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Abstract. We deal with a control problem for a coupled system of two degenerate
singular parabolic equations in non-divergence form with degeneracy and singularity
appearing at an interior point of the space domain. In particular, we consider the well-
posedness of the problem and then we prove the null controllability property via an
observability inequality for the adjoint system. The key ingredient is the derivation of
a suitable Carleman-type estimate.
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1 Introduction and main results

The control of coupled parabolic systems is an important subject which has been recently
investigated in a large number of articles. The main issue is often to reduce the number of
control functions acting on the system.

In this article, we are concerned with a class of control systems governed by degenerate
singular parabolic equations in nondivergence form, in presence of singular coupling coeffi-
cients. More precisely, we study the null-controllability by one control force of systems of the
form

ut − a(x)uxx −
λ1

b1(x)
u− µ

d(x)
v = h1ω, (t, x) ∈ Q, (1.1)

vt − a(x)vxx −
λ2

b2(x)
v− µ

d(x)
u = 0, (t, x) ∈ Q, (1.2)

u(t, 0) = u(t, 1) = v(t, 0) = v(t, 1) = 0, t ∈ (0, T), (1.3)

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ (0, 1), (1.4)

where ω is an open subset of (0, 1), T > 0 fixed, Q := (0, T)× (0, 1), 1ω denotes the charac-
teristic function of the set ω, u0, v0 ∈ L2

1/a(0, 1) are the initial conditions, and h ∈ L2
1/a(Q) :=
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L2(0, T; L2
1/a(0, 1)) is the control input. Here L2

1/a(0, 1) is the Hilbert space

L2
1/a(0, 1) :=

{
u ∈ L2(0, 1) |

∫ 1

0

u2

a
dx < ∞

}
,

endowed with the associated norm ‖u‖2
L2

1/a(0,1) :=
∫ 1

0
u2

a dx, ∀ u ∈ L2
1/a(0, 1).

Moreover, we assume that the constants λi, µ, i = 1, 2, satisfy suitable assumptions de-
scribed below, and the functions a, bi, d, i = 1, 2, degenerate at the same interior point x0 ∈
(0, 1). In particular, we make the following assumptions.

Hypothesis 1.1. Double weakly degenerate case (WWD) There exists x0 ∈ (0, 1) such that a(x0) =

bi(x0) = 0, a, bi > 0 in [0, 1] \ {x0}, a, bi ∈ C1([0, 1] \ {x0}) and there exists K, Li ∈ (0, 1) such that
(x− x0)a′ ≤ Ka and (x− x0)b′i ≤ Libi a.e. in [0, 1].

Hypothesis 1.2. Weakly strongly degenerate case (WSD) There exists x0 ∈ (0, 1) such that a(x0) =

bi(x0) = 0, a, bi > 0 in [0, 1] \ {x0}, a ∈ C1([0, 1] \ {x0}), bi ∈ C1([0, 1] \ {x0}) ∩W1,∞(0, 1),
∃ K ∈ (0, 1), Li ∈ [1, 2) such that (x− x0)a′ ≤ Ka and (x− x0)b′i ≤ Libi a.e. in [0, 1].

Hypothesis 1.3. Strongly weakly degenerate case (SWD) There exists x0 ∈ (0, 1) such that a(x0) =

bi(x0) = 0, a, bi > 0 in [0, 1] \ {x0}, a ∈ C1([0, 1] \ {x0}) ∩W1,∞(0, 1), bi ∈ C1([0, 1] \ {x0}),
∃K ∈ [1, 2), Li ∈ (0, 1) such that (x− x0)a′ ≤ Ka and (x− x0)b′i ≤ Libi a.e. in [0, 1].

Hypothesis 1.4. Double strongly degenerate case (SSD). There exists x0 ∈ (0, 1) such that a(x0) =

bi(x0) = 0, a, bi > 0 in [0, 1] \ {x0}, a, bi ∈ C1([0, 1] \ {x0})∩W1,∞(0, 1), there exists K, Li ∈ [1, 2)
such that (x− x0)a′ ≤ Ka and (x− x0)b′i ≤ Libi a.e. in [0, 1].

For our further results we shall admit two types of degeneracy for the coupling term d,
namely weak and strong degeneracy. More precisely, we shall handle the two following cases.

Hypothesis 1.5. The function d is weakly degenerate, that is, there exists x0 ∈ (0, 1) such that
d(x0) = 0, d > 0 on [0, 1] \ {x0}, d ∈ C1([0, 1] \ {x0}) and there exists M ∈ (0, 1) such that
(x− x0)d′ ≤ Md a.e. in [0, 1].

Hypothesis 1.6. The function d is strongly degenerate, that is, there exists x0 ∈ (0, 1) such that
d(x0) = 0, d > 0 on [0, 1] \ {x0}, d ∈ C1([0, 1] \ {x0}) ∩W1,∞(0, 1) and there exists M ∈ [1, 2)
such that (x− x0)d′ ≤ Md a.e. in [0, 1].

The main controllability result of this paper can be stated as follows.

Theorem 1.7. Under Hypotheses 3.1 and 3.6, for any time T > 0 and any initial datum (u0, v0) ∈
(L2

1/a(0, 1))2, there exists a control function h ∈ L2
1/a(Q) such that the solution of (1.1)–(1.4) satisfies

u(T, x) = v(T, x) = 0, for all x ∈ (0, 1). (1.5)

By a classical duality argument (e.g., see [21]), null controllability will be studied through
an observability estimate for the homogeneous backward system associated to (1.1)–(1.4). To
get the observability inequality, we prove first a particular Carleman estimate, which is by
now a classical technique in control theory. Then, via cut off functions, we prove that there
exists a positive constant CT such that every solution (U, V) of

Ut + a(x)Uxx +
λ1

b1(x)
U +

µ

d(x)
V = 0, (t, x) ∈ Q,

Vt + a(x)Vxx +
λ2

b2(x)
V +

µ

d(x)
U = 0, (t, x) ∈ Q,

U(t, 0) = U(t, 1) = V(t, 0) = V(t, 1) = 0, t ∈ (0, T),

U(T, x) = UT(x), V(T, x) = VT(x),
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satisfies, under suitable assumptions, the following estimate:

‖(U, V)(0, .)‖2
L2

1/a(0,1)2 ≤ CT

∫∫
ω×(0,T)

U2(t, x)
a

dx dt. (1.6)

Let us observe that in (1.6) we are estimating the L2
1/a-norm of (U, V)(0, .) by means of the

L2
1/a-norm of the first component of (U, V) localized in ω × (0, T). One calls this property

indirect observability since by observing only one component of the solution on ω, one can
control all components of the state at the final time. Roughly, the method is the following: we
will start by deriving an intermediate Carleman estimate with two observations which could
be used to show the null controllability of the system with two controls. Then, thanks to an
interpolation inequality, see Lemma 3.8, we deduce a Carleman estimate with one observation
which yields the observability inequality (1.6). As a consequence, using the Hilbert uniqueness
method, we then deduce an indirect null controllability result for the system (1.1)–(1.4), that
is the state-vector vanishes identically at the final time by applying only one localized control
force.

Before dealing with problem (1.1)–(1.4), let us first review some previous results. The gen-
eral framework addressing the controllability problems of nondegenerate parabolic equations
and nondegenerate coupled parabolic systems has been established in earlier papers, and
there is nowadays an extended literature on this topic (see for instance, [2, 3, 20, 23, 31, 32, 34]).
For more details, on actual methods concerning null or approximate controllability of linear
parabolic systems, we refer to the survey [4].

Next results concern control issues for degenerate parabolic equations. In particular, new
Carleman estimates (and consequently null controllability properties) were established for
operators with degeneracy appearing at the boundary of the domain (see, for instance, [5,
14–16] and the references therein). To the best of our knowledge, [10, 26, 28, 29] are the first
papers dealing with Carleman estimates (and, consequently, null controllability) for operators
(in divergence and in nondivergence form with Dirichlet or Neumann boundary conditions)
with mere degeneracy at the interior of the space domain. For related systems of degenerate
equations we refer to [1, 11].

Also the question of whether it is possible to control heat equations involving singular
inverse-square potentials has already been addressed both in the one-dimensional and in the
multi-dimensional case, see [22,36] for the case of internal singularity, and [17] for the case of
boundary singularity.

Another interesting situation that has received a lot of attention in recent years is the case
of parabolic operators that couple a degenerate diffusion coefficient with a singular potential.
Among the pioneering related works we mainly refer to the papers [24, 35] in which the au-
thors have studied the control of singular parabolic equations degenerating at origin. These
results are complemented in [27], in which it is considered well posedness and null controlla-
bility for operators with Dirichlet boundary conditions in divergence form with a degeneracy
and a singularity both occurring in the interior of the domain. We refer to the recent paper [25]
for the analogous results for operators in nondivergence form under Dirichlet or Neumann
boundary conditions.

More recently, in [33] the authors treat well posedness and null controllability for coupled
degenerate/singular parabolic systems in divergence form.

However, as it is by now well-known (see, e.g., [9, 30]), the equation in non-divergence
form cannot be recast, in general, from the equation in divergence form. Indeed, the neces-
sary condition that ensures the well posedness of the problem (1.1)–(1.4) makes it not null
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controllable. Thus, we cannot derive the null controllabilility for (1.1)–(1.4) by the one of the
problem in divergence form. For this reason, in this paper as in [25], [26] or [28], we prove
null controllability for (1.1)–(1.4) without deducing it by the previous results for the problem
in divergence form.

