
Electronic Journal of Qualitative Theory of Differential Equations

2011, No. 20, 1-11; http://www.math.u-szeged.hu/ejqtde/

Attractors and basins of dynamical systems

Attila Dénes, Géza Makay

Abstract

There are several programs for studying dynamical systems, but
none of them is very useful for investigating basins and attractors of
higher dimensional systems. Our goal in this paper is to show a new
algorithm for finding even chaotic attractors and their basins for these
systems. We present an implementation and examples for the use of
this program.

Key words: dynamical systems, attractors, basins, numerical methods.

2000 Mathematics Subject Classification: Primary 37D45, 37M99.

1 Introduction

There exist several program packages for investigating dynamical systems.
However, we found that even the most widespread of these are not suitable
for the examination of attractors and basins of dynamical systems. For ex-
ample, Dynamica written in Mathematica [2] does not contain a procedure
for representing attractors and basins. Dynamics [1] does have such a proce-
dure, but as it was written under DOS, it is rather difficult to use on today’s
computers, and the algorithm has some inadequacies that – in some cases –
can cause imperfect results. For this reason we established a new algorithm
and its computer realization to find and visualize attractors and basins of
discrete and continuous dynamical systems.

In Section 2 we introduce some basic notions from the theory of dynam-
ical systems. As our algorithm is based on that of Dynamics, in Section 3
we describe the routine Basins and Attractors of Dynamics for representing
attractors and their basins. In Section 4 we describe the new algorithm and
the program. In Section 5 we briefly present the program based on the new
algorithm. In the last section we show some results about the attractors
and basins of some well-known discrete dynamical systems using the new
algorithm.

EJQTDE, 2011 No. 20, p. 1



2 Dynamical systems

Definition 2.1. Let X ⊂ R
n and Y ⊂ R. The pair (X, π) is called a

dynamical system if the map π : X × Y → X has the following properties:

• π(x, 0) = x for any x ∈ X (identity axiom),

• π(π(x, t), s) = π(x, t + s) for any x ∈ X and t, s ∈ Y (group axiom),

• π is continuous on X × Y .

Given a dynamical system on X, the space X is called phase space, π

is called phase map and Y stands for time. Usually Y = R or Y = Z. In
the first case we have a continuous dynamical system, in the second case a
discrete dynamical system.

Definition 2.2. Let F be a map from the n-dimensional space to itself. We
say that a compact set A ∈ R

n is an attractor for the map F if it satisfies
the following properties:

• F (A) = A, i. e. A is invariant,

• A contains an initial point whose trajectory travels throughout A, i. e. it
is dense in A,

• initial points starting close to A have trajectories that stay close to A

and tend asymptotically to A.

The basin of an attractor is the set of initial points whose trajectories
tend to the attractor.

3 The algorithm of Dynamics

The routine Basins and Attractors of Dynamics is designed for 2-dimensional
phase spaces. When the phase space has dimension higher than two, one
can use the routine Basins and Attractors 2. This algorithm does all its
calculations using 2-dimensional projections defined by the axes, which will
certainly cause inaccuracies.

The routine Basins and Attractors of Dynamics creates a grid of boxes
(actually corresponding to screen pixels) covering the screen and each box
will be coloured by the algorithm. Even numbered colours denote attractors
and odd numbered colours denote basins. Colour 1 denotes the basin of

EJQTDE, 2011 No. 20, p. 2



infinity, i. e. the points whose trajectories diverge. The basin of the 2nth

attractor is coloured using colour 2n + 1.
Initially all grid boxes are uncoloured, but as the routine proceeds all grid

boxes will be coloured. The routine selects an uncoloured box and examines
the trajectory that starts at the center of the grid box. In the case of discrete
dynamical systems the routine starts to iterate the difference equation, in the
continuous case it iterates the time-one map. The colour of the box will be
determined by colours of the boxes encountered by this trajectory. Let C1

denote the first positive even number not currently used for colouring any
grid boxes. As long as the trajectory does not encounter a previously coloured
trajectory, the algorithm will use the colours C1 and C1 + 1. The selected
box will be temporarily given the colour C1 + 1 and the method starts to
iterate the point at the center of the box. As long as the trajectory passes
through uncoloured boxes, all the boxes encountered by the trajectory will
be coloured with colour C1 + 1 as well. Proceeding with the iteration the
trajectory has to encounter a previously coloured box or it has to diverge.
For the colouring the algorithm uses the following rules for the different cases
below:

1. The trajectory diverges. We cannot check rigorously whether a tra-
jectory really tends to infinity, so this method says that a trajectory
diverges if it leaves the screen area and gets far enough from it. Then
all the boxes coloured with colour C1 or C1 + 1 are changed to colour
1 and the routine stops iterating this trajectory.

