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Abstract. In this paper, we mainly study the existence, boundary behavior and
uniqueness of solutions for the following singular elliptic systems involving weights
−4u = w(x)u−pv−q,−4v = λ(x)u−rv−s, u > 0, v > 0, x ∈ Ω, u|∂Ω = v|∂Ω = 0, where
Ω is a bounded domain with a smooth boundary in RN (N ≥ 2), p, s ≥ 0, q, r > 0 and
the weight functions w(x), λ(x) ∈ Cα(Ω̄) which are positive in Ω and may be blow-up
on the boundary.
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1 Introduction

In this paper, we mainly consider the existence, boundary behavior and uniqueness of solu-
tions for the following singular elliptic systems involving weights

−∆u = w(x)u−pv−q, in Ω,

−∆v = λ(x)u−rv−s, in Ω,

u > 0, v > 0, u|∂Ω = v|∂Ω = 0,

(1.1)

where Ω is a bounded domain with a smooth boundary in RN (N ≥ 2), p, s ≥ 0 q, r > 0.
Assume w, λ satisfies

(H0) w, λ ∈ Cα(Ω) for some α ∈ (0, 1), are positive in Ω, and there exist γ1, γ2 ∈ R and
positive constants c1, c2 such that

lim
d(x)→0

w(x)
d(x)γ1

= c1, lim
d(x)→0

λ(x)
d(x)γ2

= c2.
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The first motivation for the study of problem (1.1) comes from the so-called Lane–Emden
equation (see [4, 5])

−∆u = up in BR(0), R > 0.

Systems of type (1.1) with p, s ≤ 0 and q, s < 0 have received considerably attention in the last
decade (see, e.g., [1,3,15–18,20,23] and the references therein). It has been shown that for such
range of exponents system (1.1) has a rich mathematical structure. Various techniques such
as moving plane method, Pohozaev-type identities, rescaling arguments have been developed
and suitably adapted to deal with (1.1) in this case.

Recently, there has been some interest in systems of type (1.1) where not all the expo-
nents are negative. Ghergu [8] first established the existence, non-existence, C1-regularity and
uniqueness of classical solutions (in C2(Ω) ∩ C(Ω̄)) in terms of p, q, r and s.

Later, Zhang [21] also study the existence, boundary behavior and uniqueness of solutions
for problem (1.1), which results are obtained in a range of p, q, r, s different from those in [8].

In [13, 14], Lee et al. studied the existence of solutions for the singular systems
−∆pu = λ( f1(u, v)− u−γ1), in Ω,

−∆qu = λ( f2(u, v)− u−γ2), in Ω,

u > 0, v > 0, u|∂Ω = v|∂Ω = 0,

(1.2)

where γi ∈ (0, 1), fi ∈ C([0, ∞)× [0, ∞)), fi is non-decreasing for both u and v, i = 1, 2, λ > 0,
and ∆ru := div(|∇u|r−2∇u), r = p(> 1), q(> 1).

Inspired by the above works, in this paper, we wish to further deal with the existence,
boundary behavior and uniqueness of solutions to problem (1.1) under appropriate conditions
on weight function w(x) and λ(x), which have a precise asymptotic behavior near ∂Ω.

Our main results are summarized as follows.

Theorem 1.1 (Existence). Let −2 < γ1 < p− 1,−2 < γ2 < s− 1 and p, q, r, s be such that one of
the following conditions hold:

(H1)
(1 + p)(1 + s)− qr > 0,

2 + γ1

2 + γ2
> max

{
q

1 + s
,

r
1 + p

}
,

p +
q(2 + γ2 − r)

1 + s
> 1 + γ1, and s +

r(2 + γ2 − q)
1 + p

> 1 + γ1.

(H2)
(1 + p)(1 + s)− qr < 0,

2 + γ1

2 + γ2
< min

{
q

1 + s
,

r
1 + p

}
,

p +
q(2 + γ2 − r)

1 + s
< 1 + γ1, and s +

r(2 + γ2 − q)
1 + p

< 1 + γ1.

