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Abstract. The second order nonlinear differential equation

x′′ + h(t, x, x′)x′ + f (x) = 0
(
x ∈ R, t ∈ R+ := [0, ∞), ()′ := d

dt ()
)
,

and a sequence {In}∞
n=1 of non-overlapping intervals are given, where the damping

coefficient h admits an estimate

a(t)|y|αw(x, y) ≤ h(t, x, y) ≤ b(t)W(x, y) (t ∈ I := ∪∞
n=1 In; x, y ∈ R).

It is known that if the equation is linear ( f (x) ≡ x, h(t, x, x′) ≡ h(t), a(t) ≤ h(t) ≤ b(t)),
a(t) ≥ a = const. > 0 and b(t) ≤ b = const. < ∞, then ∑∞

n=1 |In|3 = ∞ is sufficient
for the asymptotic stability, and the exponent 3 is the best possible. (Here |In| denotes
the length of In.) We give sufficient conditions for the asymptotic stability of the zero
solution via the control functions a, b on the control set I considering cases when a > 0
and/or b < ∞ do not exist.
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1 Introduction

We consider the model

x′′ + h(t, x, x′)x′ + f (x) = 0
(
x ∈ R, t ∈ R+ := [0, ∞), ()′ := d

dt ()
)
, (1.1)

of a nonlinear damped oscillator, where − f (x) is the restoring force ( f : (−M, M) → R is
continuous, 0 < M ≤ ∞ is a fixed constant, x f (x) > 0 if x 6= 0); h : R+ × (−M, M)×R→ R+

is the damping coefficient, which allows an estimate

a(t)|y|αw(x, y) ≤ h(t, x, y) ≤ b(t)W(x, y). (1.2)

BEmail: hatvani@math.u-szeged.hu

https://doi.org/10.14232/ejqtde.2018.1.66
https://www.math.u-szeged.hu/ejqtde/


2 L. Hatvani

Here α is a nonnegative real number; w, W : (−M, M)×R→ R+ are continuous, w(x, y) > 0
for all x, y. Functions a, b : R+ → R+ are piecewise continuous, they are called the lower
and the upper control function respectively: we can control the damping via these functions.
Intermittent damping means that we are given a sequence {In = (αn, βn)}∞

n=1 (limn→∞ αn = ∞)
of non-overlapping intervals, and it is supposed that a, b can be controlled only over these in-
tervals in time; between the intervals nothing but the nonnegativity of a(t), b(t) is supposed.
I := ∪∞

n=1 In will be called the control set. The problem is to find conditions on a, b, {In} guar-
anteeing the asymptotic stability for the equilibrium state x = x′ = 0 in Lyapunov’s sense [3].
This is the problem of intermittent damping [5, 6, 8, 10–13].

Let us introduce the following notations:

H(x, y) :=
1
2

y2 + F(x) (total mechanical energy), F(x) :=
∫ x

0
f ;

HM := {(x, y) ∈ (−M, M)×R : H(x, y) < min{F(M), F(−M)}};

0 < KM :=
(

sup
{

f (x)
x

: 0 < |x| ≤ M
})1/2

≤ ∞ (0 < M < M); (1.3)

A(t) :=
∫ t

0
a(s)ds, B(t) :=

∫ t

0
b(s)ds;

an := inf{a(t) : αn < t < βn} an := sup{a(t) : αn < t < βn};

An :=
∫ βn

αn

a(t)dt, Bn :=
∫ βn

αn

b(t)dt (n ∈N);

bn, bn are defined analogously with an, an. It is easy to see that for every M ∈ (0, M) the
closure of HM is compact, and there is a constant c(M) > 0 such that

a(t) ≤ c(M)b(t) (t ∈ R+). (1.4)

The derivative of H with respect to (1.1) [3] is

H′(t, x, x′) = −h(t, x, x′)(x′)2 ≤ 0, (1.5)

so H is non-increasing along any solution of (1.1) (the energy is dissipated). Therefore HM

is an invariant neighborhood of (0, 0), so the equilibrium is stable. We always suppose that
(x(0), x′(0)) ∈ HM, so |x(t)| < M is also satisfied for all t ∈ R+. It has remained to find
conditions for the control functions a, b guaranteeing limt→∞ H(t, x(t), x′(t)) = 0 for every
solution t 7→ x(t) with (x(0), x′(0)) ∈ HM.

