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Abstract. In this note we sketch some results concerning a geo-
metric method for periodic solutions of non-autonomous time-pe-
riodic differential equations. We give the definition of isolating
chain and we provide a theorem on the existence of periodic solu-
tions inside isolating chains. We recall some results on existence of
chaotic dynamics which can be proved by the theorem. We provide
several examples of equations in which the presented theorems can
be applied.

1. Introduction

The question of existence of periodic solutions is one of the most fun-
damental problems of qualitative theory of differential equations. Usu-
ally, the class of non-autonomous time-periodic equations is considered
and one looks for harmonic and subharmonic periodic solutions of an
equation in that class. In the nonlinear case, the method of guiding
functions, functional-analytic methods based on modifications of the
Leray-Schauder degree, and variational methods are mostly applied in
research; see the books [KZ, RM].

Another method, called here geometric, was introduced in [S1, S2].
It is based on proper location of the vector-field on the boundaries
of some subsets, called periodic isolating segments (or periodic isolat-
ing blocks), of the extended phase space of the equation. A proper
value of the Lefschetz number of some homomorphism associated to
the segment guarantees the existence of fixed points of the Poincaré
map of the equation (via the Lefschetz theorem) and, in consequence,
also the required periodic solution inside the segment. The notion of
periodic isolated segments arose as a modification of the concept of
isolating block from the Conley index theory, compare [C, CE, Sm]. In
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[KS, S3], the geometric method was applied in results on planar poly-
nomial (or rational) equations of the form ż =

∑
k,m,n ck,m,ne

iktzmzn.

Generalizations of some of those results (obtained by other methods)
appeared in [M, MMZ]. Further applications of the geometric method
concern the existence of chaotic dynamics of the Poincaré map (see
[PW, S4, S5, SW, W1, W2, W3, WZ1]) and the existence of homo-
clinic solutions (see [WZ2]).

The aim of this note is to present, without proofs, an improvement
of the geometric method given in [S6] as well as to recall some theorems
on chaotic dynamics which were obtained by method. The improve-
ment is based on the notion of periodic isolating chain, being a union
of several isolating segments satisfying some concordance relations (see
Section 2). The main result, Theorem 1 in Section 3, asserts that the
Lefschetz number of a homomorphism in reduced homologies of a sec-
tion of a periodic isolating chain is equal to the fixed point index of the
corresponding restriction of the Poincaré map. We give some exam-
ples of practical applications of the theorem. Finally, in Section 4 we
define the notion of chaotic equation and we recall two results (Theo-
rems 2 and 3) on existence of them. By chaotic we call a time-periodic
equation such that its Poincaré map is semi-conjugated to the shift
on r symbols and the counterimage of a periodic point in the shift
contains an initial point of a periodic solutions of the equation. We
provide some examples of chaotic equations and give some comments
on further development of the theory.

A few remarks concerning the notation which is used in the sequel.
If X is a topological space and A ⊂ X then X/A is the space obtained
by collapsing A to a point provided A 6= ∅, and X/∅ := X ∪ {∗},

where ∗ is a point, ∗ /∈ X. By H̃ we denote the singular homology
functor with rational coefficients. If X is such that the graded vector

space H̃(X) = {H̃n(X)}n∈Z is finitely dimensional then χ(X) denotes
the Euler characteristic of X and Λ(φ), the Lefschetz number of an

endomorphism φ = {φn} =: H̃(X) → H̃(X), is defined as

Λ(φ) :=

∞∑

n=0

(−1)n trace φn.

Let X be an ENR (Euclidean Neighborhood Retract) and let f : X → X
be a continuous map. A set K ⊂ X is called an isolated set of fixed

points of X provided K is compact and there exists a neighborhood
U of K such that all fixed points of f |U are in K. In that case, by
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ind(f, K) we denote the fixed point index, see [D]. (The index in our
notation corresponds to I(f |U) in the notation of [D].)

2. Isolating segments and chains

Let M be a differentiable manifold and let f : R × M → TM be a
time-dependent vector-field on M . We assume that the equation

ẋ = f(t, x)(1)

has the uniqueness property, i.e. for each t0 ∈ R and x0 ∈ M there is
a unique solution t → u(t0,t)(x0) such that

u(t0,t0)(x0) = x0.

