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1 Introduction

In our research we are interested in mathematical models of viral diseases. We notice that
early models [16, 18] contain three variables: susceptible host cells, infected cells and free
virus. Such models do not take into account the immune responses.

Immune responses could be innate (nonspecific responses), and specific (adaptive re-
sponses). More on the basic immunological background see e.g. [32]. We concentrate on
specific, adaptive immune responses. Main of them are effector responses i.e, they directly
fight the pathogen. The two effector responses are antibodies and CTL (cytotoxic T lympho-
cytes or killer T cells). Antibodies can attach to the pathogen and neutralize it while CTL
attack infected cells. See also [37] and references therein. We notice that the anti-virus anti-
body detection is commonly used in the diagnostic laboratory. The relative balance of both
types of adaptive immune response “can be a decisive factor that determines whether patients
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are asymptomatic or whether pathology is observe” [31]. These lead to introduction of two
additional variables of both adaptive immune responses [31, 32] (see also [35] and references
therein).

We will study a generalization of the model (1.1) below which contains five variables:
susceptible (noninfected) host cells T, infected cells T∗, free virus V, a CTL response Y, and
an antibody response A. In case of bilinear nonlinearities and one constant concentrated delay
(see, for example, [34]) it has the following form

Ṫ(t) = λ− dT(t)− kT(t)V(t),

Ṫ∗(t) = e−ωhkT(t− h)V(t− h)− δT∗(t)− pY(t)T∗(t),

V̇(t) = NδT∗(t)− cV(t)− qA(t)V(t),

Ẏ(t) = βT∗(t)Y(t)− γY(t)

Ȧ(t) = gA(t)V(t)− bA(t).

(1.1)

Here the dot over a function denotes the time derivative i.e., Ṫ(t) = dT(t)
dt , all the constants

λ, d, k, δ, p, N, c, q, β, γ, g, b, ω are positive. As for the immune responses, the fourth equation
describes the regulation of CTL response and pY(t)T∗(t) (in the second equation) being the
rate of killing of infected cells by lytic immune response. The fifth equation describes the
regulation of antibody response and qA(t)V(t) (in the third equation) being the rate of virus
neutralization by antibodies [31, p. 1744]. In (1.1), h denotes the delay between the time the
virus contacts a target cell and the time the cell becomes actively infected (starts to produce
new virions).

In the above model (1.1), the standard bilinear incidence rate is used according to the
principle of mass action. For more details and references on the models of infectious diseases
with more general types of nonlinear incidence rates f (compare the first two equations in
systems (1.1) and (1.2)) see e.g. [6, 11] and our assumptions and examples below. In paper
[36], following [10,29,34], authors assume that the infection rate of the virus dynamics models
is given by the Beddington–DeAngelis functional response [1, 3], f (T, V) = kTV

1+k1T+k2V , where
k, k1 ≥ 0, k2 > 0 are constants. The Lyapunov asymptotic stability[13] of points of equilibrium
is studied for the following model with constant concentrated delay

Ṫ(t) = λ− dT(t)− f (T(t), V(t)),

Ṫ∗(t) = e−ωh f (T(t− h), V(t− h))− δT∗(t)− pY(t)T∗(t),

V̇(t) = NδT∗(t)− cV(t)− qA(t)V(t),

Ẏ(t) = βT∗(t)Y(t)− γY(t)

Ȧ(t) = gA(t)V(t)− bA(t).

(1.2)

It is evident that the constancy of the delay is an extra assumption which essentially sim-
plifies the analysis, but is not motivated by the biological background of the model. It was
a reason (see e.g. [14, 30]) to discuss distributed delay models as an alternative to discrete
constant delay ones. One could consider a time-dependent delay h(t) if some biologically
motivated properties of h(t) are available. We propose an another approach.

Our first goal is to remove the restriction of the constancy of the delay and investigate
the well-posedness and Lyapunov stability of the following virus infection model (1.3) with a
general functional response f and state dependent delay. It appears that the analysis essentially
differs from the constant delay case. To the best of our knowledge, such models have been
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considered for the first time in [23]. It is well known that differential equations with state
dependent delay are always nonlinear by its nature (see the review [9] for more details and
discussion).

As usual in a delay system with (maximal) delay h > 0 [4, 7, 12], for a function v(t), t ∈
[a, b] ⊂ R, b > a + h, we denote the history segment vt = vt(θ) ≡ v(t + θ), θ ∈ [−h, 0]. We
denote the space of continuous functions by C ≡ C([−h, 0]; R5) equipped with the sup-norm.
In the above notations, we use u(t) = (T(t), T∗(t), V(t), Y(t), A(t)) and consider a continuous
functional (state dependent delay) η : C → [0, h]. The delay η is obviously bounded since it
can not exceed the life span of the host target cells.