The object of this paper is twofold: first we analyze the well-posedness of (1.1)–(1.4);
second, under suitable conditions on all the parameters of (1.1)–(1.4), we prove related global
Carleman estimates. To the best of our knowledge, this is a problem that has never been
treated in precedence, although it is a natural extension of the results of the work [25] to the
case of coupled 2-component degenerate system involving a singular coupling matrix. To be
more precise, observe that the problem (1.1)–(1.4) takes the equivalent form

∂tY−KY− CY = e1h1ω, in Q,

Y(t, 0) = Y(t, 1) = 0, t ∈ (0, T),

Y(0, x) = Y0(x), x ∈ (0, 1),

(1.7)

where Y = (u, v)?, Y0 = (u0, v0)?, K is the matrix operator given by

K = diag(K, K),

and the differential operator K is defined by

Kw := a(x)wxx.

Further, C is the singular coupling matrix given by

C =
(

λ1
b1

µ
d

µ
d

λ2
b2

)
, (1.8)

and finally e1 = (1, 0)? is the first element of the canonical basis of R2.
It is worth pointing out that analyzing the controllability properties of system (1.1)–(1.4)

(and thus, (1.7)) is more intricate than the null controllability problem for a scalar degenerate
singular parabolic equation ([25]) since we want a coupled parabolic system to be controlled
by a unique distributed control and additional technical difficulties arise owing to the coupling
of the equations.

The paper is organized as follows. In Section 2, we study the well-posedness of the prob-
lem via Hardy inequality, applying classical semi-group theory. The Carleman estimate is
proved in Section 3. As a consequence, in Section 4, we prove observability inequality, and
hence null controllability. Finally, we conclude our article with an appendix in which we prove
a Caccioppoli type inequality that is fundamental in our analysis.

All along the article, we use generic constants for the estimates, whose values may change
from line to line.

2 Function spaces and well-posedness

It is commonly accepted that Hardy-type inequalities are the starting point to prove well-
posedness of singular parabolic equations (see, for instance, [8], [13] and [37]). In the present
context, such inequalities turn out to be fundamental for the proof of Proposition 2.10. In
order to deal with these inequalities we consider different classes of weighted Hilbert spaces,



Control of degenerate and singular parabolic systems 5

which are suitable to study the four different situations given above, namely the (WWD),
(WSD), (SWD) and (SSD) cases. Thus, as in [25] or [28, Chapter 2], we introduce

K1
a(0, 1) := L2

1/a(0, 1) ∩ H1
0(0, 1)

and

K1
a,bi

(0, 1) :=
{

u ∈ Ka :
u√
abi
∈ L2(0, 1)

}
endowed with the inner products

〈u, v〉K1
a

:=
∫ 1

0

uv
a

dx +
∫ 1

0
u′v′ dx,

and

〈u, v〉K1
a,bi

:=
∫ 1

0

uv
a

dx +
∫ 1

0
u′v′ dx +

∫ 1

0

uv
abi

dx,

respectively.
Using the weighted spaces introduced before we can prove the next Hardy–Poincaré in-

equality. First, we make the following assumption (we refer to [25] for some comments).

Hypothesis 2.1.

1. Hypothesis 1.1 holds with K + Li < 1, or

2. Hypothesis 1.1 holds with 1 ≤ K + Li ≤ 2 and

∃c1, ci2 > 0 such that |x− x0|K ≥ c1a and |x− x0|Li ≥ ci2bi ∀x ∈ [0, 1], (2.1)

or

3. Hypothesis 1.2 or 1.3 with K + Li ≤ 2 and (2.1), or

4. Hypothesis 1.4 holds with K = Li = 1.

Proposition 2.2 ([25, Lemma 2.4 and 2.5]). Assume Hypothesis 2.1 holds. Then there exists a
constant Ci > 0 such that for all w ∈ K1

a,bi
(0, 1) we have

∫ 1

0

w2

abi
dx ≤ Ci

∫ 1

0
(w′)2 dx. (2.2)

Observe that the above Hardy–Poincaré inequality allows us to consider for the (SSD) case
only the situation when K and Li are both 1.

For the well-posedness of the problem (1.1)–(1.4), due to the presence of singular coupling
terms, a natural functional setting involves the weighted space

K1
a,bi ,d(0, 1) :=

{
u ∈ K1

a,bi
:

u√
ad
∈ L2(0, 1)

}
which is a Hilbert space for the scalar product

〈u, v〉K1
a,bi ,d

:=
∫ 1

0

uv
a

dx +
∫ 1

0
u′v′ dx +

∫ 1

0

uv
abi

dx +
∫ 1

0

uv
ad

dx.

In the following we make the following assumptions on d.
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Hypothesis 2.3.

1. Hypothesis 1.5 holds with K + M < 1, or

2. Hypothesis 1.5 holds with 1 ≤ K + M ≤ 2 and

∃c3 > 0 such that |x− x0|M ≥ c3d ∀x ∈ [0, 1], (2.3)

or

3. Hypothesis 1.6 with K + M ≤ 2 and (2.3), or

4. Hypothesis 1.6 with K = M = 1.

We will proceed with a Hardy-type estimate involving the coupling term under considera-
tion. Such an estimate is valid in the following suitable Hilbert space K1

i := K1
a,bi ,d

(0, 1), under
hypothesis 2.3, and it states the existence of Cd > 0 such that for all w ∈ K1

i , we have

∫ 1

0

w2

ad
dx ≤ Cd

∫ 1

0
(w′)2 dx. (2.4)

Remark 2.4. If the assumptions 2.1 and 2.3 are satisfied, then the standard norm ‖.‖K1
i

is

equivalent to ‖w‖2
∼ :=

∫ 1
0 (w

′)2dx for all w ∈ K1
i , i = 1, 2.

From now on, we make the following assumptions on a, bi, d, λi and µ.

Hypothesis 2.5. Throughout this section, we assume the following hypotheses.

1. Hypothesis 2.1 holds.

2. We shall also admit Hypothesis 2.3.

3. Setting C?
i and C?

d the best constant in K1
i of (2.2) and (2.4) respectively, we assume that λi, µ 6=

0 and
λi <

1
C?

i
, (2.5)

µ ∈
(

0,
√

Λ1Λ2

C?
d

)
, (2.6)

where Λi, i = 1, 2 is given in (2.7).

We also need the following result which is a crucial tool to prove well-posedness and
observability properties.

Proposition 2.6 ([25, Proposition 3.1]). Assume Hypothesis 2.5. Then there exists Λi ∈ (0, 1] such
that for all w ∈ K1

i , ∫ 1

0
(w′(x))2 dx− λi

∫ 1

0

w2(x)
a(x)bi(x)

dx ≥ Λi‖w‖2
K1

i
. (2.7)

Finally, we introduce the Hilbert space

K2
i :=H2

a,bi
(0, 1)

:={w ∈ K1
a(0, 1) : w′ ∈ H1(0, 1) and Aiw ∈ L2

1/a(0, 1)},
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where Aiw := awxx +
λi
bi

w, i = 1, 2.
In the Hilbert space H1/a = L2

1/a(0, 1) × L2
1/a(0, 1), the system (1.1)–(1.4) can be trans-

formed into the following inhomogeneous Cauchy problem

X′(t)−AX(t) = f (t), X(0) =
(

u0

v0

)
, (2.8)

where X =
(

u(t)
v(t)

)
,

A = A+ B, (2.9)

with
D(A) := {X ∈ K2

1 ×K2
2 : AX ∈H1/a}, (2.10)

where

A =

(
A1 0
0 A2

)
, B =

(
0 µ

d
µ
d 0

)
, f (t) =

(
h(t, ·)1ω

0

)
.

Remark 2.7. Observe that if X ∈ D(A), then ( u
d , v

d ) and ( u√
d
, v√

d
) ∈H1/a so that X ∈ K1

1 ×K1
2.

Thus inequalities (2.2) and (2.4) hold true if Hypotheses 2.1 and 2.3 are satisfied.

We recall the following formula of integration by parts which will be used in the rest of
the paper.

Lemma 2.8 ([28, Lemma 2.2]). For all (u, v) ∈ K2
a × K1

a one has∫ 1

0
u′′vdx = −

∫ 1

0
u′v′dx, (2.11)

where
K2

a :=
{

u ∈ K1
a : u′ ∈ H1(0, 1)

}
.

Let us now show that the operator (A,D(A)) defined by (2.9)–(2.10) generates an analytic
semi-group in the pivot space H1/a for the equation (2.8). This aim relies on this fact.

Lemma 2.9. Assume that Hypothesis 2.5 is satisfied. Then, the operator A with domain D(A) is
nonpositive and self-adjoint on H1/a.