The map u : (s, t, x) 7→ u(s,t)(x) is called an evolutionary operator

corresponding to (1); the induced map u(s,t) defined on an open (pos-
sibly empty) subset of M describes the evolution from the time s to t.
The cartesian product R×M is called the extended phase space of the
equation,

For a subset Z of the extended phase space R×M and t ∈ R we put

Zt := {x ∈ M : (t, x) ∈ Z}

and by π1 : R×M → R and π2 : R×M → M we denote the projections.
Let a and b be real numbers, a < b. A compact ENR W ⊂ [a, b]×M

is called an isolating segment over [a, b] provided there exist compact
ENRs W− and W+ contained in W such that

(i) there exists a homeomorphism h : [a, b] × M → [a, b] × M such
that π1 ◦ h = π1 and

h([a, b] × Wa) = W, h([a, b] × W±

a ) = W±,

(ii) ∂Wa = W−
a ∪ W+

a ,
(iii) The sets W and W± are related to the evolutionary operator by

the following equations:

W− ∩ ([a, b) × M) =

{(t, x) ∈ W : t ∈ [a, b), ∃{εn}, 0 < εn → 0 : u(t,t+εn)(x) /∈ Wt+εn
},

W+ ∩ ((a, b] × M) =

{(t, x) ∈ W : t ∈ (a, b], ∃{εn}, 0 < εn → 0 : u(t,t−εn)(x) /∈ Wt−εn
}.
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Let W be an isolating segment over [a, b]. A homeomorphism h in (j)
induces homeomorphism

m : (Wa/W
−

a , [W−

a ]) → (Wb/W
−

b , [W−

b ])

of pointed spaces by the formula

m([x]) := [π2h(b, π2h
−1(a, x))].

We call m a monodromy map of the isolating segment W . Monodromy
maps of the segment W are unique up to homotopy class, hence the
isomorphism

µW := H̃(m) : H̃(Wa/W
−

a ) → H̃(Wb/W
−

b )

is an invariant of W .
Let a < b < c, let U be an isolating segment over [a, b] and let V

be an isolating segment over [b, c]. We call the segments U and V
contiguous if

(Ub \ Vb ∪ U−

b ) ∩ Vb ⊂ V −

b ,

(Vb \ Ub ∪ V +
b ) ∩ Ub ⊂ U+

b .

Assume that U and V are contiguous. Define a map

n : (Ub/U
−

b , [U−

b ]) → (Vb/V
−

b , [V −

b ])

by

n([x]) :=

{
[x], if x ∈ Ub ∩ Vb,

[V −

b ], if x ∈ Ub \ Vb.

One can prove that n is correctly defined and continuous. We call n
the transfer map of the contiguous isolating segments U and V . The
transfer map induces the homomorphism

νUV := H̃(n) : H̃(Ub/U
−

b ) → H̃(Vb/V
−

b ).

We denote the union of the above contiguous isolating segments U and
V by UV . More generally, let N ∈ N, N ≥ 1, let a0 < a1 < . . . < aN

and let U1, . . . , UN be isolating segments, U i over [ai−1, ai]. Assume
that U i and U i+1 are contiguous for every i = 1, . . . , N − 1. Denote
by U1 . . . UN the union

⋃N
i=1 U i. Such a union of contiguous segments

is called an isolating chain over [a0, aN ].
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3. A theorem on periodic solutions

We assume that the vector-field f in (1) is T -periodic in t for some
T > 0. An isolating segment W over [a, a + T ] is called a periodic

isolating segment if Wa = Wa+T and W±
a = W±

a+T . More generally,
an isolating chain U 1 . . . UN over [a, a + T ] is called periodic provided
UN and τT (U1) are contiguous, where the map τT is the translation;
τT : (t, x) 7→ (t + T, x).

Let C := U1 . . . UN be a periodic isolating chain over [a, a + T ]. We
define a homomorphism

ρC : H̃(U1
a/U1

a
−
) → H̃(U1

a/U1
a
−
)

by
ρC := νUN τT (U1) ◦ µUN ◦ . . . ◦ νU2U3 ◦ µU2 ◦ νU1U2 ◦ µU1 .