The first result on the intermittent damping was published by R. A. Smith [13] for the
linear case

h(t, x, x′) ≡ h(t), f (x) ≡ x, a(t) ≡ b(t) ≡ h(t). (1.6)

Theorem A. Suppose that

∞

∑
n=1

hn|In|
(

min
{
|In|;

1
1 + hn

})2

= ∞, (1.7)

where |In| denotes the length of In. Then the zero solution of (1.1) is asymptotically stable.

This theorem was improved in the linear case (1.6) in [10]. P. Pucci and J. Serrin [12] proved
theorems for very general quasi-variational ordinary differential systems of many degrees of
freedom. Here we cite the consequences of their two main theorems for (1.1) using the notation

dn :=
1
|In|

∫
In

b
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end the concept of integral positivity.

Definition 1.1. A locally integrable function g : R+ → R+ is called integrally positive with
parameter δ > 0 if

lim inf
t→∞

∫ t+δ

t
g > 0. (1.8)

If (1.8) is satisfied for all δ > 0, then g is called integrally positive.

Theorem B. Suppose that there exist positive constants c1, c2, c3 such that

∞

∑
n=1

an|In|min
{
|In|2+α;

c1

c2 + c3andn

}
= ∞. (1.9)

Then the zero solution of (1.1) is asymptotically stable.

Theorem C. Suppose that the lower control function a is integrally positive and there exists a positive
constant c4 such that

∞

∑
n=1

min
{
|In|2;

c4

dn
|In|
}

= ∞. (1.10)

Then the zero solution of (1.1) is asymptotically stable.

These theorems yield the following rather unexpected corollaries for simpler control func-
tions.

Corollary D. I. If
a(t) ≥ a > 0, b(t) ≤ b < ∞ (t ∈ I) (1.11)

with some constants a, b, and
∞

∑
n=1
|In|3+α = ∞, (1.12)

then the zero solution of (1.1) is asymptotically stable.

II. If
a(t) ≥ a > 0 (t ∈ R+), b(t) ≤ b < ∞ (t ∈ I),

and
∞

∑
n=1
|In|2 = ∞, (1.13)

then the zero solution of (1.1) is asymptotically stable.

Pucci and Serrin [12] showed that the exponents 3 + α and 2 in (1.12) and (1.13), respec-
tively are the best possible ones in the sense that without further restrictions no smaller ex-
ponents can yield the general conclusion. For this reason we call Theorem B, respectively
Theorem C, a result of “type exponent 3 + α”, respectively of “type exponent 2”.

In this paper we prove theorems of types 3 + α and 2, which do not use the infimum
an, therefore they will be applicable when the lower control function a often vanishes even
on intervals of a fixed length. Pucci and Serrin based their results on the method of quasi-
variational inequalities. We use an entirely different approach, the method of differential
inequalities.

The paper is organized as follows. In Section 2 and 3 we formulate the basic theorems and
their corollaries and discuss the results. In Section 4 we give the proofs.
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2 Results of type “exponent 3 + α”

Equation (1.1) is equivalent to the system

x′ = y, y′ = − f (x)− h(t, x, y)y. (2.1)

By the use of the polar coordinates r, ϕ with

x = r cos ϕ, y = r sin ϕ (r > 0,−∞ < ϕ < ∞), (2.2)

this system can be rewritten into the form

r′ = r sin ϕ cos ϕ− f (r cos ϕ) sin ϕ− h(t, r cos ϕ, r sin ϕ) sin2 ϕ, (2.3)

ϕ′ = −
(

sin2 ϕ +
f (r cos ϕ)

r cos ϕ
cos2 ϕ

)
− h(t, r cos ϕ, r sin ϕ) sin ϕ cos ϕ. (2.4)

In what follows, if t 7→ (x(t), y(t)) is a solution of (2.1), then we mention the same solution as
“solution t 7→ (r(t), ϕ(t))”, provided that x(t), y(t) and r(t), ϕ(t) are connected via (2.2).