Proof. Observe that D(A) is dense in H1/a.
(i) A is nonpositive. By Proposition 2.6 and Lemma 2.8, it follows that, for any X = ( w1

w2 ) ∈
D(A) we have

−〈AX, X〉H1/a = −〈AX + BX, X〉H1/a ,

= −
〈(A1 0

0 A2

)(
w1

w2

)
,
(

w1

w2

)〉
H1/a

−
〈(0 µ

d
µ
d 0

)(
w1

w2

)
,
(

w1

w2

)〉
H1/a

,

= −
∫ 1

0
(aw′′1 +

λ1

b1
w1)

w1

a
dx−

∫ 1

0
(aw′′2 +

λ2

b2
w2)

w2

a
dx

− 2µ
∫ 1

0

w1w2

ad
dx,

=
∫ 1

0
(w′1)

2 dx− λ1

∫ 1

0

w2
1

ab1
dx +

∫ 1

0
(w′2)

2 dx− λ2

∫ 1

0

w2
2

ab2
dx

− 2µ
∫ 1

0

w1w2

ad
dx,

≥ Λ1

∫ 1

0
(w′1)

2 dx + Λ2

∫ 1

0
(w′2)

2 dx− 2µ
∫ 1

0

w1w2

ad
dx.
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Using Young’s inequality, the last term in the above right-hand side is estimated as∣∣∣∣∫ 1

0

w1w2

ad
dx
∣∣∣∣ ≤ ∫ 1

0

|w1|√
ad
|w2|√

ad
dx,

≤ δ
∫ 1

0

w2
1

ad
dx +

1
4δ

∫ 1

0

w2
2

ad
dx,

where δ > 0 is a constant that will be chosen later on. Then, we can apply the Hardy–Poincaré
inequality (2.4) obtaining∣∣∣∣∫ 1

0

w1w2

ad
dx
∣∣∣∣ ≤ δC?

d

∫ 1

0
(w′1)

2 dx +
C?

d
4δ

∫ 1

0
(w′2)

2 dx.

Hence,

−〈AX, X〉H1/a ≥ (Λ1 − 2µδC?
d)
∫ 1

0
(w′1)

2 dx +

(
Λ2 − 2µ

C?
d

4δ

) ∫ 1

0
(w′2)

2 dx.

Now, by (2.6) one can find δ such that

µC?
d

2Λ2
< δ <

Λ1

2µC?
d

. (2.12)

For this choice, we deduce that there exists Σ > 0 such that

−〈AX, X〉H1/a ≥ Σ‖X‖2
K1

1×K1
2
≥ 0.

(ii) A is self-adjoint. Let T : H1/a →H1/a be the mapping defined in the following usual way:
to each f ∈H1/a associate the weak solution X = T( f ) ∈ K1

1 ×K1
2 of

−〈AX, Y〉H1/a = 〈 f , Y〉H1/a ,

for every Y ∈ K1
1 × K1

2. Note that T is well defined by Lax–Milgram lemma via the part
(i), which also implies that T is continuous. Now, it is easy to see that T is injective and
symmetric. Thus it is self adjoint. As a consequence, A = T−1 : D(A) → H1/a is self-adjoint
(for example, see [19, Proposition X.2.4]).

As a consequence of the previous lemma we immediately have the following well-
posedness result in the sense of evolution operator theory.

Proposition 2.10. Assume Hypothesis 2.5. Then, the operator A : D(A) → H1/a generates an
analytic contraction semigroup of angle π/2 on H1/a. Moreover, for all h ∈ L2

1/a(Q) and u0, v0 ∈
L2

1/a(0, 1), there exists a unique weak solution (u, v) ∈ C([0, T]; H1/a) ∩ L2(0, T;K1
1 ×K1

2) of (1.1)–
(1.4). In addition, if (u0, v0) ∈ D(A) and h ∈W1,1(0, T, L2

1/a(0, 1)), then

(u, v) ∈ C1(0, T; H1/a) ∩ C([0, T];D(A)). (2.13)

Proof. Since A is a nonpositive, self-adjoint operator on a Hilbert space, it is well known that
(A,D(A)) generates a cosine family and an analytic contractive semigroup of angle π/2 on
H1/a (see [6, Example 3.14.16 and 3.7.5]). Being A the generator of a strongly continuous

semigroup on H1/a, the assertion concerning the assumption u0, v0 ∈ L2
1/a(0, 1) and the reg-

ularity of the solution (u, v) when (u0, v0) ∈ D(A) is a consequence of the results in [7] and
[18, Lemma 4.1.5 and Proposition 4.1.6].
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3 Carleman estimates

3.1 Carleman estimate for the inhomogeneous adjoint system

In this subsection we prove crucial estimates of Carleman type for the solutions (U, V) of the
following nonhomogeneous adjoint problem:

Ut + a(x)Uxx +
λ1

b1
U +

µ

d
V = h1, (t, x) ∈ Q, (3.1)

Vt + a(x)Vxx +
λ2

b2
V +

µ

d
U = h2, (t, x) ∈ Q, (3.2)

U(t, 1) = U(t, 0) = V(t, 1) = V(t, 0) = 0, t ∈ (0, T), (3.3)

U(T, x) = UT(x), V(T, x) = VT(x), x ∈ (0, 1), (3.4)

which is derived taking inspiration from the work [25]. Here h1, h2 ∈ L2
1
a
(Q), while on a, bi

and d we make the following assumptions.

Hypothesis 3.1.

1. Hypothesis 2.5 is satisfied;

2. (x−x0)a′(x)
a(x) ∈W1,∞(0, 1);

3. if K ≥ 1
2 , then there exists a constant ϑ ∈ (0, K] such that the function x 7→ a(x)

|x−x0|ϑ
is nonin-

creasing on the left and nondecreasing on the right of x = x0;

4. if λi < 0, then (x− x0)b
′
i(x) ≥ 0 in [0, 1].

To prove an estimate of Carleman type, as in [25] or in [28, Chapter 4], we introduce the
function

ϕ(t, x) := θ(t)ψ(x), ∀(t, x) ∈ (0, T)× (−1, 1),

where

θ(t) :=
1

[t(T − t)]4
and ψ(x) := d1

[∫ x

x0

y− x0

ã(y)
eR(y−x0)

2
dy− d2

]
. (3.5)

Here d2 > d̃?2 := max
x∈[−1,1]

∫ x

x0

y− x0

a(y)
eR(y−x0)

2
dy, R and d1 are general strictly positive constants,

while the function ã is defined as follows:

ã(x) =

{
a(x), x ∈ [0, 1],

a(−x), x ∈ [−1, 0].
(3.6)

A more precise restriction on d1 and d2 will be needed later. Observe that θ(t)→ +∞ as t→
0+, T− and clearly

−d1d2 ≤ ψ(x) < 0 for every x ∈ [−1, 1].

The main result of this section is the following:

Theorem 3.2. Let T > 0 be given. Assume Hypothesis 3.1 is satisfied. Then there exist two positive
constants C and s0 such that every solution (U, V) of (3.1)–(3.4) in

V = L2
(

0, T;D(A)
)
∩H1

(
0, T;K1

1 ×K1
2

)
(3.7)
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satisfies, for all s ≥ s0,

∫ T

0

∫ 1

0

[
sθ(U2

x + V2
x ) + s3θ3

( x− x0

a

)2
(U2 + V2)

]
e2sϕ(t,x) dx dt

≤ C
( ∫ T

0

∫ 1

0

[
h2

1 + h2
2

] e2sϕ

a
dx dt + sd1

∫ T

0
θ
[
(x− x0)eR(x−x0)

2(
U2

x + V2
x

)
e2sϕ

]x=1
x=0dt

)
.

Remark 3.3. We underline that Theorem 3.2 still holds if we substitute the spatial domain
[0, 1] with a general interval [A, B] where the functions a, bi and d satisfy Hypothesis 3.1.

Proof of Theorem 3.2. First of all, observe that that system (3.1)–(3.4) can be written in the fol-
lowing form:

Yt +AY + BY = H,

Y(t, 0) = Y(t, 1) =
(

0
0

) (3.8)

where Y =
(

U
V

)
and H =

(
h1
h2

)
. Now, for s > 0, define the function

Z(t, x) = esϕ(t,x)Y(t, x) :=
(

w
z

)
,

where Y is any solution of (3.8). Observe that, since Y ∈ V and ϕ < 0, then Z ∈ V and satisfies

L+
s Z + L−s Z = esϕH, (t, x) ∈ Q,

Z(t, 0) = Z(t, 1) =
(

0
0

)
, t ∈ (0, T),

Z(T, x) = Z(0, x) =
(

0
0

)
, x ∈ (0, 1),

where

L+
s =

(
L1+

s 0
0 L2+

s

)
+ B and L−s =

(
L−s 0
0 L−s

)
,

with

Li+
s ū := aūxx + λi

ū
bi
− sϕtū + s2aϕ2

xū,

L−s ū := ūt − 2saϕxūx − saϕxxū.

Moreover,

2〈L+
s Z,L−s Z〉HT

1/a
≤ 2〈L+

s Z,L−s Z〉HT
1/a

+ ‖L+
s Z‖2

HT
1/a

+ ‖L−s Z‖2
HT

1/a

= ‖esϕH‖2
HT

1/a
.

(3.9)

Here HT
1/a is the Hilbert space L2

1/a(Q)× L2
1/a(Q), equipped with the norm

‖X‖HT
1/a

=
(
‖u‖2

L2
1/a(Q) + ‖v‖

2
L2

1/a(Q)

) 1
2
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and 〈·, ·〉HT
1/a

the corresponding scalar product. Of course,

〈L+
s Z,L−s Z〉HT

1/a
=

〈(
L1+

s
µ
d

µ
d L2+

s

)(
w
z

)
,
(

L−s 0
0 L−s

)(
w
z

)〉
HT

1/a

,

=

〈(
L1+

s w + µ
d z

L2+
s z + µ

d w

)
,
(

L−s w
L−s z

)〉
HT

1/a

,

= 〈L+
s w, L−s w〉L2

1/a(Q) + 〈L+
s z, L−s z〉L2

1/a(Q)

+ µ
〈 z

d
, L−s w

〉
L2

1/a(Q)
+ µ

〈w
d

, L−s z
〉

L2
1/a(Q)

.