Then system (1.1) has at least one classical solution (u, v) satisfying

m0d(x) ≤ u(x) ≤ M0(d(x))α, x ∈ Ω̄, (1.3)

m0d(x) ≤ v(x) ≤ M0(d(x))β, x ∈ Ω̄, (1.4)

where m0 and M0 are positive constants, d(x) = dist(x, ∂Ω) and

α =
(2 + γ1)(1 + s)− q(2 + γ2)

(1 + p)(1 + s)− qr
, β =

(2 + γ1)(1 + p)− r(2 + γ2)

(1 + p)(1 + s)− qr
. (1.5)
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Theorem 1.2 (Exact boundary behavior). Let p, q, r, s satisfy (H1) and the following conditions:

(H3) p > 0, p + q > 1 + γ1 and q < 2 + γ1;

(H4) s > 0, s + r > 1 + γ2 and r < 2 + γ2.

Then for any classical solution (u, v) of system (1.1)

lim
d(x)→0

u(x)
(d(x))α

=

(
c1+s

1 c−q
2

(β(1− β))q

(α(1− α))1+s

)1/((1+p)(1+s)−qr)

,

lim
d(x)→0

v(x)
(d(x))β

=

(
c−r

1 c1+q
2

(β(1− β))r

(α(1− α))1+p

)1/((1+p)(1+s)−qr)

,

lim
d(x)→0

∇u(x)ν(x)
(d(x))α−1 = −α

(
c1+s

1 c−q
2

(β(1− β))q

(α(1− α))1+s

)1/((1+p)(1+s)−qr)

,

lim
d(x)→0

∇v(x)ν(x)
(d(x))β−1 = −β

(
c−r

1 c1+q
2

(β(1− β))r

(α(1− α))1+p

)1/((1+p)(1+s)−qr)

,

where ν(x) is the outer unit normal vector to ∂Ω at x.

Theorem 1.3 (Uniqueness). Under the conditions of Theorem 1.2, system (1.1) has a unique classical
solution (u, v).

Corollary 1.4 (Existence). Let p = q = r = s = constant =: C and −2 < γ1, γ2 < C − 1. If the
following conditions holds:

(H5) (γ2 − γ1)C < 2 + γ1, and (2 + γ2 + γ1)C > 1 + γ1,

then system (1.1) has at least one classical solution (u, v) satisfying

m0d(x) ≤ u(x) ≤ M0(d(x))α, x ∈ Ω̄, (1.6)

m0d(x) ≤ v(x) ≤ M0(d(x))α, x ∈ Ω̄, (1.7)

where m0 and M0 are positive constants, d(x) = dist(x, ∂Ω) and

α =
2 + γ1 + C(γ1 − γ2)

1 + 2C . (1.8)

Corollary 1.5 (Exact boundary behavior). Let p, q, r, s satisfy the assumption in Corollary 1.4 and
the following conditions:

(H6) C > 0, C > max
{

1 + γ1

2
,

1 + γ2

2

}
and C < max

{
2 + γ1, 2 + γ2

}
.

Then for any classical solution (u, v) of system (1.1)

lim
d(x)→0

u(x)
(d(x))α

=

(
c1+C

1 c−C2
α(1− α)

)1/(1+2C)

,

lim
d(x)→0

v(x)
(d(x))α

=

(
c−C1 c1+C

2
α(1− α)

)1/(1+2C)

,
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lim
d(x)→0

∇u(x)ν(x)
(d(x))α−1 = −α

(
c1+C

1 c−C2
α(1− α)

)1/(1+2C)

,

lim
d(x)→0

∇v(x)ν(x)
(d(x))α−1 = −α

(
c−C1 c1+C

2
α(1− α)

)1/(1+2C)

,

where ν(x) is the outer unit normal vector to ∂Ω at x.

The outline of this paper is as follows. In Section 2, we give some preliminary results that
will be used in the following sections. Theorems 1.1–1.3 are proved in next sections.