For a solution t 7→ (x(t), y(t)) starting from HM (M > 0) introduce the notations

h∗(t) := h(t, x(t), y(t)), H∗(t) := H(x(t), y(t)). (2.5)

The proof of the main result will be based upon the method of contradiction. We will sup-
pose that the equilibrium is not asymptotically stable, i.e., there exists a point (x(0), y(0)) ∈
HM such that for the solution (x(t), y(t)) starting from this point there holds H∗(∞) :=
limt→∞ H∗(t) > 0. Then it can be seen that

lim inf
t→∞

r(t) =: r0 > 0. (2.6)

Integrating (1.5) we get a contradiction if we have the divergence

H∗(0)− H∗(∞) ≥ r2
0

∫ ∞

0
h∗(t) sin2 ϕ(t)dt

≥ r2+α
0

(
inf
HM

w(x, y)
) ∫ ∞

0
a(t)| sin ϕ(t)|2+α dt = ∞.

(2.7)

However, we cannot require directly divergence (2.7) of a(t) because we do not know ϕ(t) from
the solution (r, ϕ). The main idea is that we estimate | sin ϕ(t)| from below, the estimation
defines an appropriate family of test functions on the control set I and in the theorem we
require the divergence of the integral of the products of a(t) and the test functions.

Theorem 2.1. I. Suppose that for every γ > 0, for every sequence of non-overlapping intervals {In =

(αn, βn)}∞
n=1 of the property βn − αn ≤ γ, and for arbitrary ξn ∈ In the divergence

∞

∑
n=1

(∫ ξn

αn

a(t)
(

min
{∫ t

αn

exp[−q(B(t)− B(s))]ds; ξn − t
})2+α

dt

+
∫ βn

ξn

a(t)
(

min
{∫ t

ξn

exp[−q(B(t)− B(s))]ds; βn − t
})2+α

dt

)
= ∞ (q = q(M) := supHM

W(x, y))

(2.8)

holds. Then the equilibrium of (1.1) is asymptotically stable.

II. Suppose KM < ∞. If (2.8) holds for some γ < π/KM, then the equilibrium of (1.1) is asymptoti-
cally stable.
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If we estimate
∫ t

αn
exp[−q(B(t)− B(s))]ds in (2.8) in different ways, then we get different

corollaries. At first we use bn = supIn
b.

Corollary 2.2. Suppose that there are a sequence {In} of non-overlapping intervals and a number
κ ∈ (0, 1) such that

∞

∑
n=1

(
min

{
|In|;

1
1 + bn

})2+α ∫
En

a = ∞ (2.9)

holds for every sequence {En} of sets En ⊂ In such that En is the union of finite subintervals of In and
mes(En) ≥ κ|In|, where mes(En) denotes the Lebesgue measure of En. Then the equilibrium of (1.1)
is asymptotically stable.

This corollary is a generalization of Smith’s Theorem A to the nonlinear equation (1.1).
What is more, in the special case (1.6) it implies a sharpened version of Theorem A working
also in the case hn = 0. We can get a more general result if we use Bn =

∫
In

b instead of bn.

Corollary 2.3. Suppose that for every γ > 0 there are a sequence {In} of non-overlapping intervals
with |In| ≤ γ and a number κ ∈ (0, 1) such that

∞

∑
n=1

(
exp

[
−q

∫
In

b
]
|In|
)2+α ∫

En

a = ∞ (2.10)

holds for every sequence {En} of sets En ⊂ In such that En is the union of finite subintervals of In and
mes(En) ≥ κ|In|. Then the equilibrium of (1.1) is asymptotically stable.

It is worth noticing that the condition κ ∈ (0, 1) in Corollaries 2.2 and 2.3 is sharp in the
sense that if we require (2.9) and (2.10) with En = In (the case of κ = 1), then the corollaries
become false. In fact, e.g., if Corollary 2.2 were true with κ = 1, then

∫ ∞
0 a = ∞ (this is (2.9)

with bounded b and In = (n, n + 1)) would imply asymptotic stability for the zero solution
of (1.1) provided b is bounded, but this is not true (see, e.g., [10, 12]). The following corollary
gives a condition containing

∫
In

a instead of
∫

En
a.

Corollary 2.4. Suppose that for every γ > 0 there is a sequence {In} of non-overlapping intervals
with |In| ≤ γ such that

∞

∑
n=1

(
1
an

exp
[
−q

∫
In

b
])2+α (∫

In

a
)3+α

= ∞ (2.11)

holds. Then the equilibrium of (1.1) is asymptotically stable.