Now we are ready to present the system under consideration

Ṫ(t) = λ− dT(t)− f (T(t), V(t)),

Ṫ∗(t) = e−ωh f (T(t− η(ut)), V(t− η(ut)))− δT∗(t)− pY(t)T∗(t),

V̇(t) = NδT∗(t)− cV(t)− qA(t)V(t),

Ẏ(t) = βT∗(t)Y(t)− γY(t),

Ȧ(t) = gA(t)V(t)− bA(t)

(1.3)

with a general functional response f (T, V) satisfying natural assumptions presented below.
See also examples in Section 3.1. We notice that the term e−ωh in front of f (see in the second
equation (1.3)), in fact, states that only a part of the cell population survived during the virus
incubation period. Clearly, it should be less than 1. It is an assumption which is not too
precise in nonlinear systems. It could be regarded as a coefficient belonging to (0, 1) and
could be incorporated into the definition of the function f . We keep this coefficient in the
form of e−ωh for the only reason to simplify for the reader the comparison of computations
with the constant delay case.

It is well known that merely continuous solutions to differential equations with discrete
state-dependent delay may be non-unique (see examples in [5]). There are two different ways
to guarantee the uniqueness of solutions as well as the well-posedness. The first one is to
restrict the set of initial functions to more smooth ones [9]. This way was used for the viral
model in [23]. The second way is to restrict the class of state-dependent delays [19, 21] and
work with continuous initial functions and solutions. In the current note, in contrast to [23],
we discuss the second way, which is more convenient for our second goal discussed below.

There is a number of papers on non-delayed and (constant) delay viral models which are
concentrated on the local and/or global stability of stationary solutions (see e.g. [6, 11, 31,
32, 35]). In case of the global asymptotic stability of a nontrivial disease stationary solutions
is proved, one should conclude that the virus will never be eradicated i.e. the disease is in
the chronic stage. Such results are very important for diagnostic purposes. On the other
hand, after the diagnosis of a viral disease is confirmed, the prime goal is to find a way
to cure the patient. Since a medical research is quite expensive and could last for decades,
the mathematical models proved to be important and efficient. Our second goal is to present
a model and choose a proper space for solutions which could be appropriate for therapy,
including drug administration. The main motivation is the situation (see e.g. [17, 25]) when
the drug effectiveness was decreased in a stepwise manner. In terms of (1.3), the parameter
N could change its value in a discontinuous way (see equation (2) in [25, p. 920]). One could
see that at time moment of discontinuity of (any) parameter, the solution is continuous, but
not differentiable (cf. Figure 2-B in [25, p. 921] and also Fig. 1 in [17, p. 23]). To realize how
frequent such a discontinuity of the time-derivative could appear, one should compare a virus
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generational time (which is h in our notations (1.3)) and a drug regimen of treatment. Taking
as an example HIV, we found in [15] that “a total HIV generational time of 25 h in vitro and
is much shorter than our 52 h estimate from in vivo delays”. On the other hand, the standard
treatment schedules are two times a day or once-a-day pills. It suggests that on any history
time segment [t− h, t] one has one or more discontinuities of the time-derivative. Moreover,
co-infections (which are not too rare) by other pathogens, consume resources of the immune
system, which leads to changes in other parameters (in terms of (1.3) the parameters β and g
could change as well).

In study of local stability of an equilibrium of a system one could also use the method
of linearized stability. For state-dependent delay equations this method is available the C
case [2, 8] and in the C1 case [9, 28]. For the continuous case we use the Lyapunov functions
approach [13].

The paper is organized as follows. In Section 2, we discuss and choose a natural set of
initial data and prove the existence and uniqueness of solutions. Next we prove that the set
is invariant. Section 3 is devoted to the stability properties of a stationary solution. We study
the stability of an interior equilibrium which describes the case when both CTL and antibody
immune responses are activated. We believe this infection equilibrium is only biologically
meaningful in the study of the disease.

2 Basic properties

We equip the system (1.3) with an initial condition

u0 = ϕ ≡ (T0, T∗0 , V0, A0, Y0) ∈ C+ ≡ C+[−h, 0], (2.1)

where R+ ≡ [0,+∞), C+ ≡ C+[−h, 0] ≡ C([−h, 0]; R5
+).

Let us introduce the set

ΩC ≡
{

ϕ ≡ (T0, T∗0 , V0, A0, Y0) ∈ C+[−h, 0],

0 ≤ T0(θ) ≤
λ

d
≡ Tmax, 0 ≤ T∗0 (θ) ≤

kλ

dk2δ
e−ωh,

0 ≤ V0(θ) ≤
Nkλ

cdk2
e−ωh ≡ Vmax, 0 ≤ T∗0 (θ) +

p
β

Y0(θ) ≤
k2λ2e−2ωh

d2ck2 min{δ; γ} ,

0 ≤ V0(θ) +
q
g

A0(θ) ≤
Nkλ e−ωh

dk2 min{c; b} , θ ∈ [−h, 0]
}

.