2 Some preliminary results

In this section, we collect some useful results about the following singular Dirichlet problem

−4w = (d(x))−σw−γ, w > 0, x ∈ Ω, w|∂Ω = 0, (2.1)

where σ ∈ R and γ > 0.
Problem (2.1) arises in the study of non-Newtonian fluids, boundary layer phenomena for

viscous fluids, chemical heterogeneous catalysts, as well as in the theory of heat conduction in
electrical materials, and was discussed and extended in a number of works; see, for instance,
[2, 6, 9, 11, 12, 19, 22] and the references therein.

Definition 2.1. A function w̄ is called a super-solution of problem (2.1) if w̄ ∈ C2(Ω) ∩ C(Ω̄)

and
−4w̄ ≥ (d(x))−σw̄−γ, w̄ > 0, x ∈ Ω, w̄|∂Ω ≥ 0. (2.2)

Definition 2.2. A function w is called a sub-solution of problem (2.1) if w ∈ C2(Ω) ∩ C(Ω̄)

and
−4w ≤ (d(x))−σw−γ, w > 0, x ∈ Ω, w|∂Ω ≤ 0. (2.3)

Since Ω is C2, we see by Lemma 14.16 in [10] that d is C2 in a neighborhood of ∂Ω.
Redefining d(x) outside this neighborhood if necessary, we can always assume that d ∈ C2(Ω̄).

Let (λ1, ϕ1) be the first eigenvalue/eigenfunction of

−4ϕ = λϕ, ϕ > 0, x ∈ Ω, ϕ|∂Ω = 0. (2.4)

It is well known that λ1 > 0 and ϕ1 ∈ C2(Ω̄). Furthermore, using the smoothness of Ω
and normalizing ϕ1 with a suitable constant, we can assume

c0d(x) ≤ ϕ1(x) ≤ d(x), x ∈ Ω (2.5)

for some 0 < c0 < 1.
By Hopf’s boundary point lemma, we have ∂ϕ1(x)

∂ν > 0, ∀x ∈ Ω. Hence,

|∇ϕ1| > 0 near ∂Ω

and

Cµ = max
x∈Ω̄

(λ1ϕ2
1(x) + (1− µ)|∇ϕ1|2), (2.6)

cµ = min
x∈Ω̄

(λ1ϕ2
1(x) + (1− µ)|∇ϕ1|2), (2.7)

are well defined with cµ > 0 for µ ∈ (0, 1).
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Lemma 2.3 (Lemma 3 in [2] and Proposition 2.1 in [8]). If problem (2.1) has a super-solution w̄γ,σ

and a sub-solution wγ,σ, then

(i) wγ,σ ≤ w̄γ,σ in Ω̄;

(ii) problem (2.1) have a unique solution Wγ,σ ∈ C2(Ω) ∩ C(Ω̄) satisfying

wγ,σ ≤Wγ,σ ≤ w̄γ,σ in Ω.

Lemma 2.4 (Theorem 1.2 in [22]).

(i) If σ ≥ 2, then problem (2.1) has no classical solution;

(ii) If σ ∈ (1− γ, 2), then problem (2.1) has a unique classical solution Wγ,σ satisfying

cτ ϕτ
1(x) ≤Wγ,σ ≤ Cτ ϕτ

1(x), x ∈ Ω,

where Cτ and cτ are as in (2.6) and (2.7),

τ =
2− σ

1 + γ
. (2.8)

Lemma 2.5 (Lemma 2.3 in [21]). Let λ > 0, σ < 2, γ > 0 and let w̄λ ∈ C2(Ω) verify

−4w̄λ ≥ λ(d(x))−σw̄−γ
λ , w̄λ > 0, x ∈ Ω, w̄λ|∂Ω = 0,

then
w̄λ(x) ≥ λ1/(1+γ)Wγ,σ, x ∈ Ω.

Similarly, if wλ ∈ C2(Ω) satisfies

−4wλ ≤ λ(d(x))−σw−γ
λ , wλ > 0, x ∈ Ω, wλ|∂Ω = 0,

then
wλ(x) ≤ λ1/(1+γ)Wγ,σ, x ∈ Ω.