2. While the routine is still plotting uncoloured boxes using colour C1 +1,
the trajectory encounters boxes coloured by C2 on a given number
of consecutive iterates, where the number C2 is odd and C2 < C1.
This means that there is another trajectory that passes together with
the actual trajectory for a given number of consecutive steps and the
algorithm assumes that these two trajectories will remain near to each
other and tend to the same attractor, so the routine stops iterating and
all the boxes coloured C1 + 1 are changed to colour C2.

3. While the routine is plotting uncoloured boxes using colour C1, the
trajectory encounters boxes coloured by C2 on a given number of con-
secutive iterates, where the number C2 is odd and C2 < C1. In this
case the method does not change the colours, it goes on iterating, as
an attractor can be near to basins of other attractors.

4. The trajectory encounters a box coloured C3, where C3 is even and
C3 < C1. Similarly to the previous case, this means that there is

EJQTDE, 2011 No. 20, p. 3



another trajectory that passes together with the actual trajectory for a
given number of consecutive steps. The iteration is terminated and all
points coloured C1 and C1 + 1 are changed to the basin colour C3 + 1.

5. The trajectory encounters a box that it has previously coloured C1 + 1
and passes along with it for a given number of iterations, the routine
switches to the colour C1, because it assumes that from this point on
the trajectory is in the attractor. Uncoloured boxes and boxes coloured
C1 + 1 that the trajectory encounters after this will be coloured C1.

If none of the cases 1, 2, 3, or 4 occurs, then 5 must occur, and the
program will eventually get to a point where the trajectory does not
pass through uncoloured boxes and boxes coloured C1+1. In the case of
a chaotic attractor this may even require thousands of iterates. At this
point, the routine stops iterating the trajectory and selects the next
uncoloured box for which the whole process is repeated, until there are
no uncoloured boxes.

4 The new algorithm

The routine of Dynamics has several drawbacks:

• Since all computation is done on 2-dimensional projections, there is a
possibility that different trajectories are merged.

• The grid size is determined by the resolution of the screen (the pixel
size), the program cannot compute accurately enough to get more pre-
cise results.

• The method colors grid boxes, which does not allow different trajecto-
ries, basins and attractors to be near one another.

• The algorithm does not actually follow the trajectories, it simply relies
on the colouring of grid boxes, and assumes that if we pass through
boxes of the same colour, then we follow a trajectory, but this might
also be proven false.

Our method tries to resolve these problems.
In order to do this, our first step is to divide the domain under examina-

tion into equal n-dimensional boxes. From the center of each box we start a
trajectory. After each step of the iteration we save the actual point and also
the box in which it falls. If the point lies outside the considered area, we only

EJQTDE, 2011 No. 20, p. 4



save the point itself in order to know the full trajectory. For colouring we
use numbers, as it was done in Dynamics. If the trajectory gets far enough
from the domain under examination, we say that it diverges and give it the
colour of the basin of infinity. Otherwise, if the point lies in the domain un-
der examination, we examine all the points near our actual point, i. e. all the
points that fall into the same box or any of the neighbouring boxes. If there
is no point to which our actual point remains near during a given number
of steps, we continue the iteration and examine the near points again. If we
find a point such that its iterates remain near to the iterates of our actual
point for this given number of steps, we stop iterating and give a colour to
the actual trajectory according to the trajectory of the near point we have
found.

1. If the found point is a point of the actual trajectory, we give the trajec-
tory the smallest odd colour not yet used and we also store the point
which we first reencountered: from this point on we colour the trajec-
tory with the colour of the attractor. Then we continue iterating long
enough in order to find the complete attractor. To avoid identifying
different parts of an attractor (lying far from each other) as different
attractors, we make a test on this “new” attractor found. We compare
the new attractor with all the previously found attractors: if they have
enough common points, we verify whether these points remain near to
each other after several iterations. If we discover a previously found
attractor with this property, we give our actual trajectory the colours
of this previously found attractor and basin.

2. If the found point is not a point of the actual trajectory, we give the
colour of the found point to our actual trajectory.

The main advantage of the new algorithm is that we only test the points
that are really near to the actual trajectory: this is the only reason to use
the grid boxes. In contrary to the algorithm of Dynamics , which assigns
one colour to each grid box, we do not colour the grid boxes, but rather the
points themselves. This provides a more accurate image as several attractors
and basins can have points in the same grid box. Also, our algorithm can be
applied for dynamical systems of arbitrary dimension.