(2.2)

We assume the nonlinear function f : [0, Tmax]× [0, Vmax]→ R satisfies

(H1 f ) f is continuous; f (0, V) = f (T, 0) = 0; f is strictly increasing in both coordinates.

Here Tmax, Vmax are defined in (2.2).
Our main assumption on the delay η is the following condition, introduced in [19]

(Hign) ∃ηign > 0 such that η “ignores” values of ϕ(θ) for θ ∈ (−ηign, 0] i.e.
∃ ηign > 0 : ∀ϕ1, ϕ2 ∈ C : ∀θ ∈ [−h,−ηign] ⇒ ϕ1(θ) = ϕ2(θ) =⇒ η(ϕ1) = η(ϕ2).

Remark 2.1. It is easy to see that any constant delay η(ϕ) ≡ r ∈ [0, h] as well as delays of the
forms η(ϕ) = ξ(ϕ(−ηign)) and η(ϕ) =

∫ −ηign
−h ξ(ϕ(θ)) dθ, ηign > 0 satisfy assumption (Hign).

Here ξ : R5 → R+. More discussion, examples and generalizations could be found in [21]. See
also Section 3.1 below.
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The first result is the following.

Theorem 2.2. Let η : C → [0, h] (state dependent delay) and f be continuous functionals. Then

(i) for any initial function ϕ ∈ C there exist continuous solutions to (1.3), (2.1);

(ii) if additionally, η satisfies (Hign) and f satisfies (H1 f ), then for any initial function ϕ ≡
(T0, T∗0 , V0, A0, Y0) ∈ ΩC, the problem (1.3), (2.1) has a unique solution. The solution con-
tinuously depends on the initial function and satisfies

ut ≡ (Tt, T∗t , Vt, At, Yt) ∈ ΩC, t ≥ 0.

Remark 2.3. In [23], the following assumption on the state-dependent delay has been used

∀ψ ∈ Z2,3 ≡
{

ψ = (ψ1, ψ2, ψ3, ψ4, ψ5) ∈ C+ : ψ2(0) = ψ3(0) = 0
}

=⇒ η(ψ) > 0.

In the current work we do not need this restriction i.e. the delay could vanish.

Proof. (i) The existence of continuous solutions is guaranteed by the continuity of the right-
hand side of (1.3) and classical results on delay equations [4, 7].

(ii) The proof follows the line of [23, Theorem 2]. The main essential difference is that
we could use the quasi-positivity property of the right-hand side of (1.3) (see e.g. [26, Theo-
rem 2.1, p. 81]). We stress that in the case of state-dependent delay we cannot directly apply
[26, Theorem 2.1, p. 81] because it relies on the Lipschitz property of the right-hand side of
a system, which is not the case for (1.3). Instead, we use the corresponding extension to the
state-dependent delay case [22] which relies on the assumption (Hign). It essentially simplifies
the proof (cf. [23, Theorem 2]). The upper bounds on all the five coordinates in (2.2) follow
from an easy variant of the Gronwall’s lemma, which is formulated for the simplicity as

Proposition 2.4. Let ` ∈ C1[a, b) and satisfy d
dt `(t) ≤ c1 − c2`(t), t ∈ [a, b). Then `(a) ≤ c1c−1

2
implies `(t) ≤ c1c−1

2 for all t ∈ [a, b). In the case b = +∞, for any ε > 0 there exists tε ≥ a such that
`(t) ≤ c1c−1

2 + ε for all t ≥ tε.

It gives the invariance of the set ΩC (2.2). We do not repeat details here (one can check and
find differences [23, Theorem 2])). The continuous dependence on the initial function follows
from (Hign) as in [19].

We could conclude that the problem (1.3), (2.1) is well-posed in ΩC ⊂ C in the sense of
Hadamard.

2.1 Stationary solutions

We look for nontrivial disease stationary solutions (1.3). Consider the system with u(t) =

u(t− η(ut)) = û and denote the coordinates of a stationary solution by (T̂, T̂∗, V̂, Ŷ, Â) = û ≡
ϕ̂(θ), θ ∈ [−h, 0].

Since the stationary solutions of (1.3) do not depend on the type of delay (state-dependent
or constant) we have (see e.g. [23, 36]){

0 = λ− dT̂ − f (T̂, V̂), 0 = e−ωh f (T̂, V̂)− δT̂∗ − pŶT̂∗,

0 = NδT̂∗ − cV̂ − qÂV̂, 0 = βT̂∗Ŷ− γŶ, 0 = gÂV̂ − bÂ.
(2.3)

Our case differs from [23, 36] by a more general class of nonlinearities f .
The last two equations in (2.3) imply T̂∗ = γ

β , V̂ = b
g . This and the third equation give

Â = Nδγg−βcb
βqb . The positivity of Â holds provided the constants in the system (1.3) satisfy
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(H2) Nδγg > βcb.