The following lemma is an extension of Lemmas 2.4 and 2.5 to the case where Ω is a half-
space D = {x ∈ RN : x1 > 0} (for a point x ∈ RN we write x = (x1, x′), with x′ ∈ RN−1). This
result is useful when dealing with the boundary estimates for solutions to system (1.1).

Lemma 2.6 (Lemma 2.4 in [21]). Let C0 > 0, γ > 0, σ ∈ (1− γ, 2) and w̄, w ∈ C2(D) verify

−4w̄ ≥ C0x−σ
0 w̄−γ, (resp.−4w ≤ C0x−σ

0 w−γ) in D,

and
w̄(x) ≥ Cxτ

1 (w(x) ≤ Cxτ
1 ),

where C is positive constants and τ is in (2.8). Then

w̄(x) ≥ Axτ
1 (resp. w(x) ≤ Axτ

1 ), x ∈ D, (2.9)

where

A =

(
C0

τ(1− τ)

)1/(1+γ)

.
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3 Existence and estimates of solutions

In this section, we quote the sub-supersolution method in [13].
Consider the more general systems

−∆u = h1(x, u, v), in Ω,

−∆v = h2(x, u, v), in Ω,

u > 0, v > 0, u|∂Ω = v|∂Ω = 0,

(3.1)

where hi : Ω× (0, ∞)× (0, ∞)→ R is continuous for i = 1, 2.

Definition 3.1. A pair of function (ū, v̄) : Ω̄ → R2 is called a super-solution of system (3.2) if
ū, v̄ ∈ C2(Ω) ∩ C(Ω̄) and 

−∆ū ≥ h1(x, ū, v̄), in Ω,

−∆v̄ ≥ h2(x, ū, v̄), in Ω,

ū > 0, v̄ > 0, ū|∂Ω = v̄|∂Ω = 0.

(3.2)

Definition 3.2. A pair of function (u, v) : Ω̄ → R2 is called a sub-solution of system (3.2) if
u, v ∈ C2(Ω) ∩ C(Ω̄) and 

−∆u ≤ h1(x, u, v), in Ω,

−∆v ≤ h2(x, u, v), in Ω,

u > 0, v > 0, u|∂Ω = v|∂Ω = 0.

(3.3)

Lemma 3.3 (The extension of Lemma 1.8 in [13]). If u ≤ ū and v ≤ v̄ in Ω̄, then the system (3.2)
has at least one solution (u, v) satisfying u, v ∈ C2(Ω) ∩ C(Ω̄) and u ≤ u ≤ ū and v ≤ v ≤ v̄ on Ω̄.

Proof of Theorem 1.1. By (H0), we deduce that there exist positive constants wi, Λi (i = 1, 2)
such that w1d(x)γ1 ≤ w(x) ≤ w2d(x)γ1 and Λ1d(x)γ2 ≤ Λ(x) ≤ Λ2d(x)γ2 in Ω.

Let u = v = m0ϕ1, where

m0 = min

{
(λ−1

1 w1)
1

1+p+q
(

max
x∈Ω̄

ϕ1(x)
)− 1+p+q−γ1

1+p+q
, (λ−1

1 Λ1)
1

1+p+q
(

max
x∈Ω̄

ϕ1(x)
)− 1+p+q−γ2

1+p+q

}
.

By a direct calculation, one can see that (u, v) is a sub-solution of system (1.1).
By (H1) or (H2) and the definitions of α, β, we see that α, β ∈ (0, 1).
Let

u = M0ϕα
1 , v = M0ϕ

β
1 ,

where

M0 = max
{
(w−1

2 αcα)
−1/(1+p+q), (Λ−1

2 βcβ)
−1/(1+r+s), m0

(
max
x∈Ω̄

ϕ1(x)
)1−α

, m0

(
max
x∈Ω̄

ϕ1(x)
)1−β

}
and cα and cβ are as in (2.7).