Observe that the operators Li+
s and L−s are exactly the ones of [25]. Using [25, Lemma 4.2 and

4.3], we deduce immediately that there exist two positive constants C and s0, such that for all
s ≥ s0,

〈L+
s Z,L−s Z〉HT

1/a
≥ C

∫ T

0

∫ 1

0

[
sθw2

x + s3θ3
(

x− x0

a

)2

w2

]
dx dt

+ C
∫ T

0

∫ 1

0

[
sθz2

x + s3θ3
(

x− x0

a

)2

z2

]
dx dt

− s
∫ T

0
θ
[
a
(
w2

x + z2
x
)

ψ′
]x=1

x=0 dt

+ µ

(〈 z
d

, L−s w
〉

L2
1/a(Q)

+
〈w

d
, L−s z

〉
L2

1/a(Q)

)
︸ ︷︷ ︸

I

.

(3.10)

Integrating by parts, we decompose the term I into a sum of a distributed term Id and a
boundary term Ib where

Id = −2sµ
∫ T

0

∫ 1

0

ϕxd′

d2 wz dx dt,

Ib = µ
∫ 1

0

1
ad

[wz]t=T
t=0 dx− 2sµ

∫ T

0

[ ϕx

d
wz
]x=1

x=0
dt.

As in [25, Lemma 4.2], using the definition of ϕ and the boundary conditions on (w, z), the
boundary terms reduce to 0.

On the other hand, by definition of ϕ and by the assumption on d, one has

Id = −2sµd1

∫ T

0

∫ 1

0
θ
(x− x0)d′

ad2 eR(x−x0)
2
wz dx dt

≥ −2sµd1M
∫ T

0

∫ 1

0

θ

ad
eR(x−x0)

2
wz dx dt.

Next, using Young inequality, one can estimate
∫ T

0

∫ 1
0

θ
ad eR(x−x0)

2
wz dx dt as∣∣∣∣∫ T

0

∫ 1

0

θ

ad
eR(x−x0)

2
wz dx dt

∣∣∣∣ ≤ C
∫ T

0

∫ 1

0

θ

ad
|wz| dx dt

= C
∫ T

0

∫ 1

0

(√
θ
|w|√

ad

)(√
θ
|z|√

ad

)
dx dt,

≤ C
2

∫ T

0

∫ 1

0
θ

w2

ad
dx dt +

C
2

∫ T

0

∫ 1

0
θ

z2

ad
dx dt,
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and therefore from the Hardy–Poincaré inequality (2.4) we get∣∣∣∣∫ T

0

∫ 1

0

θ

ad
eR(x−x0)

2
wz dx dt

∣∣∣∣ ≤ CC?
d

2

∫ T

0

∫ 1

0
θw2

x dx dt +
CC?

d
2

∫ T

0

∫ 1

0
θz2

x dx dt.

Hence,

Id ≥ −sµd1MCC?
d

(∫ T

0

∫ 1

0
θ(w2

x + z2
x) dx dt

)
.

Proceeding as in [27, Lemma 3.7], we can choose C as large as desired, provided that s0

increases as well, obtaining

Id ≥ −s
C
2

(∫ T

0

∫ 1

0
θ(w2

x + z2
x) dx dt

)
.

Going back to (3.10) and taking into account the previous inequality, we deduce that there
exist two positive constants C and s0 such that for all s ≥ s0,

〈L+
s Z,L−s Z〉HT

1/a
≥ C

∫ T

0

∫ 1

0
sθ
[
w2

x + z2
x
]

dx dt

+ C
∫ T

0

∫ 1

0
s3θ3

(
x− x0

a

)2 [
w2 + z2] dx dt

− s
∫ T

0
θ
[
a
(
w2

x + z2
x
)

ψ′
]x=1

x=0 dt.

(3.11)

Combining (3.9) and (3.11), we obtain

∫ T

0

∫ 1

0
sθ
[
w2

x + z2
x
]
+ s3θ3

(
x− x0

a

)2 [
w2 + z2] dx dt

≤ C
( ∫ T

0

∫ 1

0

[
h2

1 + h2
2
] e2sϕ

a
dx dt + s

∫ T

0
θ
[
a
(
w2

x + z2
x
)

ψ′
]x=1

x=0 dt
)

.

Recall that U = e−sϕw and V = e−sϕz. So, we have

Ux = −sθψxe−sϕw + e−sϕwx,

Vx = −sθψxe−sϕz + e−sϕzx.

Therefore, [
sθ(U2

x + V2
x ) + s3θ3

(
x− x0

a

)2

(U2 + V2)

]
e2sϕ(t,x)

≤ sθ
[
2s2θ2ψ2

x(w
2 + z2) + 2(w2

x + z2
x)
]
+ s3θ3

(
x− x0

a

)2

(w2 + z2)

≤ C

[
sθ(w2

x + z2
x) + s3θ3

(
x− x0

a

)2

(w2 + z2)

]
.

One thus obtains the asserted Carleman estimate for our original variables.
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3.2 Carleman estimate with distributed observation for the homogeneous adjoint
system

By the HUM method introduced by J.-L. Lions, the null controllability of problem (1.1)–(1.4)
is equivalent to an observability estimate for the homogeneous backward system

Ut + a(x)Uxx +
λ1

b1
U +

µ

d
V = 0, (t, x) ∈ Q, (3.12)

Vt + a(x)Vxx +
λ2

b2
V +

µ

d
U = 0, (t, x) ∈ Q, (3.13)

U(t, 1) = U(t, 0) = V(t, 1) = V(t, 0) = 0, t ∈ (0, T), (3.14)

U(T, x) = UT(x), V(T, x) = VT(x), x ∈ (0, 1). (3.15)

To show that the adjoint system (3.12)–(3.15) is observable, we first derive an interesting
Carleman estimate which could be used to show the null controllability for parabolic sys-
tems with two control forces. As a first step, consider the adjoint problem with more regular
final datum

Ut + a(x)Uxx +
λ1

b1
U +

µ

d
V = 0, (t, x) ∈ Q, (3.16)

Vt + a(x)Vxx +
λ2

b2
V +

µ

d
U = 0, (t, x) ∈ Q, (3.17)

U(t, 1) = U(t, 0) = V(t, 1) = V(t, 0) = 0, t ∈ (0, T), (3.18)(
U(T, x) = UT(x), V(T, x) = VT(x)

)
∈ D(A2), x ∈ (0, 1). (3.19)

where D(A2) = {XT ∈ D(A) : (AX)T ∈ D(A)}. Observe that D(A2) is densely defined in
D(A) for the graph norm (see, e.g., [12, Lemma 7.2]) and hence in H1/a. As in [28] or [25],
define

W :=
{
(U, V) is a solution of (3.16)–(3.19)

}
.

Obviously (see, e.g., [12, Theorem 7.5]) W ⊂ C1([0, T];D(A))
)
⊂ V ⊂ U , where V is defined

in (3.7) and

U := C
(
[0, T]; H1/a

)
∩ L2(0, T;K1

1 ×K1
2
)
.

In order to prove the next result, we shall use the following non degenerate non singular
classical Carleman estimate in suitable interval (A, B) (see [25, Proposition 4.1]).

Proposition 3.4. Let z be the solution of

zt + azxx +
λ

b(x)
z = h ∈ L2((0, T)× (A, B)), x ∈ (A, B), t ∈ (0, T),

z(t, A) = z(t, B) = 0, t ∈ (0, T),

where a ∈ C1([A, B]), b ∈ C([A, B]) are in such a way that there exist two strictly positives constants
a0, b0 such that a ≥ a0 and b ≥ b0 in [A, B]. Then there exist two positive constants r and s0 such that
for any s > s0 ∫ T

0

∫ B

A

(
sθz2

x + s3θ3z2
)

e2sΦ dx dt

≤ C
( ∫ T

0

∫ B

A
h2e2sΦ dx dt− sr

∫ T

0

[
ae2sΦ(t,·)θerζA z2

x(t, ·)
]x=B

x=A
dt
)

,
(3.20)
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for some positive constant C. Here the functions Φ and ζA are defined as follows: For x ∈ [A, B]:

Φ(t, x) = θ(t)Ψ(x), Ψ(x) = erζB(x) − e2ρ,

where ζB(x) = d

∫ B

x

dy
a(y)

, ρ = rζB(A),
(3.21)

where d = ‖a′‖L∞(A,B).

In the following we will assume that the parameters d2, ρ and d1 satisfy the following
assumptions

d2 > 16d̃?2 , ρ > 2 ln(2), (3.22)

and

d1 ∈ I =

[
e2ρ − 1
d2 − d̃?2

,
4

3d2
(e2ρ − eρ)

)
(3.23)

which can be shown not empty.
We shall begin by proving a simple but fundamental lemma concerning some properties

that must be satisfied by the weight functions.