Substitution of the value V̂ = b
g into the first equation of (2.3) gives

λ− dT̂ = f
(

T̂,
b
g

)
. (2.4)

Since f (·, b
g ) is strictly increasing in the first coordinate, continuous and f (0, b

g ) = 0, it is easy

to see that the last equation (2.4) has the unique solution T̂ ∈ (0, b
g ). This unique positive root

is denoted below by T̂.
The first two equations in (2.3) give (remind that T̂∗ is already known) Ŷ = λ−dT̂−eωhδT̂∗

eωh pT̂∗
.

The positivity of Ŷ follows from the following assumption

(H3) λ > dT̂ + δγβ−1eωh,

where T̂ is the unique positive root of (2.4).

We notice that, from biological point of view, (H2), (H3) are standard assumptions on
reproduction numbers, which are given here in a short form. We could summarize the above
calculations in the following

Proposition 2.5 (cf. [23, Lemma 7]). Let assumptions (H2) and (H3) be satisfied and f satisfy (H1 f ).
Then the system (2.3) has a unique solution (T̂, T̂∗, V̂, Ŷ, Â) (the unique stationary solution of (1.3)).
All the coordinates are positive, T̂ is the unique positive root of the equation (2.4) and coordinates
satisfy T̂∗ = γ

β , V̂ = b
g , Â = Nδγg−βcb

βqb , Ŷ = λ−dT̂−eωhδT̂∗
eωh pT̂∗

,

NδT̂∗ = V̂(c + qÂ), λ = dT̂ + f (T̂, V̂), (δ + pŶ)T̂∗eωh = f (T̂, V̂).
(2.5)

We will use these equations connecting the coordinates of the stationary solution in our
study of the stability properties (cf. (2.3)).

3 Stability properties

In study of differential equations with nonnegative variables the function v(x) = x− 1− ln x :
(0,+∞) → R+ plays an important role in construction of Lyapunov functionals. One can see
that v(x) ≥ 0 and v(x) = 0 if and only if x = 1. The derivative equals v̇(x) = 1− 1

x , which
is evidently negative for x ∈ (0, 1) and positive for x > 1. The graph of v explains the use of
the composition v

( x
x0

)
in the study of the stability properties of an equilibrium x0. Another

important property is the following estimate

∀µ ∈ (0, 1) ∀x ∈ (1− µ, 1 + µ) one has
(x− 1)2

2(1 + µ)
≤ v(x) ≤ (x− 1)2

2(1− µ)
. (3.1)

To check it, one simply observes that all three functions vanish at x = 1 and
∣∣ d

dx

( (x−1)2

2(1+µ)

)∣∣ ≤
| d

dx v(x)| ≤
∣∣ d

dx

( (x−1)2

2(1−µ)

)∣∣ in the µ-neighborhood of x = 1.

As before, we denote u(t) = (T(t), T∗(t), V(t), Y(t), A(t)) and ϕ̂ = (T̂, T̂∗, V̂, Ŷ, Â) the
stationary solution of (1.3).

We assume f satisfies in a neighborhood of (T̂, V̂)
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(H2 f ) 0 <
f (T, V)− f (T, V̂)

V − V̂
<

f (T, V̂)

V̂
for (T, V) ∈ Uµ(T̂, V̂).

Remark 3.1. It is easy to see the clear geometrical meaning of the assumption (H2 f ). First, we
mention that the first coordinates of f in (H2 f ) are equal. For any fixed first coordinate we
could consider f T(V) ≡ f (T, V) and its graph. In the case of differentiable functions, (H2 f )
implies 0 < d

dV f T(V) < f T(V̂)/V̂. In our study we do not assume differentiability of f . More
discussion and examples are in Section 3.1.

The following assumption on the state-dependent functional η is based on the property
(Hign). Consider an arbitrary ϕ ∈ C and its arbitrary extension ϕext(s), s ∈ [−h, ηign] with
constant ηign > 0 defined in (Hign). Due to the property (Hign) we could define an auxiliary
function ηϕ(t) ≡ η(ϕext

t ) for t ∈ [0, ηign]. Since both η and ϕ are continuous we see that
ηϕ ∈ C[0, ηign]. We are interested in the (right) derivative of ηϕ at zero and its properties.
Now we are ready to formulate our next local assumption on η.

(H2η) There is a µ-neighborhood of the stationary point ϕ̂ such that (for any ϕ ∈ C satis-
fying ‖ϕ− ϕ̂‖C < µ) the following two properties hold

a) ∃ η′+(ϕ) ≡ lim
τ→0+

1
τ

(
η(ϕext

τ )− η(ϕ)
)
= lim

τ→0+
1
τ (ηϕ(τ))− η(ϕ)) ∈ R;

b) η′+(·) is continuous at ϕ̂.