Now we cite a result showing that Corollary 2.4, and consequently Theorem 2.1 are sharp
enough. It is known that in the case of “small damping” (0 ≤ h(t) ≡ h(t, x, y) ≤ h < ∞,
t ∈ R+) there is no necessary and sufficient condition for the asymptotic stability even in the
linear case except linear equations with step function coefficients. Á. Elbert [1] dealt with the
linear equation

x′′ + h(t)x′ + x = 0, h(t) :=

{
hn > 0, for t ∈ In = [ωn, ωn+1), n ∈N

0, otherwise.
(2.12)

He solved (2.12) on intervals In, then, to get the global solution of an initial value problem, he
“glued together” the pieces of the solution at the endpoints of In’s so that the solution might
be continuously differentiable on [0, ∞). He proved the following
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Theorem E. Suppose that the sequences {|In|} and {hn|In|} are bounded. Then the zero solution of
(2.12) is asymptotically stable if and only if

∞

∑
n=1

hn|In|3 = ∞. (2.13)

It is easy to see that under the conditions of Theorem 2.4 and Theorem E on {In} and {hn}
conditions (2.11) and (2.13) are equivalent. Therefore we can say that condition (2.11) is not
only sufficient but also necessary in some sense.

Corollary D was unexpected because the effect of the damping was controlled from below
via lengths |In| in condition (1.12). Now we already see that this was made possible by
the condition a(t) ≥ a > 0 in (1.11). One expects that in the general case without this
condition it is

∫
In

a that can be used for estimating the effect of damping from below (see
(1.5)). Corollary 2.4 gives the possibility of dropping condition a(t) ≥ a > 0 from (1.11), and
the result verifies this expectation.

Corollary 2.5. Suppose that for every γ > 0 there is a sequence {In} of non-overlapping intervals
with |In| ≤ γ such that the sequence {bn} is bounded and

∞

∑
n=1

(∫
In

a
)3+α

= ∞ (2.14)

holds. Then the equilibrium of (1.1) is asymptotically stable.

Remark 2.6. For the sake of brevity, in Corollaries 2.3–2.5 we did not mention that in the case
of KM < ∞ the boundedness condition on |In| can be weakened in the following way: it is
enough to require that there exists a constant γ ∈ (0, π/KM) such that condition (2.10), (2.11),
or (2.14) is satisfied for every sequence {In} of the property |In| ≤ γ.

In general, the boundedness condition on |In| cannot be dropped from the corollaries.
This can be seen very easily in the case of Corollary 2.5. Suppose that (2.14) alone guaranties
asymptotic stability provided that {bn} is bounded. However if there is no boundedness
condition on |In|, then

∫ ∞
0 a = ∞ implies (2.14). In fact, it is enough to choose In so that∫

In
a ≥ 1. This would mean that

∫ ∞
0 a = ∞ guarantees asymptotic stability provided that {bn}

is bounded, but it is well-known that this is not true (see, e.g., [10, 12]).
Fortunately, by the aid of a new method of proof we can strengthen condition (2.14) so

that the boundedness condition on |In| may be omitted.

Theorem 2.7. Suppose that there is a sequence {Ik} of non-overlapping intervals such that the sequence
{bk} is bounded and

∞

∑
k=1

1
1 + |Ik|2+α

(∫
Ik

a
)3+α

= ∞ (2.15)

holds. Then the equilibrium of (1.1) is asymptotically stable.

3 Results of type “exponent 2”

In contrast with the previous one, in this section we always suppose that the damping is
“large” in the sense that the lower control function is integrally positive with a suitable pa-
rameter not only on the control set I but on the whole half-line [0, ∞). It can be proved [4]



On the asymptotic stability for intermittently damped nonlinear oscillators 7

that under this condition there exists no oscillatory solution of the property H∗(∞) > 0, so
we have to deal with only non-oscillatory solutions. As is known, they are monotonous; we
have to exclude the so-called overdamping x(∞) 6= 0. R. A. Smith gave the first necessary and
sufficient condition for the linear case (1.6) requiring∫ ∞

0

∫ t

0
exp

[
−
∫ t

s
h
]

ds dt = ∞ (3.1)

provided that the oscillator is controlled on the whole half-line [0, ∞).
In this section we generalize (3.1) to the intermittent damping of nonlinear systems.

Theorem 3.1. Suppose that{
a is integrally positive if KM = ∞,

a is integrally positive with parameter π/KM if KM < ∞.
(3.2)

If, in addition,
∞

∑
n=1

∫ βn

αn

(∫ t

αn

exp[−(B(t)− B(s))]ds
)

dt = ∞, (3.3)

then the zero solution of the equilibrium of (1.1) is asymptotically stable.

