} ,

B ∈
{

0.5 · i
2 · π : i ∈ 0, . . . , 4

}
,

C ∈ {0.4 + 0.1 · i : i ∈ 1, . . . , 5} ,

and we have observed to what orbit the solution appeared to converge. Then, we have selected
two initial functions which generated distinct behaviours:

a0(t) := 0.4 · sin
(

2
2 · π · t

)
+ 0.6 (4.1)

b0(t) := 0.2 · sin
(

3.25
2 · π · t

)
+ 0.6. (4.2)

We call the solutions a-type and b-type. The a-type solutions tend to the periodic orbit with
ξ0 = 0 6∈ x(R) while b-type solutions has both ξ0 = 0 ∈ x(R) and ξ1 = λ−1

λ ∈ x(R)

for larger values of parameter λ. For each value of the parameter λ ∈ {5.5 + 0.1 · i : i ∈
0, . . . , 3} ∪ {5.75 + 0.01 · i : i ∈ 0, . . . , 10} we computed 100-th iterates of a0 and b0: a100 :=
Phi100

h (a0), b100 := Phi100
h (b0). Then, Newton algorithm was applied to a100 and b100 to obtain

final candidates a and b such that ‖P(x)− x‖ < 10−13 for x ∈ {a, b}.
We ran an automatic procedure to verify (non-rigorously) if the orbit is attracting or re-

pelling by computing (approximate) eigenvalues of the Jacobian of P at x ∈ {a, b}. The
resulting orbits are shown in Tables 4.1, 4.2 and 4.3. With green box we have marked solu-
tions for which we were able to get a computer assisted proof of existence. An a-type periodic
solution for λ = 5.5 for which we have managed to get the computer assisted proof is shown



Computer assisted proof of periodic orbits in nonlinear DDE 15

in Figure 3.1. Solutions presented in Tables 4.1 and 4.2 were classified as attracting, where
in Table 4.3 we have gathered initial conditions obtained from Newton algorithm that are
apparently unstable (numerical computations show that Jacobian of P at x has one unstable
eigenvalue).

We were not able to obtain a computer assisted proof in the case of a-type periodic so-
lution when λ > 5.7. The reason for this is that the approximate monodromy matrix of ϕ

at x have not contained an eigenvalue 1 in its spectrum. Thus, we were not able to select
a good representation of the (p, n)-section. The observed dominant approximate eigenvalue
was always complex with the magnitude ≈ 1. We have tried to repeat computations with
larger (p, n)-representations (a (128,4)-representation and a (32,10)-representation), but with-
out success. However, for the (128,4)-representation, the magnitude of the imaginary part of
the dominant eigenvalue was much less than in the case of (32,4)-representation. This suggest
that the lack of eigenvalue 1 may be only an artefact of numerical computations. We plan to
carry out the computations for even larger representations of the phase space, but due to the
time constraints, we need first to optimise the procedure of computation of the monodromy
matrix as suggested in [22]. With the current implementation we estimate that computations
on (256, 4)-representation would take more than a year.

λ = 5.70 λ = 5.75 λ = 5.80
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Table 4.1: Numerical investigations of logistic equation (1.1) with various λ. With a green box
we have marked periodic solutions we were able to prove rigorously. We see that the double
oscillation in the first orbit (upper row) shrinks. Probably, it is the reason why we were not
able to prove their existence, as they get closer and closer to the unstable periodic orbit, as
seen in Table 4.3.

5 Summary

In this work we have applied a recently developed rigorous procedure for forward in time
integration of DDEs to prove existence of several periodic orbits to the “logistic” equation
(1.1), for which it is difficult to obtain such results by analytical means.

There is much work left to be done. First of all, we were not able to prove the existence of
two coexisting attracting periodic orbits, observed numerically in [16]. A possible approach
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λ = 5.81 λ = 5.83 λ = 5.84
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Table 4.2: Numerically attracting periodic orbits in (1.1) for higher values of the λ parameter.
Orbits were obtained by integration of the initial conditions (4.1) and (4.2) (upper and lower
row respectively) forward in time up to t = 100 (i.e. 100 · τ). Then, the pictures were obtained
by plotting the numerical solution over time t ∈ [0, 20]. It seems that for λ > 5.83 a chaotic
attractor appeared. However, using Newton algorithm, we were able to find apparently un-
stable periodic orbit as seen in Table 4.3.

λ = 5.70 λ = 5.81 λ = 5.84
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Table 4.3: Some apparently unstable periodic orbits (with one unstable direction)
in (1.1) for various λ.

would be to increase the size of the (p, n)-representation, but for this we need to optimise our
algorithms. We have already made some suggestions in [22].

Further, we do not have tools to prove that the existing orbits are in fact attracting. The
tools for this are already present for ODEs [30] and in the future work we will try to translate
them to the DDE setting.

An additional future goal is to establish existence of unstable periodic orbits. We have
shown that our algorithms may be used to find good numerical approximations to such orbits
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(examples in Table 4.3). The tools needed in the context of infinite dimensional flows to prove
existence of unstable hyperbolic periodic solutions are available [31] and it should be easy to
incorporate them in our algorithms.
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