By a direct calculation, one can see that

−∆ū = M0αϕα−2
1

(
λ1ϕ2

1 + (1− α) |∇ϕ1|2
)

≥ w(x)M−(p+q)
0 ϕ

−(pα+qβ)
1 = w(x)u−pv−q in Ω
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−∆v̄ = M0βϕ
β−2
1

(
λ1ϕ2

1 + (1− β) |∇ϕ1|2
)

≥ λ(x)M−(r+s)
0 ϕ

−(rα+sβ)
1 = λ(x)u−rv−s in Ω

and
ū ≥ u and v̄ ≥ v in Ω

Thus the result follows by Lemma 3.3.

In the following, by using an iteration method, we consider the global estimates of solu-
tions.

Lemma 3.4. Let (u, v) be any classical solution of system (1.1), −2 < γ1 < p− 1 and −2 < γ2 <

s− 1. Then there exists a constant c̃0 > 0 such that

u(x) > c̃0d(x) and v(x) > c̃0d(x) in Ω.

Proof. Since −4u ≥ C(d(x))γ1 u−p for some constant C > 0, combined with Lemma 2.5, we
can find a suitable constant c̃0 > 0 such that u(x) > c̃0d(x) and similarly v(x) ≥ c̃0d(x) in Ω,
where c̃0 is a positive constant.

Lemma 3.5. Under the conditions of Theorem 1.2, for any classical solution (u, v)

A(d(x))α ≤ u(x) ≤ B(d(x))α and A(d(x))β ≤ u(x) ≤ B(d(x))β, x ∈ Ω, (3.4)

where A and B are positive constants, α and β are in Theorem 1.1.

Proof. Let (H3) hold. By (2.5) and Lemma 3.4, v(x) ≥ C0d(x), x ∈ Ω, where C0 = min{c0, c1}.
Then

−4u ≤ w2(d(x))γ1 C−q
0 (d(x))−qu−p, u > 0, x ∈ Ω, u|∂Ω = 0.

By (H3), Lemmas 2.4 and 2.5, we see that

u ≤ a0Cα0(d(x))α0 , x ∈ Ω,

where Cα0 is in (2.7) and

a0 =
(

w2C−q
0

)1/(1+p)
, α0 =

(2 + γ1)− q
1 + p

∈ (0, 1).

Inserting this into the second equation in system (1.1), we have

−4v ≥ Λ1(d(x))γ2 (a0Cα0)
−r (d(x))−rα0 v−s, v > 0, x ∈ Ω, v|∂Ω = 0.

By (H1), (H3) and α0 ∈ (0, 1), we have

rα0 < 2 + γ2, s + rα0 = s + r
(2 + γ1)− q

1 + p
> 1 + γ2.

Then Lemmas 2.4 and 2.5 give that

v ≥ Cβ0
0 cβ0 b0(d(x))β0 , x ∈ Ω,

where Cβ0 is in (2.7) and

b0 =
(

Λ1
(
a0Cβ0

)−r
)1/(1+s)

, β0 =
(2 + γ2)− rα0

1 + s
∈ (0, 1).
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Proceeding inductively, we obtain

u ≤ anCαn(d(x))αn , v ≥ Cβn
0 cβn bn(d(x))βn , x ∈ Ω, (3.5)

where n = 0, 1, . . . ,

αn =
(2 + γ1)− qβn−1

1 + p

=
(2 + γ1)(1 + s)− q(2 + γ2)

(1 + p)(1 + s)
+

qr
(1 + p)(1 + s)

αn−1 ∈ (0, 1), (3.6)

βn =
(2 + γ2)− rαn

1 + s

=
(2 + γ1)(1 + p)− r(2 + γ2)

(1 + p)(1 + s)
+

qr
(1 + p)(1 + s)

βn−1 ∈ (0, 1), (3.7)

an = w1/(1+p)
2

(
Cβn−1

0 Cβn−1 bn−1

)−q/(1+p)

= w1/(1+p)
2 Λ−q/(1+p)(1+s)

1

(
Cβn−1

0 Cβn−1 C−r/(1+s)
αn−1

)−q/(1+p)
aqr/(1+s)(1+p)

n−1 (3.8)

and

bn = Λ1/(1+s)
1 (Cαn an)

−r/(1+s)