Lemma 3.5. By (3.22)–(3.23), we have

(i) For (t, x) ∈ [0, T]× [0, 1],

ϕ(t, x) ≤ Φ(t, x) and

−4Φ(t, x) + 3ϕ(t, x) > 0.
(3.24)

(ii) For (t, x) ∈ [0, T]× [0, 1],
ϕ(t,−x) ≤ Φ(t, x). (3.25)

Proof. First, let us set d?2 := maxx∈[0,1]
∫ x

x0

y−x0
a(y) eR(y−x0)

2
dy.

(i) 1. ϕ ≤ Φ: since d1 ≥ e2ρ−1
d2−d̃?2

≥ e2ρ−1
d2−d?2

, we have max{ψ(0), ψ(1)} ≤ Ψ(1) and the
conclusion follows immediately.

2. −4Φ(t, x) + 3ϕ(t, x) > 0: this follows easily by the assumption d1d2 < − 4
3 Ψ(0).

(ii) ϕ(t,−x) ≤ Φ(t, x): since d1 ≥ e2ρ−1
d2−d̃?2

, then max{ψ(−1), ψ(0)} ≤ Ψ(1) which completes
the proof of the desired result.

Now, we shall apply the just established Carleman inequalities with boundary observation
to obtain a Carleman estimate with locally distributed observation. For this, we assume that
the control set ω satisfies the following assumption:

Hypothesis 3.6. The control set ω is such that

ω = ω1 ∪ω2,

where ωi (i = 1, 2) are intervals with ω1 ⊂⊂ (0, x0), ω2 ⊂⊂ (x0, 1), and x0 6∈ ω̄.

We claim the following.
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Theorem 3.7. Let T > 0 be given. Assume Hypotheses 3.1 and 3.6. Then there exist two positive
constants C and s0 such that every solution (U, V) ∈ W of (3.16)–(3.19) satisfies, for all s ≥ s0,

∫ T

0

∫ 1

0

[
sθ(U2

x + V2
x ) + s3θ3

(
x− x0

a

)2

(U2 + V2)

]
e2sϕ(t,x) dx dt

≤ C
∫ T

0

∫
ω

s2θ2[U2 + V2]
e2sΦ

a
dx dt.

(3.26)

We remark that Theorem 3.7 has an immediate application also in the case in which the
control set ω is an interval containing the degeneracy point. Indeed, if x0 ∈ ω one can always
find two subintervals ω1 ⊂ (0, x0), ω2 =⊂ (x0, 1) such that (ω1 ∪ω2) ⊂⊂ ω \ {x0}.

Proof of Theorem 3.7. The statement is obtained by studying some auxiliary problems, intro-
duced with suitable cut-off functions and a reflection procedure already introduced in [29].
First, by the assumption on the control set, we have ω1 := (α1, β1) ⊂⊂ (0, x0), ω2 :=
(α2, β2) ⊂⊂ (x0, 1). Let us fix four points γi =

2αi+βi
3 and γ

′
i =

αi+2βi
3 , so that αi < γi < γ

′
i < βi,

for i = 1, 2. Then, fix β̃2 ∈ (α2, γ2) and consider a smooth function η : [0, 1]→ [0, 1] such that

η(x) =

{
1, x ∈ [γ2, 1],

0, x ∈ [0, β̃2].

Define ( p̂, q̂) := (ηU, ηV), where (U, V) is any fixed solution of (3.16)–(3.19). Hence, fixed
α̃2 ∈ (α2, β̃2), ( p̂, q̂) satisfies

p̂t + ap̂xx +
λ1

b1
p̂ = −µ

d
q̂ + a(ηxxU + 2ηxUx) := H1, (t, x) ∈ (0, T)× (α̃2, 1),

q̂t + aq̂xx +
λ2

b2
q̂ = −µ

d
p̂ + a(ηxxV + 2ηxVx) := H2, (t, x) ∈ (0, T)× (α̃2, 1),

p̂(t, α̃2) = p̂(t, 1) = q̂(t, α̃2) = q̂(t, 1) = 0, t ∈ (0, T)

with H1, H2 ∈ L2((0, T)× (α̃2, 1)).
Since x ∈ (α̃2, 1), observe that the system above is a nondegenerate and nonsingular prob-

lem. Thus, we can apply the analogue of Proposition 3.4 for the first component p̂ in (α̃2, 1)
place of (A, B), obtaining that there exist two positive constants C and s0 (s0 sufficiently large),
such that p̂ satisfies, for all s ≥ s0,∫ T

0

∫ 1

α̃2

[
sθ p̂2

x + s3θ3 p̂2
]
e2sΦ dx dt ≤ C

∫ T

0

∫ 1

α̃2

H2
1 e2sΦ dx dt.

Let us remark that the boundary term in x = 1 is nonpositive, while the one in x = α̃2 is 0, so
that they can be neglected in the classical Carleman estimate.

Then using the definition of η and in particular the fact that ηx and ηxx are supported in
ω̆ := (β̃2, γ2) ⊂⊂ ω2 where a, and 1

d are bounded, we can write

H2
1 ≤ cq̂2 + C(U2 + U2

x)1ω̆,

for positive constants c and C.
Hence, we find∫ T

0

∫ 1

α̃2

[
sθ p̂2

x + s3θ3 p̂2
]
e2sΦ dx dt ≤ c

∫ T

0

∫ 1

α̃2

q̂2e2sΦ dx dt + C
∫ T

0

∫
ω̆
[U2 + U2

x ]e
2sΦ dx dt.
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Analogously, one can prove that q̂ satisfies∫ T

0

∫ 1

α̃2

[
sθq̂2

x + s3θ3q̂2
]
e2sΦ dx dt ≤ c

∫ T

0

∫ 1

α̃2

p̂2e2sΦ dx dt + C
∫ T

0

∫
ω̆
[V2 + V2

x ]e
2sΦ dx dt.

Thus, summing the last two inequalities, it follows that∫ T

0

∫ 1

α̃2

[
sθ( p̂2

x + q̂2
x) + s3θ3( p̂2 + q̂2)

]
e2sΦ dx dt

≤ C̃
∫ T

0

∫ 1

α̃2

[ p̂2 + q̂2]e2sΦ dx dt + C
∫ T

0

∫
ω̆
[(U2 + V2) + (U2

x + V2
x )]e

2sΦ dx dt,

where C̃ and C are some universal positive constants.
Taking s such that C̃ ≤ 1

2 s3θ3, we obtain∫ T

0

∫ 1

α̃2

[
sθ( p̂2

x + q̂2
x) + s3θ3( p̂2 + q̂2)

]
e2sΦ dx dt ≤ C

∫ T

0

∫
ω̆
[U2 + V2 + U2

x + V2
x ]e

2sΦ dx dt.

Now, by the first inequality in (3.24), one can prove that there exists a positive constant k, such
that for every (t, x) ∈ [0, T]× [α̃2, 1]

e2sϕ(t,x) ≤ ke2sΦ(t,x),
(

x− x0

a(x)

)2

e2sϕ(t,x) ≤ ke2sΦ(t,x). (3.27)

Hence, by (3.27) and using the definitions of p̂ and q̂, it results∫ T

0

∫ 1

γ2

[
sθ(U2

x + V2
x ) + s3θ3

( x− x0

a

)2
(U2 + V2)

]
e2sϕ dx dt

=
∫ T

0

∫ 1

γ2

[
sθ( p̂2

x + q̂2
x) + s3θ3

( x− x0

a

)2
( p̂2 + q̂2)

]
e2sϕ dx dt

≤
∫ T

0

∫ 1

α̃2

[
sθ( p̂2

x + q̂2
x) + s3θ3

( x− x0

a

)2
( p̂2 + q̂2)

]
e2sϕ dx dt

≤ k
∫ T

0

∫ 1

α̃2

[
sθ( p̂2

x + q̂2
x) + s3θ3( p̂2 + q̂2)

]
e2sΦ dx dt

≤ C
∫ T

0

∫
ω̆
[U2 + V2 + U2

x + V2
x ]e

2sΦ dx dt

≤ C
∫ T

0

∫
ω̆

[
(U2 + V2)

1
a
+ (U2

x + V2
x )
]
e2sΦ dx dt

≤ C
∫ T

0

∫
ω
(U2 + V2)

e2sΦ

a
dx dt + C

∫ T

0

∫
ω̆
(U2

x + V2
x )e

2sΦ dx dt.