5 Some notes on the program

The first version of the program based on this algorithm was written in
Mathematica. To make the program faster and more user-friendly, we rewrote

EJQTDE, 2011 No. 20, p. 5



the program in Visual C++. This new program has several features that
facilitate the examination of dynamical systems. The development of the
program is in the final stage, but it is already applicable for research.

After starting the procedure we give the dimension of the system, the
grid size, the number of iterates for which we require the actual trajectory to
remain near the trajectory it encounters, the starting and ending points of the
area under examination and the equations for each dimension. The equations
given by the user are parsed by a built-in syntactic and semantic parser.
The resulting internal structure is interpreted whenever the computation
needs it. Arbitrary projection of the n-dimensional space into two dimensions
can be represented using the user-given expressions, that are parsed by the
same built-in procedure. When the program has finished computing, the
figure appears: we can choose which basin(s) or attractor(s) we would like
to be represented, and we can also change the size of the points both for the
attractors and the basins. In the left bottom corner of the picture we can
read the position of the mouse pointer, we can move and magnify the image.
The resulting figure can be saved in two different ways: in a special format
which preserves the results of the calculation or in an EPS file.

6 Examples

6.1 The Hénon map

Figure 1 shows the strange attractor of the famous Hénon map [1].

x′

1
= 1 − x2

1
+ 0.475x2

x′

2
= x1

EJQTDE, 2011 No. 20, p. 6



Figure 1. The Hénon map

6.2 The Bogdanov map

Figure 2 shows the attractors of the Bogdanov map [3] and their basins.

x′

1
= x1 + x2 + 0.0025x2 + 1.44x1(x1 − 1) − 0.1x1x2

x′

2
= x2 + 0.0025x2 + 1.44x1(x1 − 1) − 0.1x1x2

This map has four attractors. Figure 2 suggests that there is an area around
the origin in which the basins of two of the four attractors are dense. Dy-
namics does not recognize this phenomenon as it identifies this area as the
basin of the closed curve (see Figure 3). Moreover, the attractor marked with
green is not continuous as it should be and the attractor consisting of five
points (inside the closed curve) is represented as five closed curves because
of the extraordinarily slow spiraling convergence to the attractor.

As our algorithm calculates using the points themselves and not the grid
boxes, it can recognize the presence of points of different attractors in the
same grid box.

6.3 Three-dimensional Tinkerbell map

x′

1
= x2

1
− x2

2
+ 0.9x1 + 0.6013x2

x′

2
= 2x1x2 + 2x1 + 0.5x2

x′

3
=

2x3

1 + 16x2
3

EJQTDE, 2011 No. 20, p. 7



Figure 2. The Bogdanov map

Figure 3. The Bogdanov map (Dynamics)

EJQTDE, 2011 No. 20, p. 8



This example shows the danger of using 2-dimensional projections: Dy-
namics only finds one attractor of this map [1]; in fact there are two attractors
with the same 2-dimensional projection. Our program finds both attractors.

Figure 4. Three-dimensional Tinkerbell map

6.4 A discrete predator–prey model by Maynard Smith

Figure 5 shows a part of the attractor, and the whole attractor of a discrete
predator–prey model initiated by Maynard Smith [4].

x′

1
= 3.6545x1(1 − x1) − x1x2

x′

2
=

1

0.31
x1x2

Using the same start and end points Dynamics does not recognize the pres-
ence of an attractor when we choose an area containing only part of the
attractor.

EJQTDE, 2011 No. 20, p. 9



Figure 5. Maynard Smith’s discrete predator-prey model

Acknowledgments. Supported by the Hungarian National Foundation for
Scientific Research (OTKA K75517) and by the TÁMOP-4.2.2/08/1/2008-0008
program of the Hungarian National Development Agency

References

[1] Nusse, H. E., Yorke, J. A., Dynamics: Numerical Explorations, Springer-
Verlag, 1998.

[2] Kulenović, M. R. S., Merino, O., Discrete Dynamical Systems and Dif-

ference Equations with Mathematica, Chapman & Hall/CRC, 2002.

EJQTDE, 2011 No. 20, p. 10



[3] Djellit, I., Boukemara, I. Bifurcations and Attractors in Bogdanov Map,
Vis. Math. 6, No. 4 (2004)

[4] Koçak, H. Differential and difference equations through computer experi-

ments, Springer-Verlag, 1989.

Attila Dénes, SZTE, Bolyai Institute, Aradi vértanúk tere 1, H-6720, Hungary
(denesa@math.u-szeged.hu)

Géza Makay, SZTE, Bolyai Institute, Aradi vértanúk tere 1, H-6720, Hungary
(makayg@math.u-szeged.hu)

(Received June 3, 2010)

EJQTDE, 2011 No. 20, p. 11