Remark 3.2. It is easy to see, by the definition of η′+ that η′+(ϕ̂) = 0. Hence the property b) of
(H2η) is equivalent to∣∣η′+(ϕ)

∣∣ ≤ αµ with αµ → 0 as µ→ 0, for ‖ϕ− ϕ̂‖C < µ. (3.2)

We also mention that the existence of η′+(ϕ) ∈ R does not require the differentiability of ϕ

(see Section 3.1 for examples).

Our result is the following.

Theorem 3.3. Let assumptions (H2) and (H3) be satisfied. Assume the nonlinearity f satisfies (H1 f )
and (H2 f ) and the state-dependent delay η : C → [0, h] satisfies (Hign) and (H2η).

Then the stationary solution ϕ̂ = (T̂, T̂∗, V̂, Ŷ, Â) of (1.3) is locally asymptotically stable.

Proof. Let us introduce the following Lyapunov functional with state-dependent delay along
a solution of (1.3)

Usdd1(t) ≡
(

T(t)− T̂ −
∫ T(t)

T̂

f (T̂, V̂)

f (θ, V̂)
dθ

)
e−ωh + T̂∗ · v

(
T∗(t)

T̂∗

)
+

δ + pŶ
Nδ

V̂ · v
(

V(t)
V̂

)

+
p
β

Ŷ · v
(

Y(t)
Ŷ

)
+

q
Ng

(
1 +

pŶ
δ

)
Â · v

(
A(t)

Â

)

+ (δ + pŶ)T̂∗
∫ t

t−η(ut)
v

(
f (T(θ), V(θ))

f (T̂, V̂)

)
dθ. (3.3)

A particular case of the constant delay functional and the Beddington–DeAngelis functional
response f has been considered in [23, 36]. The main difference is in the state-dependence of
the lower bound of the last integral in (3.3). In [23], a particular case of such a functional was
studied along continuously differentiable solutions.
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Let us compute the time derivative of the last integral in (3.3) along a solution of (1.3)

d
dt

(∫ t

t−η(ut)
v

(
f (T(θ), V(θ))

f (T̂, V̂)

)
dθ

)

= v

(
f (T(t), V(t))

f (T̂, V̂)

)
− v

(
f (T(t− η(ut)), V(t− η(ut)))

f (T̂, V̂)

)
·
(

1− d
dt

η(ut)

)

We see the main difference with the constant-delay case in the appearance of the term

Ssdd(t) ≡ v

(
f (T(t− η(ut)), V(t− η(ut)))

f (T̂, V̂)

)
· d

dt
η(ut). (3.4)

Remark 3.4. In case (investigated in [23]) of both solutions and state-dependent delay η are
continuously differentiable, for any u ∈ C1([−h, b); R5) one has for t ∈ [0, b) d

dt η(ut) =

[(Dη)(ut)](u̇t), where [(Dη)(ut)](·) is the Fréchet derivative of η at point ut. Hence, (for a
solution in µ-neighborhood of the stationary solution ϕ̂) the estimate∣∣∣∣ d

dt
η(ut)

∣∣∣∣ ≤ ‖(Dη)(ut)‖L(C;R) · ‖u̇t‖C ≤ µ ‖(Dη)(ut)‖L(C;R)

guarantees the property (3.2) due to the boundedness of ‖(Dη)(ψ)‖L(C;R) as µ → 0 (here
‖ψ − ϕ̂‖C < µ). Now our solutions are merely continuous, so we cannot use the above
arguments. Instead, we use (H2η).

We use the same notations as in [23, 36] to simplify for the reader the comparison of the
computations. We also remind that the state-dependence is present in both the system and
the Lyapunov functional and the class of nonlinear functions f is wider.

We have along a continuous solution

d
dt

Usdd1(t) =

(
1− f (T̂, V̂)

f (T(t), V̂)

)
e−ωh (λ− dT(t)− f (T(t), V(t)))

+

(
1− T̂∗

T∗(t)

)(
e−ωh f (T(t− η(ut)), V(t− η(ut)))− δT∗(t)− pY(t)T∗(t)

)
+

δ + pŶ
Nδ

(
1− V̂

V(t)

)
(NδT∗(t)− cV(t)− qA(t)V(t))

+
p
β

(
1− Ŷ

Y(t)

)
(βT∗(t)Y(t)− γY(t))

+
q

Ng

(
1 +

pŶ
δ

)(
1− Â

A(t)

)
(gA(t)V(t)− bA(t))

+ e−ωh [ f (T(t), V(t))− f (T(t− η(ut)), V(t− η(ut)))]

+ (δ + pŶ)T̂∗ · ln f (T(t− η(ut)), V(t− η(ut)))

f (T(t), V(t))
+ (δ + pŶ)T̂∗ · Ssdd(t).