Obviously, if W is a periodic isolating segment then ρW = µW . The fol-
lowing theorem was proved in [S6]; it is a generalization of [S2, Th. 7.1]
to the case of isolating chains.

Theorem 1. If C := U 1 . . . UN is a periodic isolating chain over [a, a+
T ] then

FC := {x ∈ U1
a : u(a,a+T )(x) = x, ∀t ∈ [a, a + T ] : u(a,t)(x) ∈ Ct}

is an isolated set of fixed points of u(a,a+T ) and

ind(u(a,a+T ), FC) = Λ(ρC).

In particular, if Λ(ρC) 6= 0 then FC is nonempty, hence u(a,a+T )

has a fixed point, which means that the equation (1) has a T -periodic
solution.

In Figure 1, it is shown a twisted prism with hexagonal base. If its

Figure 1.
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size is large enough, it is a periodic isolating segment W over [0, 2π]
for the equation

ż = eitz2 + 1,(2)

where z ∈ C. The set W− is marked in dark grey. On can calculate
that the corresponding number Λ(µW ) is equal to 1, hence, by the
above theorem, (2) has a 2π-periodic solution.

Actually, in the above result for the equation (2) we did not use
Theorem 1 in full generality. In order to provide an example in which
an essential isolating chain appear, we consider the class of planar
equations

ż = z5 + sin2(φt)|z|rz.(3)

Zero is a solution of the equation (3), hence one can look for another
π/φ-periodic solution. If 0 ≤ r < 4 and φ > 0 is small enough then (3)
has two isolating chains over [−π/(2φ), π/(2φ)] as shown in Figure 2.
The isolating periodic segment Z being the prism with dodecagonal
base on the upper picture is the first of them. The second of them is
an essential periodic isolating chain UV W consisting of three isolating
segments on the lower picture: the segments U over [−π/(2φ),−π/(3φ)]
and W over [π/(3φ), π/(2φ)] have rectangles as the left and right faces,
while the segment V over [−π/(2φ), π/(2φ)] is again a prism with do-
decagonal base. Moreover, UV W ⊂ Z. One can show that

Λ(µZ) = −5, Λ(ρUV W ) = −1

hence the Poincaré map u(−π/(2φ),π/(2φ)) has a nonzero fixed point, which
means that in the considered range of values of φ and r the equation
(3) has a nonzero π/φ-periodic solution. (For example, one can choose
r = 2 and 0 < φ ≤ 0.001).

4. On detecting of chaotic dynamics

Let r be a positive integer. Define

Σr := {1, . . . r}Z,

the set of bi-infinite sequences of r symbols. Define the shift map as

σ : Σr 3 (. . . , s−1.s0, s1, . . . ) → (. . . , s0.s1, s2, . . . ) ∈ Σr.

Assume, as in the previous section, that f is T -periodic in t. The
equation (1) is called Σr-chaotic provided there is a compact set I ⊂ M ,
invariant with respect to the Poincaré map u(a,a+T ) (for some a ∈ R),
and a map g : I → Σr such that:
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Figure 2.

(a) g is continuous and surjective,
(b) σ ◦ g = g ◦ u(a,a+T ),
(c) for every k-periodic sequence s ∈ Σr its counterimage g−1(s) con-

tains at least one k-periodic point of u(a,a+T ).

In particular, (c) implies that a Σr-chaotic equation has periodic solu-
tions with minimal periods kT for every k ∈ N. Chaotic dynamics in
the above sense was considered in [Z1, Z2] and also in [MM], where the
condition (c) was abandoned.

We recall here two results on chaotic equations which are conse-
quences of Theorem 1 (actually, its simpler version which concerns
periodic isolating segments, not chains). First of them was stated in
[S4], its proof can be found in [S5]:

Theorem 2. Assume that W and Z are periodic isolating segments

for the equation (1) over [a, a + T ] and

(i) (Wa, W
−
a ) = (Za, Z

−
a ),

(ii) ∃s ∈ (a, a + T ) : Ws ∩ Zs = ∅,

(iii) ∃n ∈ N : H̃n(Wa/W
−
a ) = Q,

(iv) ∀k 6= n : H̃k(Wa/Wa) = 0.