We give two more explicit corollaries using L∞ and L1 norm of b.

Corollary 3.2. Suppose (3.2). If, in addition,

∞

∑
n=1

(
1
bn
|In| −

1

b
2
n

(
1− exp[−bn|In|]

))
= ∞, (3.4)

then the zero solution of (1.1) is asymptotically stable. Especially, (3.2) and

∞

∑
n=1

1
bn
|In| = ∞ and

∞

∑
n=1

1

b
2
n

< ∞ (3.5)

imply that the zero solution of (1.1) is asymptotically stable.

Corollary 3.3. Suppose (3.2). If, in addition,

∞

∑
n=1

exp
[
−
∫ βn

αn

b
]
|In|2 = ∞, (3.6)

then the zero solution of (1.1) is asymptotically stable.

Conditions (3.2)–(3.6) are knew; we can say that they extend (1.12)–(1.13) to unbounded
control function b.

In comparison, e.g., with (1.10), condition (3.3) is not explicit enough for applications.
Now we make it more explicit and applicable. Let us fix a constant d > 0 and introduce the
notations

tn,k := inf
{

t ≥ αn :
∫ t

αn

b = kd
}

, rn,k := min{tn,k; βn}, (k = 0, 1, . . .). (3.7)
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Theorem 3.4. For every d > 0 condition (3.3) is equivalent to

∞

∑
n=1

(
∞

∑
k=1

(rn,k − rn,k−1)
2

)
= ∞. (3.8)

Theorem C follows from Theorems 3.1 and 3.4 with d = c4, namely condition (1.10) in
Theorem C implies (3.8). In fact, if Bn < c4, then rn,1 − rn,0 = βn − αn = |In| ≥ |In|/

√
2. If

Bn ≥ c4, then let kn ≥ 1 denote the smallest natural number of the property rn,kn = βn. By
Cauchy’s inequality we have

∞

∑
k=1

(rn,k − rn,k−1)
2 =

kn

∑
k=1

(rn,k − rn,k−1)
2

≥ 1
kn

(
kn

∑
k=1

(rn,k − rn,k−1)

)2

=
|In|2
kn

> |In|2
1

1 +
Bn

c4

≥ 1
2
|In|2

c4

Bn
,

which completes the proof.
In [8] it is proved by an example that (3.8) does not imply (1.10). This means that Theo-

rem 3.1 does not follow from Theorem C.

4 Proofs

We will need an earlier lemma [4, Lemma 2.2] to estimate the distances of consecutive zeros
of sin ϕ(t) for an oscillatory solution (r, ϕ).

Lemma 4.1. Suppose KM < ∞ and consider a solution (r, ϕ) ((x(0), x′(0)) ∈ HM). Suppose, in
addition, that 0 < ε < π/2, and

ϕ(T) = −kπ − ε, ϕ(S) = −(k + 1)π + ε

with some k ∈N, 0 < T < S.
Then there are µ(ε) > 0, ν(ε) > 0, independent of T, S such that

lim
ε→0+0

ν(ε) = 0,
∫ S

T
h∗(t) sin2 ϕ(t)dt ≥ µ(ε)

(
π

KM
− (S− T)− ν(ε)

)
. (4.1)

The following lemma estimates the waste of energy between two zeros of sin ϕ(t) for an
oscillatory solution.

Lemma 4.2. Let us given an oscillatory solution of (1.1) with H∗(∞) := limt→∞ H∗(t) > 0, and let
us use the notation r0 := lim inft→∞ r(t) > 0. Denote by {τn}∞

n=1 the increasing sequence of all zeros
of sin ϕ(t). Then there are constants c5 = c5(r0, M) > 0 and q = q(M) > 0, independent of n such
that for every n ∈N we have

H∗(τn)− H∗(τn+1) ≥ r2
0

∫ τn+1

τn

h∗(t) sin2 ϕ(t)dt

≥ c5

∫ τn+1

τn

a(t)
(

min
{∫ t

τn

exp[−q(B(t)− B(s))ds]; τn+1 − t
})2+α

dt.
(4.2)
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Proof. Suppose that ϕ(τn) = −kπ and, consequently ϕ(τn+1) = −(k + 1)π (k ∈ N). Let
τ′n ∈ (τn, τn+1) denote the first time point where ϕ(τ′n) = −kπ − π/2 holds. From (2.4) it
follows that

(ϕ(t)− ϕ(τn))
′ ≤ −p(r0, M)− qb(t)(ϕ(t)− ϕ(τn)) (τn ≤ t ≤ τ′n), (4.3)

q = q(M) := sup
HM

W(x, y),

p(r0, M) := min
{

sin2 ϕ +
f (x)

x
cos2 ϕ : (x, y) ∈ HM, r ≥ r0

}
> 0.