Here we used the last equality in (2.5) and notation Ssdd(t) defined in (3.4). Opening
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parenthesis, grouping similar terms and canceling some of them, we obtain

d
dt

Usdd1(t)

=

(
1− f (T̂, V̂)

f (T(t), V̂)

)
e−ωhd

(
T̂ − T(t)

)
− T̂∗(δ + pŶ)

[
f (T̂, V̂)

f (T(t), V̂)
− f (T(t), V(t))

f (T(t), V̂)
+

e−ωh

δ + pŶ
· f (T(t− η(ut)), V(t− η(ut)))

T∗(t)

+
T∗(t) · V̂
T̂∗ ·V(t)

+
V(t)

V̂
− 3− ln

f (T(t− η(ut)), V(t− η(ut)))

f (T(t), V(t))

]
+ (δ + pŶ)T̂∗ · Ssdd(t).

To save the space we omit long computations where we intensively used equations (2.5), for

example, e−ωh

δ+pŶ
= T̂∗

f (T̂,V̂)
. Next, we add ±

(
1− V(t)

V̂
· f (T(t),V̂)

f (T(t),V(t))

)
into [. . .] to get

d
dt

Usdd1(t) =

(
1− f (T̂, V̂)

f (T(t), V̂)

)
e−ωhd

(
T̂ − T(t)

)
− T̂∗(δ + pŶ)

[
f (T̂, V̂)

f (T(t), V̂)
+

T∗(t) · V̂
T̂∗ ·V(t)

+
V(t)

V̂
· f (T(t), V̂)

f (T(t), V(t))

+
T̂∗

T∗(t)
· f (T(t− η(ut)), V(t− η(ut)))

f (T̂, V̂)

− 4− ln
f (T(t− η(ut)), V(t− η(ut)))

f (T(t), V(t))

+

{
V(t)

V̂
− f (T(t), V(t))

f (T(t), V̂)
+ 1− V(t)

V̂
· f (T(t), V̂)

f (T(t), V(t))

}]
+ (δ + pŶ)T̂∗ · Ssdd(t).

To save the space, let us denote the sum {...} above as R1(t) i.e.,

R1(t) ≡ V(t)
V̂
− f (T(t), V(t))

f (T(t), V̂)
+ 1− V(t)

V̂
· f (T(t), V̂)

f (T(t), V(t))
. (3.5)

Now we add ± T̂∗
T∗(t) ·

f (T(t−η(ut)),V(t−η(ut)))

f (T̂,V̂)
into [. . .] above to obtain

d
dt

Usdd1(t) =

(
1− f (T̂, V̂)

f (T(t), V̂)

)
e−ωhd

(
T̂ − T(t)

)
− T̂∗(δ + pŶ)

[
f (T̂, V̂)

f (T(t), V̂)
+

T∗(t) · V̂
T̂∗ ·V(t)

+
V(t)

V̂
· f (T(t), V̂)

f (T(t), V(t))

+
T̂∗

T∗(t)
· f (T(t− η(ut)), V(t− η(ut)))

f (T̂, V̂)

− 4− ln
f (T(t− η(ut)), V(t− η(ut)))

f (T(t), V(t))
+ R1(t)

]
+ (δ + pŶ)T̂∗ · Ssdd(t). (3.6)
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Considering the first four terms in [. . .] above we suggest to split the logarithm as follows

ln
f (T(t− η(ut)), V(t− η(ut)))

f (T(t), V(t))

= ln
f (T̂, V̂)

f (T(t), V̂)
+ ln

T∗(t) · V̂
T̂∗ ·V(t)

+ ln

(
V(t)

V̂
· f (T(t), V̂)

f (T(t), V(t))

)

+ ln

(
T̂∗

T∗(t)
· f (T(t− η(ut)), V(t− η(ut)))

f (T̂, V̂)

)
. (3.7)

Substitution of (3.7) into (3.6) implies

d
dt

Usdd1(t) =

(
1− f (T̂, V̂)

f (T(t), V̂)

)
e−ωhd

(
T̂ − T(t)

)
− T̂∗(δ + pŶ) · R1(t)

− T̂∗(δ + pŶ)

[
v

(
f (T̂, V̂)

f (T(t), V̂)

)
+ v

(
T∗(t) · V̂
T̂∗ ·V(t)

)
+ v

(
V(t)

V̂
· f (T(t), V̂)

f (T(t), V(t))

)

+ v

(
T̂∗

T∗(t)
· f (T(t− η(ut)), V(t− η(ut)))

f (T̂, V̂)

)]
+ (δ + pŶ)T̂∗ · Ssdd(t). (3.8)

As before we used the function v(x) = x− 1− ln x to save the space.
Next, we can rewrite the first term in (3.8) as(
1− f (T̂, V̂)

f (T(t), V̂)

)
e−ωhd

(
T̂ − T(t)

)
= −

(
T(t)− T̂

)2 e−ωhd
f (T(t), V̂)

· f (T(t), V̂)− f (T̂, V̂)