= Λ1/(1+s)
1 w−r/(1+s)(1+p)

2

(
Cαn(C

βn−1
0 Cβn−1)

−q/(1+p)
)−r/(1+s)

bqr/(1+s)(1+p)
n−1 . (3.9)

Since
qr

(1 + s)(1 + p)
∈ (0, 1),

we deduce that

lim
n→∞

βn =
(2 + γ1)(1 + p)− r(2 + γ2)

(1 + p)(1 + s)− qr
(3.10)

and

lim
n→∞

αn =
(2 + γ1)(1 + s)− q(2 + γ2)

(1 + p)(1 + s)− qr
. (3.11)

Then, we have

lim
n→∞

an = a = (w1+s
2 Λ−q

1 )
1

(1+p)(1+s)−rs
(

Cβ
0 CβC−r/(1+s)

α

)− q(1+s)
(1+p)(1+s)−qr , (3.12)

lim
n→∞

bn = b = (w−r
2 Λ1+p

1 )
1

(1+p)(1+s)−qr
(

Cα(C
β
0 Cβ)

−q/(1+p)
)− r(1+p)

(1+p)(1+s)−qr (3.13)

and
u ≤ aCα(d(x))α, v ≥ bcβCβ

0 (d(x))β.

The symmetric argument and (H4) prove the reversed inequalities and thus the results are
established
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4 Boundary behavior

In this section, we prove Theorems 1.2. The proof is an adaptation of the arguments used
in [7].

Proof of Theorem 1.2. Let (u, v) be a classical solution of system (1.1). Taking x0 ∈ ∂Ω and xn ∈
Ω such that xn → x0 as n→ ∞. Choose an open neighborhood U of x0 so that ∂Ω admits C2,µ

local coordinates ξ : U → RN , and x ∈ U ∩Ω if and only if ξ1(x) > 0 (ξ = (ξ1, ξ2, . . . , ξN)). We
can moreover assume ξ(x0) = 0. If u(x) = ū(ξ(x)), v(x) = v̄(ξ(x)) then we have the systems

N
∑

i,j=1
ai,j(ξ)

∂2ū
∂ξi∂ξi

+
N
∑

i=1
bi(ξ)

∂ū
∂ξi

= −w(x)ū−pv̄−q,

N
∑

i,j=1
ai,j(ξ)

∂2 v̄
∂ξi∂ξi

+
N
∑

i=1
bi(ξ)

∂v̄
∂ξi

= −λ(x)ū−rv̄−s,

in ξ(U ∩Ω), where aij, bi are Cµ, and aij(0) = δij.
Denote by tn the projections onto ξ(U ∩Ω) of ξ(xn), and introduce the functions

un(y) = dαū(tn + dny), vn(y) = dβū(tn + dny),

where dn = d(ξ(xn)), and α, β are given in (1.5). Then the functions (un, vn) verify
N
∑

i,j=1
ai,j(tn + dny) ∂2ū

∂ξi∂ξi
+ dn

N
∑

i=1
bi(tn + dny) ∂ū

∂ξi
= −c1(dn(x))γ1 ū−pv̄−q,

N
∑

i,j=1
ai,j(tn + dny) ∂2 v̄

∂ξi∂ξi
+ dn

N
∑

i=1
bi(tn + dny) ∂v̄

∂ξi
= −c2(dn(x))γ2 ū−rv̄−s.

On the other hand, estimates (3.4) imply that

Ayα
1 ≤ un(y) ≤ Byα

1 and Ayβ
1 ≤ vn(y) ≤ Byβ

1 ,

for y in compact subsets K of D := {y ∈ RN : y1 > 0}. These estimates, together with the
system, a bootstrap argument and a diagonal procedure, allow us to obtain a subsequence
(still labeled by un) such that un → u0, vn → v0 in C2

loc(D). In particular, we obtain that{
−∆u0 = c1yγ1

1 u−p
0 v−q

0 in D,

−∆v0 = c2yγ2
1 u−r

0 v−s
0 in D,

which verifies

Ayα
1 ≤ u0(y) ≤ Byα

1 and Ayβ
1 ≤ v0(y) ≤ Byβ

1 , y ∈ D.