By the basic theorem of the theory of differential inequalities [3, Theorem III.4.1, p. 26] we
have

ϕ(t) ≤ −kπ − p(r0, M)
∫ t

τn

exp[−q(B(t)− B(s))]ds (τn ≤ t ≤ τ′n). (4.4)

On the other hand, ϕ′(t) ≤ −p(r0, M) on the interval [τ′n, τn+1], therefore

ϕ(t) ≥ −(k + 1)π + p(r0, M)(τn+1 − t) (τ′n ≤ t ≤ τn+1). (4.5)

Combining (4.4) and (4.5) we obtain

| sin ϕ(t)| ≥ 2
π

p(r0, M)min
{∫ t

τn

exp[−q(B(t)− B(s))]ds; τn+1 − t
}

(τn ≤ t ≤ τn+1).
(4.6)

From this estimate and (1.5) we get (4.2) with

c5 :=
(

inf
HM

w(x, y)
)(

2
π

r0 p(r0, M)

)2+α

.

We also need an analogous lemma for non-oscillatory solutions.

Lemma 4.3. For every non-oscillatory solution of (1.1) with H∗(∞) > 0 there exists a T∗ > 0 such
that for arbitrary τ1, τ2 (T∗ < τ1 < τ2) we have

H∗(τ1)− H∗(τ2) ≥ c5

∫ τ2

τ1

a(t)
(∫ t

τ1

exp[−q(B(t)− B(s))ds]
)2+α

dt. (4.7)

Proof. If (x, y) is a non-oscillatory solution, then it can bee seen that x(t)y(t) < 0 for t large
enough, let us say if t ≥ T∗, and limt→∞ ϕ(t) ≡ 0 (mod π). Then

−
(

k +
1
4

)
π < ϕ(t) < −kπ for some k ∈ Z+.

Similarly to (4.3) we obtain

(ϕ(t) + kπ)′ ≤ −pr0,M − qb(t)(ϕ(t) + kπ) (T∗ ≤ τ1 ≤ t ≤ τ2),

and

ϕ(t) ≤ −kπ + (ϕ(τ1) + kπ)e−q(B(t)−B(τ1)) − pr0,M

∫ t

τ1
e−q(B(t)−B(s)) ds

≤ −kπ − pr0,M

∫ t

τ1
e−q(B(t)−B(s)) ds,

| sin ϕ(t)| ≥ 2
π
|ϕ(t) + kπ| (τ1 ≤ t ≤ τ2),

from which (4.7) follows.
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Proof of Theorem 2.1. Suppose the contrary and let (x, y) be such a solution that H∗(∞) > 0.
If this solution is oscillatory, then let {τn}∞

n=1 denote the increasing sequence of all zeros of
sin ϕ(t). For a fixed n there is a k ∈ Z+ such that ϕ(τn) = −kπ and ϕ(τn+1) = −(k + 1)π. Let
tn, sn ∈ (τn, τn+1) denote the time points when ϕ(tn) = −kπ − π/8 and ϕ(sn) = −kπ − 3π/8
for the first time. Then

ϕ′(t) ≥ −p(r0, M) (tn ≤ t ≤ sn),

consequently,
τn+1 − τn ≥ sn − tn ≥ π/(4p(r0, M)). (4.8)

We state that Im contains at most one member of {τn} provided that m is large enough.
In fact, at first let us consider the case KM = ∞, choose a γ from the interval

(0, π/(4p(r0, M))) and an {Im} with |Im| ≤ γ and such that (2.8) is satisfied. In view of
(4.8) the statement is true for arbitrary m. If KM < ∞, then choose γ ∈ (0, π/KM) and {Im}
so that |Im| ≤ γ and (2.8) hold, and suppose that the statement is not true. Since |Im| ≤ γ for
all m ∈ N, this means that there are infinitely many n’s with τn+1 − τn ≤ γ < π/KM. Let us
denote by {(τ′k, τ′k+1)}∞

k=1 the subsequence of {(τn, τn+1)} with this property. Choosing ε > 0
applying so small that ν(ε) < ((π/KM)− γ)/2 and applying (2.7) and Lemma 4.1 we obtain

H∗(0)− H∗(∞) ≥ r2
0

∞

∑
m=1

∫ τ′m+1

τ′m
h∗(t) sin2 ϕ(t)dt

≥ r2
0µ(ε)

∞

∑
m=1

((
π

KM
− γ

)
− ν(ε)

)
= ∞,

which is a contradiction.
We have proved that Im contains at most one member of {τn} provided that m is large

enough. Without loss of the generality we may drop the finitely many Im’s containing at least
two τn’s.