T(t)− T̂
≤ 0. (3.9)

The last inequality due to the monotonicity of f (see assumption (H1 f )).
Now we transform R1(t), defined in (3.5). Calculations give

R1(t) =
(V(t)− V̂)2 · V̂

f (T(t), V(t)) · f (T(t), V̂)
· f (T(t), V(t))− f (T(t), V̂)

V(t)− V̂
·

×
[

f (T(t), V̂)

V̂
− f (T(t), V(t))− f (T(t), V̂)

V(t)− V̂

]
. (3.10)

It is clear that assumption (H2 f ) gives R1(t) ≥ 0 in a neighborhood of the stationary
solution. Moreover it implies the existence of constants c1

R, c2
R > 0 such that

c1
R · (V(t)− V̂)2 ≤ R1(t) ≤ c2

R · (V(t)− V̂)2. (3.11)

We substitute (3.9) into (3.8) to get

d
dt

Usdd1(t) = −Dsdd1(t) + (δ + pŶ)T̂∗ · Ssdd(t), (3.12)
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where

Dsdd1(t) ≡
(

T(t)− T̂
)2 e−ωhd

f (T(t), V̂)
· f (T(t), V̂)− f (T̂, V̂)

T(t)− T̂
+ R1(t) · T̂∗(δ + pŶ)

+ T̂∗(δ + pŶ)

[
v

(
f (T̂, V̂)

f (T(t), V̂)

)
+ v

(
T∗(t) · V̂
T̂∗ ·V(t)

)
+ v

(
V(t)

V̂
· f (T(t), V̂)

f (T(t), V(t))

)

+ v

(
T̂∗

T∗(t)
· f (T(t− η(ut)), V(t− η(ut)))

f (T̂, V̂)

)]
(3.13)

and Ssdd(t) is defined in (3.4). One can see, using v(x) ≥ 0, (3.9) and (3.11) that Dsdd1(t) ≥ 0.

Remark 3.5. It is easy to check that Dsdd1(t) = 0 if and only if T(t) = T̂, V(t) = V̂, T∗(t) = T̂∗,
f (T(t− η(ϕ̂)), V(t− η(ϕ̂))) = f (T̂, V̂). It follows from the property v(x) = 0 if and only if
x = 1 and also (3.11).

Our goal is to prove that there is a neighborhood of û ∈ C, where d
dt Usdd(t) < 0 (except

the stationary point û). We notice that Dsdd1(t) ≥ 0, while the sign of Ssdd(t) is undefined. We
plan to show that there is a neighborhood of the stationary point, where |Ssdd(t)| < Dsdd(t).

We proceed as in [23]. Let us consider the following auxiliary functionals D(5)(x) and
S(5)(x), defined on R5, where we simplify notations x = (x(1), x(2), x(3), x(4), x(5)) ∈ R5 for
x(1) = T, x(2) = T∗, x(3) = V, x(4) = T(t− η), x(5) = V(t− η)

D(5)(x) ≡
(

f (T̂, V̂)

f (x(1), V̂)
− 1

)2

+

(
x(2) · V̂)

T̂∗ · x(3)
− 1

)2

+

(
x(3) · f (x(1), V̂)

V̂ · f (x(1), x(3))
− 1

)2

+

(
T̂∗ · f (x(4), x(5))

x(2) · f (T̂, V̂)
− 1

)2

+ c(1) ·
(

x(1) − T̂
)2

+ c(2) ·
(

x(3) − V̂
)2

, c(1), c(2) > 0. (3.14)

S(5)(x) ≡ α · v
(

f (x(4), x(5))
f (T̂, V̂)

)
, α ≥ 0. (3.15)

The reason to consider functions D(5)(x) and S(5)(x) comes from the property (3.1) of the
function v. One sees that D(5)(x) = 0 if and only if x = û ≡ (T̂, T̂∗, V̂, Ŷ, Â). Now we change
the coordinates in R5 to the spherical ones

x(1) = T̂ + r cos ξ4 cos ξ3 cos ξ2 cos ξ1, x(2) = T̂∗ + r cos ξ4 cos ξ3 cos ξ2 sin ξ1,

x(3) = V̂ + r cos ξ4 cos ξ3 sin ξ2, x(4) = Ŷ + r cos ξ4 sin ξ3,

x(5) = Â + r sin ξ4, r ≥ 0, ξ1 ∈ [0, 2π), ξi ∈ [−π/2, π/2], i = 2, . . . , 5.

(3.16)

One can check that the form of D(5)(x) (see (3.14)) gives the multiplier r2 in front of the sum,
i.e. D(5)(x) = r2 ·Φ(r, ξ1, ..., ξ5), where Φ(r, ξ1, ..., ξ5) is continuous and Φ(r, ξ1, ..., ξ5) 6= 0 for
r 6= 0. The last property is proved, for example, assuming the opposite Φ(r0, ξ0

1, ..., ξ0
5) = 0

for r0 6= 0, which contradicts (3.1). Hence, the classical extreme value theorem (the Bolzano–
Weierstrass theorem) shows that the continuous Φ on a closed neighborhood of û has a mini-
mum Φmin > 0. It gives D(5)(x) ≥ r2 ·Φmin.