Consequently, by Lemma 5.1 and by the inequality above, we get∫ T

0

∫ 1

γ2

[
sθ(U2

x + V2
x ) + s3θ3

( x− x0

a

)2
(U2 + V2)

]
e2sϕ dx dt

≤ C
∫ T

0

∫
ω
(U2 + V2)

e2sΦ

a
dx dt + C

∫ T

0

∫
ω2

s2θ2[U2 + V2] e2sΦ

a
dx dt

≤ C
∫ T

0

∫
ω

s2θ2[U2 + V2] e2sΦ

a
dx dt, (3.28)

for a positive constant C.
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To complete the proof it is sufficient to prove a similar inequality on the interval [0, γ2].
To this aim, we perform a reflection procedure already introduced in [29], considering the
functions

W(t, x) :=

{
U(t, x), x ∈ [0, 1],

−U(t,−x), x ∈ [−1, 0],
Z(t, x) :=

{
V(t, x), x ∈ [0, 1],

−V(t,−x), x ∈ [−1, 0],

where (U, V) solves (3.16)–(3.19). Therefore, (W, Z) solves the system

Wt + ãWxx +
λ1

b̃1
W +

µ

d̃
Z = 0, (t, x) ∈ (0, T)× (−1, 1),

Zt + ãZxx +
λ2

b̃2
Z +

µ

d̃
W = 0, (t, x) ∈ (0, T)× (−1, 1),

W(t,−1) = W(t, 1) = Z(t,−1) = Z(t, 1) = 0, t ∈ (0, T),

(3.29)

being

b̃i(x) :=

{
bi(x), x ∈ [0, 1],

bi(−x), x ∈ [−1, 0],
d̃(x) =

{
d(x), x ∈ [0, 1],

d(−x), x ∈ [−1, 0],

and ã is already defined in (3.6).
Now, consider a smooth function τ : [−1, 1]→ [0, 1] such that

τ(x) =

{
1, x ∈ [−γ1, γ2],

0, x ∈ [−1,−γ′1] ∪ [γ′2, 1],

and define the functions p̌ = τW and q̌ = τZ, where (W, Z) is the solution of (3.29). Then
( p̌, q̌) satisfies

p̌t + ã p̌xx +
λ1

b̃1
p̌ +

µ

d̃
q̌ = ã(τxxW + 2τxWx) := F1, (t, x) ∈ (0, T)× (−β1, 1),

q̌t + ãq̌xx +
λ2

b̃2
q̌ +

µ

d̃
p̌ = ã(τxxZ + 2τxZx) := F2, (t, x) ∈ (0, T)× (−β1, 1),

( p̌, q̌)(t,−β1) = ( p̌, q̌)(t, 1) = 0, t ∈ (0, T).

Observe that p̌x(t,−β1) = p̌x(t, 1) = q̌x(t,−β1) = q̌x(t, 1) = 0 and, by the assumption on a
and the fact that τx, τxx are supported in [−γ′1,−γ1] ∪ [γ2, γ′2], F1, F2 ∈ L2

1/ã((0, T)× I), where
I := (−β1, 1). Thus, we can apply the analogue of Theorem 3.2 (which still holds true, since
ã belongs to W1,1(−1, 1) in the weakly degenerate case and to W1,∞(−1, 1) in the strongly
degenerate one, see [12, Lemma 9.2]) on (−β1, 1) in place of (0, 1), obtaining that there exist
two positive constants C and s0 (s0 sufficiently large), such that ( p̌, q̌) satisfies, for all s ≥ s0,∫ T

0

∫ 1

−β1

[
sθ
(

p̌2
x + q̌2

x
)
+ s3θ3

( x− x0

ã

)2(
p̌2 + q̌2)]e2sϕ dx dt ≤ C

∫ T

0

∫ 1

−β1

(F2
1 + F2

2 )
e2sϕ

ã
dx dt.

Using again the fact that τx, τxx are supported in [−γ′1,−γ1] ∪ [γ2, γ′2], it follows that∫ T

0

∫ 1

−β1

[
sθ
(

p̌2
x + q̌2

x
)
+ s3θ3

( x− x0

ã

)2(
p̌2 + q̌2)]e2sϕ dx dt

≤ C
[ ∫ T

0

∫ −γ1

−γ′1

[W2 + W2
x + Z2 + Z2

x]e
2sϕ dx dt

+
∫ T

0

∫ γ′2

γ2

[W2 + W2
x + Z2 + Z2

x]e
2sϕ dx dt

]
. (3.30)
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Now, by the definitions of W and Z, we note that

∫ T

0

∫ −γ1

−γ′1

[W2 + W2
x + Z2 + Z2

x]e
2sϕ(x) dx dt

=
∫ T

0

∫ −γ1

−γ′1

[U2(−x) + U2
x(−x) + V2(−x) + V2

x (−x)]e2sϕ(x) dx dt. (3.31)

On the other hand, using a change of variable, one has

∫ T

0

∫ −γ1

−γ′1

[U2(−x) + U2
x(−x) + V2(−x) + V2

x (−x)]e2sϕ(x) dx dt

=
∫ T

0

∫ γ′1

γ1

[U2(x) + U2
x(x) + V2(x) + V2

x (x)]e2sϕ(−x) dx dt.

At this point, we use (3.25) to deduce that

∫ T

0

∫ −γ1

−γ′1

[U2(−x) + U2
x(−x) + V2(−x) + V2

x (−x)]e2sϕ(x) dx dt

≤
∫ T

0

∫ γ′1

γ1

[U2 + U2
x + V2 + V2

x ]e
2sΦ(x) dx dt. (3.32)

Combining (3.31) and (3.32), it follows that

∫ T

0

∫ −γ1

−γ′1

[W2 + W2
x + Z2 + Z2

x]e
2sϕ(x) dx dt ≤

∫ T

0

∫ γ′1

γ1

[U2 + U2
x + V2 + V2

x ]e
2sΦ(x) dx dt. (3.33)

Going back to (3.30), by (3.33) and using the fact that ϕ ≤ Φ, we obtain

∫ T

0

∫ 1

−β1

(
sθ
(

p̌2
x + q̌2

x
)
e2sϕ + s3θ3

( x− x0

ã

)2(
p̌2 + q̌2)) e2sϕ dx dt

≤ C
[∫ T

0

∫ γ′1

γ1

[U2 + U2
x + V2 + V2

x ]e
2sΦ dx dt +

∫ T

0

∫ γ′2

γ2

[U2 + U2
x + V2 + V2

x ]e
2sΦ dx dt

]
≤ C

[∫ T

0

(∫ γ′1

γ1

+
∫ γ′2

γ2

)
[U2 + V2]

1
a

e2sΦ dx dt +
∫ T

0

(∫ γ′1

γ1

+
∫ γ′2

γ2

)
[U2

x + V2
x ]e

2sΦ dx dt
]

≤ C
[∫ T

0

(∫
ω1

+
∫

ω2

)
[U2 + V2]

1
a

e2sΦ dx dt +
∫ T

0

(∫ γ′1

γ1

+
∫ γ′2

γ2

)
[U2

x + V2
x ]e

2sΦ dx dt
]

.

Thus, applying the Caccioppoli inequality given in Lemma 5.1, one gets

∫ T

0

∫ 1

−β1

(
sθ
(

p̌2
x + q̌2

x
)
e2sϕ + s3θ3

( x− x0

ã

)2(
p̌2 + q̌2)) e2sϕ dx dt

≤ C
[∫ T

0

(∫
ω1

+
∫

ω2

)
[U2 + V2]

1
a

e2sΦ dx dt +
∫ T

0

(∫
ω1

+
∫

ω2

)
s2θ2[U2 + V2]

e2sΦ

a
dx dt

]
≤ C

∫ T

0

(∫
ω1

+
∫

ω2

)
s2θ2[U2 + V2]

e2sΦ

a
dx dt

≤ C
∫ T

0

∫
ω

s2θ2[U2 + V2]
e2sΦ

a
dx dt.
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Hence, using the definitions of W, Z, p̌ and q̌, it results∫ T

0

∫ γ2

0

(
sθ(U2

x + V2
x ) + s3θ3C

( x− x0

a
C
)2
(U2 + V2)

)
e2sϕ dx dt

=
∫ T

0

∫ γ2

0

(
sθ(W2

x + Z2
x) + s3θ3C

( x− x0

ã
C
)2
(W2 + Z2)

)
e2sϕ dx dt

=
∫ T

0

∫ γ2

0

(
sθ( p̌2

x + q̌2
x) + s3θ3C

( x− x0

ã
C
)2
( p̌2 + q̌2)

)
e2sϕ dx dt

≤
∫ T

0

∫ 1

−β1

(
sθ( p̌2

x + q̌2
x) + s3θ3C

( x− x0

ã
C
)2
( p̌2 + q̌2)

)
e2sϕ dx dt

≤ C
∫ T

0

∫
ω

s2θ2[U2 + V2]
e2sΦ

a
dx dt, (3.34)

for all s ≥ s0 and for a positive constant C.
Finally adding up (3.28) and (3.34), Theorem 3.7 follows.

The above Carleman estimate can be used to obtain null controllability of system (1.1)–
(1.4) if we apply 2 control forces, but to obtain this aim only with one control force, we need
to eliminate the second local term from the right side of (3.26). In order to carry this process
out, we will need the following result.

Lemma 3.8. Let ε > 0 and consider an open set ω0 such that ω0 ⊂⊂ ω. Then, there is Cε > 0 such
that every solution (U, V) to (3.16)–(3.19) satisfies∫ T

0

∫
ω0

s2θ2V2 e2sΦ

a
dx dt ≤ εJ(V) + Cε

∫ T

0

∫
ω

U2

a
dx dt,

where ε > 0 is small enough, s is large enough and

J(V) =
∫ T

0

∫ 1

0

(
sθV2

x + s3θ3
( x− x0

a

)2
V2
)

e2sϕ dx dt.

Proof. Let χ ∈ C∞(0, 1), such that 0 ≤ χ ≤ 1 in (0, 1), supp(χ) ⊂ ω and χ ≡ 1 on ω0.
Multiplying the first equation of system (3.16)–(3.19) by s2θ2χ e2sΦ

a V and integrating over Q, we
have ∫∫

Q
s2θ2 µ

d
χ

e2sΦ

a
V2 dx dt = −

∫∫
Q

s2θ2χ
e2sΦ

a
UtV dx dt

−
∫∫

Q
s2θ2χe2sΦUxxV dx dt

−
∫∫

Q
s2θ2 λ1

b1
χ

e2sΦ

a
UV dx dt.