We claim
u0(y) = C1yα

1 and v0(y) = C2yβ
1 , y ∈ D,

where

C1 =

(
c1+s

1 c−q
2

(β(1− β))q

(α(1− α))1+s

)1/((1+p)(1+s)−qr)

(4.1)

and

C2 =

(
c−r

1 c1+q
2

(β(1− β))r

(α(1− α))1+p

)1/((1+p)(1+s)−qr)

. (4.2)
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Let us prove the claim by an iteration method.
Notice that

−4u0(y) ≥ c1yγ1
1 B−qy−qβ

1 u−p
0 (y), y ∈ D.

Lemma 2.6 implies
u0(y) ≥ A1yα

1 , y ∈ D,

where

A1 =

(
c1

Bqα(1− α)

)1/(1+p)

.

Similarly, since
−4v0(y) ≤ c2yγ2

1 A−r
1 y−rα

1 v−s
0 (y), y ∈ D,

Lemma 2.6 again gives
v0(y) ≤ B1yβ

1 , y ∈ D,

where

B1 =

(
c2

Ar
1β(1− β)

)1/(1+s)

.

Iterating this procedure, we obtain that

u0(y) ≥ Anyα
1 , v0(y) ≤ Bnyβ

1 , y ∈ D,

where

An+1 =

(
c1

Bq
nα(1− α)

)1/(1+p)

=
(

c1c−q/(1+s)
2

) 1
1+p

(
(β(1− β))q/(1+s)

α(1− α)

) 1
1+p

A
qr

(1+s)(1+p)
n

and

Bn+1 =

(
c2

Ar
n+1β(1− β)

)1/(1+s)

=
(

c2c−r/(1+p)
1

) 1
1+s

(
(α(1− α))r/(1+p)

β(1− β)

) 1
1+s

B
qr

(1+s)(1+p)
n .

Consequently,
ln An+1 = ln C3 + θ ln An

and
ln Bn+1 = ln C4 + θ ln Bn

where
θ =

qr
(1 + s)(1 + p)

∈ (0, 1),

C3 =
(

c1c−q/(1+s)
2

) 1
1+p

(
(β(1− β))q/(1+s)

α(1− α)

) 1
1+p
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and

C4 =
(

c2c−r/(1+p)
1

) 1
1+s

(
(α(1− α))r/(1+p)

β(1− β)

) 1
1+s

.

By the iteration, we have

lim
n→∞

ln An =
ln C3

1− θ
and lim

n→∞
ln Bn =

ln C4

1− θ
,

i.e.,
lim
n→∞

An = C1/(1−θ)
3 = C1 and lim

n→∞
Bn = C1/(1−θ)

4 = C2,

where C1 and C2 are given in (4.1) and (4.2).
Thus

u0(y) ≥ C1yα
1 and v0(y) ≤ C2yβ

1 , y ∈ D.

The symmetric argument provides with the reversed inequality, and the claim is proved.
To summarize, we have shown that un → C1yα

1 and vn → C2yβ
1 in C2

loc(D). Thus, taking
y = e1 = (1, 0, . . . , 0) and recalling that ξ(xn) = tn + dne1, we arrive at

u(xn)

(dn(x))α
→
(

c1+s
1 c−q

2
(β(1− β))q

(α(1− α))1+s

)1/((1+p)(1+s)−qr)

,

v(xn)

(dn(x))β
→
(

c−r
1 c1+q

2
(β(1− β))r

(α(1− α))1+p

)1/((1+p)(1+s)−qr)

,

∂u
∂ξ1

(xn)

(dn(x))α−1 → −α

(
c1+s

1 c−q
2

(β(1− β))q

(α(1− α))1+s

)1/((1+p)(1+s)−qr)

,

∂v
∂ξ1

v(xn)

(dn(x))β−1 → −β

(
c−r

1 c1+q
2

(β(1− β))r

(α(1− α))1+p

)1/((1+p)(1+s)−qr)

.