Now the similar arguments for S(5)(x) shows that |S(5)(x)| ≤ αµ · r2 where the constant
αµ → 0 as µ→ 0 (see (3.2)). Finally, we can choose a small enough µ > 0 to satisfy αµ < Φmin
which proves that d

dt Usdd(t) ≤ −cr2 · (Φmin − αµ) < 0. The proof of the Theorem is complete.
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Remark 3.6 ([23]). We notice that S(5)(x) depends on variables x(4), x(5) only (3.15). On the

other hand, the variables x(4), x(5) are used in D(5)(x) in one term
( T̂∗· f (x(4),x(5))

x(2)· f (T̂,V̂)
− 1
)2 only. We

emphasize that the term in D(5)(x) is not enough to bound |S(5)(x)| i.e.

|S(5)(x)| ≡
∣∣∣∣∣α · v

(
f (x(4), x(5))

f (T̂, V̂)

)∣∣∣∣∣ 

(

T̂∗ · f (x(4), x(5))
x(2) · f (T̂, V̂)

− 1

)2

. (3.17)

The sum of all terms in (3.14) is needed to bound |S(5)(x)|. To see it, one should compare the
sets where each functional vanishes. Denote the zero-sets as ZS(5) and Zrhs (for the right-hand
side of (3.17)). Then one sees that ZS(5) * Zrhs. Moreover, in any neighborhood of the point
(x(2), x(4), x(5)) = (T̂∗, T̂, V̂) ∈ R3 one can find points where the right-hand side of (3.17) is
zero, while the the left-hand side is positive. Clearly, the coordinates of such points should
satisfy f (x(4), x(5)) 6= f (T̂, V̂), T̂∗ · f (x(4), x(5)) = x(2) · f (T̂, V̂).

3.1 Examples of the state-dependent delay and nonlinearities f

1. First, consider the delay term of the following simple form

η(ϕ) =
∫ −ηign

−h
ξ(ϕ(θ)) dθ, ϕ ∈ C (3.18)

with a locally Lipschitz ξ and ηign > 0. One can check that the state-dependent delay (3.18)
is continuous and satisfies (Hign) (see Remark 2.1). To check the property (3.2) (see (H2η)) we
calculate

d
dt

η(ut) =
d
dt

∫ −ηign

−h
ξ(u(t + θ)) dθ =

d
dt

∫ t−ηign

t−h
ξ(u(s)) ds = ξ(u(t− ηign))− ξ(u(t− h)).

Hence, in the µ-neighborhood of the stationary solution û, one has∣∣∣∣ d
dt

η(ut)

∣∣∣∣ ≤ ∣∣ξ(u(t− ηign))− ξ(u(t− h))
∣∣ ≤ 2µ Lξ,µ ≡ αµ → 0 as µ→ 0.

Here Lξ,µ is the Lipschitz constant of ξ. Hence, the delay (3.18) satisfies all the needed condi-
tions.

It is easy to see that more general delay terms could be used. For example,

η(ϕ) = ρ

(∫ −ηign

−h
ξ(ϕ(θ))κ(θ) dθ

)
, ϕ ∈ C, κ ∈ C([−h,−ηign]; R)

with a differentiable ρ : R → [0, h]. The example (3.18) is a particular case with ρ(s) ≡ s and
κ(s) ≡ 1.

2. One can check that the Beddington–DeAngelis functional response[1, 3] of the form
f (T, V) = kTV

1+k1T+k2V , with k, k1 ≥ 0, k2 > 0 satisfies (H2 f ) globally. We also mention that the
Beddington–DeAngelis functional response includes as a special case (k1 = 0) the saturated in-
cidence rate f (T, V) = kTV

1+k2V . In our study we need the property (H2 f ) in a small neighborhood
of (T̂, V̂) only.

3. Another example of the nonlinearity is the Crowley–Martin incidence rate f (T, V) =
kTV

(1+k1T)(1+k2V)
, with k ≥ 0, k1, k2 > 0 (see e.g. [33]).
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Remark 3.7. In this article we propose a rather general framework for state-dependent delay
viral models. The assumptions on the state-dependent delay guarantee the well-posedness
and local stability of stationary solutions. Since a mathematical model is always a simplifi-
cation of real life processes, many biologically important factors are to be reflected in more
complex systems. The life cycle of particular cells and their interaction with viral particles
could essentially differ from one organ to another. Further assumptions on the delay func-
tional could naturally appear when studying a particular viral infection with biological char-
acteristics of a target organ, its cells and type of the virus.
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