(3.35)

After integrating in time and having in mind the equation satisfied by V, we get

−
∫∫

Q
s2θ2χ

e2sΦ

a
UtV dx dt

=
∫∫

Q
s2θ2χe2sΦUxVx dx dt +

∫∫
Q

s2θ2(χe2sΦ)xUVx dx dt

+
∫∫

Q

[
−s2θ2 λ2

b2
+ 2s3θ2θ̇Ψ + 2s2θθ̇

]
χ

e2sΦ

a
UV dx dt−

∫∫
Q

s2θ2 µ

d
χ

e2sΦ

a
U2 dx dt,

(3.36)
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and ∫∫
Q

s2θ2χe2sΦUxxV dx dt = −
∫∫

Q
s2θ2χe2sΦUxVx dx dt

+
∫∫

Q
s2θ2(χe2sΦ)xUVx dx dt

+
∫∫

Q
s2θ2(χe2sΦ)xxUV dx dt.

(3.37)

Altogether from (3.35)-(3.37), we obtain

∫∫
Q

s2θ2 µ

d
χ

e2sΦ

a
V2 dx dt = K1 + K2 + K3,

where
K1 = 2

∫∫
Q

s2θ2χe2sΦUxVx dx dt,

K2 = −
∫∫

Q
s2θ2 µ

d
χ

e2sΦ

a
U2 dx dt,

K3 =
∫∫

Q

[
−s2θ2

(
λ1

b1
+

λ2

b2

)
+ 2s3θ2θ̇Ψ + 2s2θθ̇

]
χ

e2sΦ

a
UV dx dt

−
∫∫

Q
s2θ2(χe2sΦ)xxUV dx dt.

For ε > 0, using Young’s inequality, we have

|K1| = 2
∣∣∣∣∫∫Q

(
√

sθesϕVx)((sθ)
3
2 χes(2Φ−ϕ)Ux) dx dt

∣∣∣∣
≤ ε

∫∫
Q

sθe2sϕV2
x dx dt +

1
ε

∫∫
Q

s3θ3χ2e2s(2Φ−ϕ)U2
x dx dt︸ ︷︷ ︸

L

.

In the last inequality, we still have to estimate L by an integral in U2. For this, we multiply the
equation by U by s3θ3χ2 e2s(2Φ−ϕ)

a U and integrate on Q to obtain

L = L1 + L2 + L3 + L4,

where

L1 = −1
2

∫∫
Q

s3(3θ2 + 2sθ3(2Ψ− ψ))θ̇χ2 × e2s(2Φ−ϕ)

a
U2 dx dt,

L2 =
1
2

∫∫
Q

s3θ3(χ2e2s(2Φ−ϕ))xxU2 dx dt,

L3 =
∫∫

Q
s3θ3χ2 λ1

b1

e2s(2Φ−ϕ)

a
U2 dx dt,

L4 =
∫∫

Q
s3θ3χ2 µ

d
e2s(2Φ−ϕ)

a
UV dx dt.

Since supp(χ) ⊂ ω, we observe that the functions a, 1
bi

, 1
d , χ, ψ, Ψ and their derivatives are

bounded on ω. Then, by the fact that |θ̇| ≤ Cθ2, we deduce that, for i ∈ {1, 2, 3}

|Li| ≤ C
∫ T

0

∫
ω

s5θ5 e2s(2Φ−ϕ)

a
U2 dx dt.
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For i = 4, one can see that

|L4| =
∣∣∣∣∫∫Q

[
(sθ)

3
2
(x− x0)

a
esϕV

] [
(sθ)

3
2

µ

d
χ2 1

(x− x0)
es(4Φ−3ϕ)U

]
dx dt

∣∣∣∣
≤ ε2

∫∫
Q

s3θ3
( x− x0

a

)2
V2e2sϕ dx dt

+
1

4ε2

∫∫
Q

s3θ3
(µ

d

)2
χ4 1

(x− x0)2 e2s(4Φ−3ϕ)U2 dx dt

≤ ε2
∫∫

Q
s3θ3

( x− x0

a

)2
V2e2sϕ dx dt + Cε

∫ T

0

∫
ω

s3θ3 e2s(4Φ−3ϕ)

a
U2 dx dt.

Hence,

|L| ≤ Cε

∫ T

0

∫
ω

s5θ5 e2s(4Φ−3ϕ)

a
U2 dx dt + ε2

∫∫
Q

s3θ3
( x− x0

a

)2
V2e2sϕ dx dt.

Therefore,

|K1| ≤ Cε

∫ T

0

∫
ω

s5θ5 e2s(4Φ−3ϕ)

a
U2 dx dt + εJ(V).

Using the fact that χ′ and χ are supported in ω and x0 6∈ ω, proceeding as before, one obtains

|K2| ≤ C
∫ T

0

∫
ω

s2θ2 e2sΦ

a
U2 dx dt,

|K3| ≤ C
∫∫

Q
s4θ4(χ′′ + χ′ + χ)

e2sΦ

a
UV dx dt

≤ C
∫∫

Q

(
(sθ)

3
2

x− x0

a
esϕV

)(
(sθ)

5
2

1
(x− x0)

(χ′′ + χ′ + χ)es(2Φ−ϕ)U
)

dx dt

≤ ε
∫∫

Q
s3θ3

( x− x0

a

)2
V2e2sϕ dx dt + Cε

∫ T

0

∫
ω

s5θ5 e2s(2Φ−ϕ)

a
U2 dx dt.

Furthermore, thanks to Lemma 3.5, we have

e2sΦ ≤ e2s(2Φ−ϕ) ≤ e2s(4Φ−3ϕ) ≤ 1,

sup
(t,x)∈Q

srθr(t)e2s(4Φ−3ϕ) < ∞, r ∈ R.

Then, for ε small enough and s large enough, we have∣∣∣∣∫∫Q
s2θ2 µ

d
χ

e2sΦ

a
V2 dx dt

∣∣∣∣ ≤ Cε

∫ T

0

∫
ω

U2

a
dx dt + 2εJ(V).

Finally, by the definition of χ and the previous inequality, it follows that

µ

max
x∈ω0

d(x)

∫ T

0

∫
ω0

s2θ2 e2sΦ

a
V2 dx dt ≤

∣∣∣∣∫ T

0

∫
ω0

s2θ2 µ

d
χ

e2sΦ

a
V2 dx dt

∣∣∣∣
≤
∣∣∣∣∫∫Q

s2θ2 µ

d
χ

e2sΦ

a
V2 dx dt

∣∣∣∣
≤ Cε

∫ T

0

∫
ω

U2

a
dx dt + εJ(V).

This ends the proof.
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Now, we apply inequality (3.26) with ω0 to obtain the following main Carleman estimate
for the adjoint system which bounds the global integrals of the variable (U, V) in terms of a
unique localized variable.

Theorem 3.9. Let T > 0. Then there exist two positive constants C and s0 such that, for all s ≥ s0,
the solution (U, V) ∈ W of (3.16)–(3.19) satisfies

∫ T

0

∫ 1

0

[
sθ(U2

x + V2
x ) + s3θ3

( x− x0

a

)2
(U2 + V2)

]
e2sϕ(t,x) dx dt ≤ C

∫ T

0

∫
ω

U2

a
dx dt. (3.38)

4 Application to observability inequality

In this section, we investigate the observability inequality for the problem (3.12)–(3.15) and de-
duce the null controllability for the problem (1.1)–(1.4). In particular, using the local Carleman
estimate in Theorem 3.9, we will prove the next observability inequality:

Theorem 4.1. Assume Hypotheses 3.1 and 3.6. Then there exists a positive constant CT such that
every (U, V) ∈ C([0, T]; H1/a) ∩ L2(0, T;K1

1 ×K1
2) solution of (3.12)–(3.15) satisfies

∫ 1

0
[U2(0, x) + V2(0, x)]

1
a

dx ≤ CT

∫ T

0

∫
ω

U2(t, x)
1
a

dx dt.

The above theorem follows by a density argument as in [29, Proposition 4.1] as a conse-
quence of the next observability inequality in the case of a regular final-time datum.

Lemma 4.2. Assume Hypotheses 3.1 and 3.6. Then there exists a positive constant CT such that every
(U, V) ∈ W solution of (3.16)–(3.19) satisfies

∫ 1

0

[
U2(0, x) + V2(0, x)

] 1
a

dx ≤ CT

∫ T

0

∫
ω

U2(t, x)
1
a

dxdt.

Proof. Multiplying the first and the second equations in the system (3.16)–(3.19) respectively
by Ut

a and Vt
a , integrating over (0, 1), the sum of the new equations gives

0 =
∫ 1

0

[
U2

t + V2
t
] 1

a
dx + [UxUt + VxVt]

1
0 −

1
2

d
dt

∫ 1

0

[
U2

x + V2
x
]

dx

+
∫ 1

0

[
λ1

ab1
UUt +

λ2

ab2
VVt

]
dx +

∫ 1

0

µ

ad
(
UVt + VUt

)
dx

=
∫ 1

0

[
U2

t + V2
t
] 1

a
dx− 1

2
d
dt

∫ 1

0

[
U2

x + V2
x
]

dx

+
1
2

d
dt

∫ 1

0

[
λ1

ab1
U2 +

λ2

ab2
V2
]

dx + µ
d
dt

∫ 1

0

UV
ad

dx

≥ −1
2

d
dt

∫ 1

0

[
U2

x + V2
x
]

dx +
1
2

d
dt

∫ 1

0

[
λ1

ab1
U2 +

λ2

ab2
V2
]

dx + µ
d
dt

∫ 1

0

UV
ad

dx.