Now we estimate the integrals over [τn, τn+1] in (2.2) by integrals on Im. We will use the
simple fact that if τ < α < t, then∫ t

τ
exp[−q(B(t)− B(s))ds] ≥

∫ t

α
exp[−q(B(t)− B(s))ds].

We consider only those (τn, τn+1)’s that have points from the control set I = ∪∞
m=1 Im: n1 <

n2 < · · · < nk < · · · are the natural numbers such that (τnk , τnk+1) ∩ I 6= ∅. Let us fix a k ∈N

and denote by Ipk , Ipk+1, . . . , Iqk (1 ≤ pk ≤ qk ≤ pk+1) the control intervals having common
points with (τnk , τnk+1):

Ipk+j ∩ (τnk , τnk+1) 6= ∅ (j = 0, 1, . . . , qk − pk).

Then we have the estimate

H∗(τnk−1)− H∗(τnk+2))

≥
qk−pk

∑
j=0

c5

∫ ξpk+j

αpk+j

a(t)

(
min

{∫ t

αpk+j

e−q(B(t)−B(s))ds; ξpk+j − t

})2+α

dt

+
∫ βpk+j

ξpk+j

a(t)

(
min

{∫ t

ξpk+j

e−q(B(t)−B(s))ds; βpk+j − t

})2+α

dt

 .

(4.9)
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If τnk ∈ Ipk (τnk+1 ∈ Iqk ), then ξpk = τnk (ξqk = τnk+1), otherwise ξpk+j is arbitrary in Ipk+j. On
the other hand

3(H∗(0)− H∗(∞)) ≥ 3

(
∞

∑
n=1

(H∗(τn)− H∗(τn−1))

)

≥ 3

(
∞

∑
k=1

(H∗(τnk+2)− H∗(τnk−1))

)
.

(4.10)

It follows from (4.9) and (4.10) that condition (2.8) implies H∗(0) − H∗(∞) = ∞, that is a
contradiction.

If the solution (x, y) is non-oscillatory, then we apply Lemma 4.3. There exists a natural
number m∗ such that m > m∗ implies αm > T∗, so from (4.7) we obtain

H∗(T∗)− H∗(∞) ≥ −
∫
[T∗,∞)∩I

H′∗(t)dt

≥ c5

∞

∑
m=m∗

∫ βm

αm

a(t)
(∫ t

αm

exp[−q(B(t)− B(s))ds]
)2+α

dt

≥ c5

∞

∑
m=m∗

∫ βm

αm

a(t)
(

min
{∫ t

αm

exp[−q(B(t)− B(s))ds]; βm − t
})2+α

dt.

Condition (2.8) implies H∗(0)− H∗(∞) = ∞ again.

In what follows we will use the notation

gG := sup{g(t) : t ∈ G} (G ⊂ R+, g : R+ → R).

Lemma 4.4.

∫ t

α
exp[−q(B(t)− B(s))ds] ≥ 1

3
(t− α)

(
α ≤ t ≤ 1

qb(α,β)

)
. (4.11)

Proof. Since the function t 7→ 1− exp[−qb(α,β)(t− α)] is concave we have the estimate

∫ t

α
exp[−q(B(t)− B(s))ds] ≥

∫ t

α
exp[−qb(α,β)(t− s)]ds

=
1

qb(α,β)
(1− exp[−qb(α,β)(t− α)]) ≥ 1

3
(t− α)

(
α ≤ t ≤ α +

ln 3
qb(α,β)

)
,

from which (4.11) follows.