Then (1) is Σ2-chaotic.
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The above theorem can be illustrated by the class of planar equations

ż =
1

2
e−iφtz(

1

2
iφ(z + 1) + eiφt(z + 1))(

1

2
iφ(z − 1) + eiφt(z − 1))(4)

If φ > 0 is small enough then there are two periodic isolating segments
over [0, 2π/φ] as presented in Figure 3. It follows by Theorem 2 that

Figure 3.

(4) is Σ2-chaotic for sufficiently small values of φ.
The other result comes from [SW]:

Theorem 3. Assume that W and Z are periodic isolating segments

for the equation (1) over [a, a + T ] and

(j) (Wa, W
−
a ) = (Za, Z

−
a ),

(jj) Z ⊂ W ,

(jjj) µZ = µW ◦ µW = id eH(Wa/W−

a ),

(jw) Λ(µW ) 6= χ(Wa) − χ(W−
a ) 6= 0.

Then (1) is Σ2-chaotic.

The above theorem implies that the equation

ż = (1 + eiφt|z|2)z(5)
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is Σ2-chaotic if 0 < φ ≤ 0.495. Indeed, for such φ there are two isolating
segments W and Z over [0, 2π/φ] for (5) as shown in Figure 4. (On can
deduce from the picture, that Λ(µW ) = 1, χ(W0) = 1, χ(W−

0 ) = 2 and
the other required conditions are satisfied.) The above estimate on φ

Figure 4.

was done in [WZ1] (originally, in [SW] it was assumed that 0 < φ ≤
1/288). Actually, in [WZ1] it was also proved that (5) is Σ3 chaotic.
Moreover, in the considered range of the parameter φ the equation (5)
has infinitely many geometrically distinct homoclinic solutions to the
zero one (this fact is proved in [WZ2]).

Some modifications and extensions of Theorem 3 are given in [PW,
W1, W2, W3]. They concern also periodic isolating segments. The
thesis [P] will contain results on existence of chaos in which Theorem 1
will be applied in full generality. In particular, there will be proved the
existence of chaotic dynamics for some planar Fourier-Taylor polyno-
mial differential equations of 5th degree. The use of isolating chains,
which cannot be reduced to periodic isolating segments, will play an
essential role in the arguments.
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ażek, K. Wójcik, Complicated dynamics in nonautonomous ODEs,

preprint.
[RM] N. Rouche, J. Mawhin, Ordinary Differential Equations. Stability and Pe-

riodic Solutions. Pitman, Boston, London, Melbourne 1980.
[Sm] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-

Verlag, New York, Heidelberg, Berlin 1983.
[S1] R. Srzednicki, A Geometric Method for the Periodic Problem in Ordinary
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Sherbrooke 1992.

[S2] R. Srzednicki, Periodic and bounded solutions in blocks for time-periodic
non-autonomous ordinary differential equations, Nonlinear Anal. — Theory
Meth. Appl. 22 (1994), 707–737.

[S3] R. Srzednicki, On periodic solutions of planar polynomial differential equa-
tions with periodic coefficients, J. Differential Equations 114 (1994), 77–100.

[S4] R. Srzednicki, On geometric detection of periodic solutions and chaos, in:
F. Zanolin (editor), “Nonlinear Analysis and Boundary Value Problems for
Ordinary Differential Equations”, Proceedings of the Conference held in
CISM Udine, October 2–6, 1995, CISM Lecture Notes no. 371, Springer-
Verlag, Wien, New York 1996, 197-209.

[S5] R. Srzednicki, On detection of chaotic dynamics in ordinary differential
equations, Proceedings of the Second World Congress of Nonlinear Ana-
lysts, Athens, July 10–17, 1996, Nonlinear Anal. — Theory Meth. Appl. 30
(1997) 4927–4935.

[S6] R. Srzednicki, On periodic solutions inside isolating chains, J. Differential
Equations, to appear.

EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 27, p. 10
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