Hence, the function t 7−→
∫ 1

0

[
U2

x + V2
x
]

dx −
∫ 1

0

[ λ1
ab1

U2 + λ2
ab2

V2] dx − 2µ
∫ 1

0
UV
ad dx is non de-

creasing for all t ∈ [0, T]. In particular, by Young and Hardy–Poincaré inequalities (2.2) and
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(2.4), it results∫ 1

0

[
U2

x(0, x) + V2
x (0, x)

]
dx−

∫ 1

0

[
λ1

ab1
U2(0, x) +

λ2

ab2
V2(0, x)

]
dx− 2µ

∫ 1

0

U(0, x)V(0, x)
ad

dx

≤
∫ 1

0

[
U2

x(t, x) + V2
x (t, x)

]
dx−

∫ 1

0

[
λ1

ab1
U2(t, x) +

λ2

ab2
V2(t, x)

]
dx

− 2µ
∫ 1

0

U(t, x)V(t, x)
ad

dx

≤
∫ 1

0

[
U2

x(t, x) + V2
x (t, x)

]
dx + λC?

∫ 1

0

[
U2

x(t, x) + V2
x (t, x)

]
dx

+ µC?
d

∫ 1

0

[
U2

x(t, x) + V2
x (t, x)

]
dx

= (1 + λC? + µC?
d)
∫ 1

0

[
U2

x(t, x) + V2
x (t, x)

]
dx,

where λ = max{|λ1|, |λ2|} and C? = max{C?
1 , C?

2}.
Integrating the previous inequality over [ T

4 , 3T
4 ], θ being bounded therein, we find∫ 1

0

[
U2

x(0, x)− λ1

ab1
U2(0, x)

]
dx +

∫ 1

0

[
V2

x (0, x)− λ2

ab2
V2(0, x)

]
dx− 2µ

∫ 1

0

U(0, x)V(0, x)
ad

dx

≤ 2
T
(1 + λC? + µC?

d)
∫ 3T

4

T
4

∫ 1

0

[
U2

x(t, x) + V2
x (t, x)

]
dx dt

≤ CT

∫ 3T
4

T
4

∫ 1

0
sθ
[
U2

x(t, x) + V2
x (t, x)

]
e2sϕ dx dt.

Hence, by the Carleman estimate given in Theorem 3.9 and the previous inequality, there
exists a positive constant C such that∫ 1

0

[
U2

x(0, x)− λ1

ab1
U2(0, x)

]
dx +

∫ 1

0

[
V2

x (0, x)− λ2

ab2
V2(0, x)

]
dx− 2µ

∫ 1

0

U(0, x)V(0, x)
ad

dx

≤ C
∫ T

0

∫
ω

U2(t, x)
1
a

dx dt.

From the previous inequality and Propositions 2.6, for δ > 0, one has

Λ1

∫ 1

0
U2

x(0, x) dx + Λ2

∫ 1

0
V2

x (0, x) dx

≤ C
∫ T

0

∫
ω

U2(t, x)
1
a

dx dt + 2µ
∫ 1

0

U(0, x)V(0, x)
ad

dx

≤ C
∫ T

0

∫
ω

U2(t, x)
1
a

dx dt + 2µδC?
d

∫ 1

0
U2

x(0, x) dx + µ
C?

d
2δ

∫ 1

0
V2

x (0, x) dx.

Therefore,(
Λ1 − 2µδC?

d
) ∫ 1

0
U2

x(0, x) dx +

(
Λ2 − µ

C?
d

2δ

) ∫ 1

0
V2

x (0, x) dx ≤ C
∫ T

0

∫
ω

U2(t, x)
1
a

dx dt.

Consequently, if we now choose δ satisfying (2.12), we readily deduce that there exists C > 0
such that ∫ 1

0

[
U2

x(0, x) + V2
x (0, x)

]
dx ≤ C

∫ T

0

∫
ω

U2(t, x)
1
a

dx dt. (4.1)
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Finally, applying the Hardy–Poincaré inequality (see [29, Proposition 2.6]) and (4.1), we have

∫ 1

0

[
U2(0, x) + V2(0, x)

] 1
a

dx =
∫ 1

0

p
(x− x0)2

[
U2(0, x) + V2(0, x)

]
dx

≤ CHP

∫ 1

0
p
[
U2

x(0, x) + V2
x (0, x)

]
dx

≤ C0CHP

∫ 1

0

[
U2

x(0, x) + V2
x (0, x)

]
dx

≤ C
∫ T

0

∫
ω

U2(t, x)
1
a

dx dt,

(4.2)

for a positive constant C. Here p(x) = (x−x0)
2

a , CHP is the Hardy–Poincaré constant and

C0 := max
[

x2
0

a(0)
,
(1− x0)2

a(1)

]
.

Hence, the conclusion follows.

5 Appendix

The basic result to prove Theorem 3.7 is the following Caccioppoli’s inequality for systems of
degenerate singular parabolic equations, which is the counterpart of [33, Lemma 6.1] for the
non divergence case.

Lemma 5.1 (Caccioppoli’s inequality). Let ω′ and ω two open subintervals of (0, 1) such that
ω′ ⊂⊂ ω ⊂ (0, 1) and x0 6∈ ω. Then, there exist two positive constants C and s0 such that every
solution (U, V) ∈ W of the adjoint problem (3.16)–(3.19) satisfies

∫ T

0

∫
ω′
[U2

x(t, x) + V2
x (t, x)]e2sΦdxdt ≤ C

∫ T

0

∫
ω

s2θ2[U2(t, x) + V2(t, x)]
e2sΦ

a
dxdt, (5.1)

for all s ≥ s0.

Observe that we require x0 6∈ ω̄, since in the applications above the control region ω is
assumed to satisfy 3.6.

Proof of Lemma 5.1. Let us consider a smooth function ξ ∈ C∞(0, 1) such that 0 ≤ ξ ≤ 1 in
(0, 1), supp ξ ⊂ ω and ξ ≡ 1 on ω′. Hence, by definition of Φ and having in mind the
equations satisfied by (U, V), we have

0 =
∫ T

0

d
dt

[∫ 1

0
ξ2e2sΦ(U2 + V2)dx

]
dt

= 2
∫ T

0

∫ 1

0
sΦ̇ξ2e2sΦ(U2 + V2) dx dt + 2

∫ T

0

∫ 1

0
ξ2e2sΦa(x)

[
U2

x + V2
x
]

dx dt

+ 2
∫ T

0

∫ 1

0
(a(x)ξ2e2sΦ)x [UUx + VVx] dx dt− 2

∫ T

0

∫ 1

0
ξ2e2sΦ

[
λ1

b1
U2 +

λ1

b1
U2
]

dx dt

− 4µ
∫ T

0

∫ 1

0
ξ2e2sΦ UV

d
dx dt.
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Then an integration by parts leads to∫ T

0

∫ 1

0
ξ2e2sΦa(x)

[
U2

x + V2
x
]

dx dt

= −
∫ T

0

∫ 1

0
sΦ̇ξ2e2sΦ(U2 + V2) dx dt +

1
2

∫ T

0

∫ 1

0
(a(x)ξ2e2sΦ)xx(U2 + V2) dx dt

+
∫ T

0

∫ 1

0
ξ2e2sΦ

(
λ1

b1
U2 +

λ2

b2
V2
)

dx dt + 2µ
∫ T

0

∫ 1

0
ξ2e2sΦ UV

d
dx dt.

Since minx∈ω′ a(x) > 0 and |θ̇| ≤ cθ2, then, by the Young’s inequality and by definition of ξ,

min
x∈ω′

a(x)
∫ T

0

∫
ω′

e2sΦ[U2
x + V2

x ] dx dt ≤
∫ T

0

∫ 1

0
ξ2e2sΦa(x)[U2

x + V2
x ] dx dt

≤ C
∫ T

0

∫
ω
(1 + s2θ2 + s|θ̇|)[U2 + V2]e2sΦ dx dt

≤ C
∫ T

0

∫
ω

s2θ2[U2 + V2]e2sΦ dx dt

≤ C
∫ T

0

∫
ω

s2θ2[U2 + V2]
e2sΦ

a
dx dt.

Thus, the claim follows.

6 Conclusion

In this paper, we studied the null controllability for a coupled degenerate parabolic system
with a symmetric singular coupling matrix C, see (1.8). In particular, the question of well
posedness of the problem is addressed. Then, thanks to Carleman estimates, an observability
inequality with observation being made on only one of the components of the state is proved.
The main restrictive assumption under which the results presented in this paper are valid
is the symmetry of the singular coupling matrix. This mentioned assumption is required
not only to obtain well-posedness result but also to get the observability estimate. It would
be interesting to know if a more general singular coupling matrix can still lead to indirect
observability and null controllability results.
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