Then Theorem 1.2 follows by the arbitrariness of the sequence xn.

5 Uniqueness of solutions

In this section, we prove the uniqueness of solutions.

Proof of Theorem 1.3. Let (u1, v1) and (u2, v2) be positive solutions to system (1.1).
Let

ω =
u1

u2
,

and assume k = supx∈Ω ω(x) > 1.
It follows by Theorem 1.2 that

lim
d(x)→0

u1(x)
u2(x)

= 1.

Then, there exists x0 such that ω(x0) = k, and hence

ω(x0) = 0, ∇ω(x0) = 0.

In particular,
u24u1 − u14u2 ≤ 0
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at x0. This leads to
v2(x0) ≥ k(p+1)/qv1(x0).

We now claim that v2 ≤ kr/(s+1)v1 in Ω. Assume on the contrary that Ω0 := {v2 ≥ kr/(s+1)v1}
is nonempty. Notice that ∂Ω0 ⊂ Ω, since k > 1 and v1/v2 = 1 on ∂Ω, thus v2 = kr/(s+1)v1 on
Ω0. Then

−4v2 = λ(x)u−r
2 v−s

2 < λ(x)kr/(s+1)u−r
1 v−s

1 = −4(kr/(s+1)v1)

on in Ω0 and the maximum principle implies v2 ≤ kr/(s+1)v1 in Ω0 which is impossible. Hence
v2 ≤ kr/(s+1)v1 in Ω and by the strong maximum principle it follows that v2 ≤ kr/(s+1)v1 in Ω.
Combining the two assertions we have

k(1+p)/qv1(x0) < kr/(s+1)v1(x0),

i.e.
k

(1+p)(s+1)−qr
q(1+s) < 1.

By (1 + s)(1 + p) > qr, we obtain k < 1, which is also a contradiction. Thus we conclude
k ≤ 1, i.e., u1 ≤ u2. The symmetric argument proves u1 ≥ u2, and using the equation for u1

and u2, we deduce v1 = v2. The result is proved.

Acknowledgements

The author is thankful to the honorable reviewers for their valuable suggestions and com-
ments, which improved the paper. This work was partially supported by NSF of China
(Grant no. 11301250) and PhD research startup foundation of Linyi University (Grant no.
LYDX2013BS049 ).

References

[1] J. Busca, R. Manasevich, A Liouville-type theorem for Lane–Emden system, Indiana
Univ. Math. J. 51(2002), 37–51. MR1896155

[2] S. Cui, Existence and nonexistence of positive solutions for singular semilinear elliptic
boundary value problems, Nonlinear Anal. 41(2000), 149–176. MR1759144

[3] D. de Figueiredo, B. Sirakov, Liouville type theorems, monotonicity results and a
priori bounds for positive solutions of elliptic systems, Math. Ann. 333(2005), 231–260.
MR2195114

[4] V. Emden, Gaskugeln. Anwendungen der mechanischen Warmetheorie auf kosmologische und
meteorologische Probleme (in German), Teubner-Verlag, Leipzig, 1907.

[5] R. H. Fowler, Further studies of Emden’s and similar differential equations, Quart. J.
Math. Oxford Ser. 2(1931), 259–288. url

[6] W. Fulks, J. Maybee, A singular nonlinear elliptic equation, Osaka J. Math. 12 (1960) 1–19.
MR0123095

[7] J. García-Melián, J. Rossi, Boundary blow-up solutions to elliptic systems of competi-
tive type, J. Differential Equations 206(2004), 156–181. MR2093922

http://www.ams.org/mathscinet-getitem?mr=1896155
http://www.ams.org/mathscinet-getitem?mr=1759144
http://www.ams.org/mathscinet-getitem?mr=2195114
https://doi.org/10.1093/qmath/os-2.1.259
http://www.ams.org/mathscinet-getitem?mr=0123095
http://www.ams.org/mathscinet-getitem?mr=2093922


Positive solutions for elliptic systems 13

[8] M. Ghergu, Lane–Emden systems with negative exponents, J. Funct. Anal. 258(2010),
3295–3318. MR2601617
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