Proof of Corollary 2.2. Suppose that there exist {In} and κ ∈ (0, 1) such that condition (2.9) in
Corollary 2.2 is satisfied. We show that condition (2.8) in Theorem 2.1 is also satisfied for the
same {In}.
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Starting from (2.8) and using the estimate (4.11) in Lemma 4.4 we obtain

J1
n :=

∫ ξn

αn

a(t)
(

min
{∫ t

αn

exp[−q(B(t)− B(s))]ds; ξn − t
})2+α

dt

≥
∫ min{αn+1/qbn;ξn}

αn

a(t)
(

min
{

1
3
(t− αn; ξn − t)

})2+α

dt

+
∫ ξn

min{αn+1/qbn;ξn}
a(t)

(
min

{
1

qbn
(1− exp[−1]) ; ξn − t

})2+α

dt

≥ c6

∫ ξn

αn

a(t)
(

min
{

t− αn; ξn − t;
1

1 + bn

})2+α

dt

with a suitably chosen constant c6 > 0 independent of n. Similarly,

J2
n :=

∫ βn

ξn

a(t)
(

min
{∫ t

ξn

exp[−q(B(t)− B(s))]ds; βn − t
})2+α

dt

≥ c7

∫ βn

ξn

a(t)
(

min
{

t− ξn; βn − t;
1

1 + bn

})2+α

dt

with a constant c7 > 0 independent of n. Therefore there is a constant c8 > 0 such that

∞

∑
n=1

(J1
n + J2

n) ≥ c8

∞

∑
n=1

∫ βn

αn

a(t)
(

min
{

t− αn; |ξn − t|; βn − t;
1

1 + bn

})2+α

dt. (4.12)

Now we choose a small δn > 0 (it will be defined later) and cut out δn-neighborhoods of
αn, ξn, and βn. Then we get∫ βn

αn

a(t)
(

min
{

t− αn; |ξn − t|; βn − t;
1

1 + bn

})2+α

dt

≥
(

min
{

δn;
1

1 + bn

})2+α ∫
En

a,

(4.13)

where
En := In \ ([αn, αn + δn] ∪ [ξn − δn, ξn + δn] ∪ [βn − δn, βn]) . (4.14)

Let δn be defined by
δn := ((1− κ)/4)|In|. (4.15)

Combining (4.12), (4.13), and (2.9) we obtain

∞

∑
n=1

(J1
n + J2

n) ≥ c8

(
1− κ

4

)2+α ∞

∑
n=1

(
min

{
|In|;

1
1 + bn

})2+α ∫
En

a = ∞, (4.16)

which means that divergence (2.8) is also satisfied.
It has remained to prove that for every γ > 0 we may suppose that |In| ≤ γ. This

means that if (2.9) is satisfied for {In} and κ, then it also holds for another sequence {Lm}∞
m=1

with the same κ, but |Lm| ≤ γ (m ∈ N). The same fact was proved for linear systems in
[7, Corollary 4.2]. To make the present paper self-contained we repeat the short proof here.

Let us observe at first the obvious fact that for arbitrary {un, vn, wn} (0 < un < 1,
vn, wn > 0) and δ > 0 the two divergences

∞

∑
n=1

min{un; vn}wn = ∞,
∞

∑
n=1

min{un; vn; δ}wn = ∞
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are equivalent.
If |In| > γ, then we divide the interval In into non-overlapping subintervals

In = ∪ln
j=1 Inj, γ/2 ≤ |Inj| ≤ γ,

and take arbitrary sets Enj ⊂ Inj which are finite union of intervals such that mes(En j) ≥ κ|In j|.
Then

ln

∑
j=1

(
min

{
1

1 + bnj
; |Inj|

})2+α ∫
Enj

a ≥
(

min
{
|In|;

1
1 + bn

;
γ

2

})2+α ∫
En

a,

provided that En := ∪ln
j=1 We obtain {Lm} if we exchange all In of the properties |In| > γ with

{Inj}ln
j=1.

Proof of Corollary 2.3. If we use the lower estimate∫ t

αn

exp [−q(B(t)− B(s))] ds ≥ exp
[
−
∫ βn

αn

q(B(t)− B(s))ds
]
(t− αn)

and its analogy on [ξn, βn], then for (2.8) we get an inequality analogous with (4.12):

∞

∑
n=1

(J1
n + J2

n) ≥ c9

∞

∑
n=1

(exp[−qBn])
2+α

∫ βn

αn

a(t) (min {t− αn; |ξn − t|; βn − t})2+α dt. (4.17)

Defining δn, En by (4.14), (4.15) we obtain

∞

∑
n=1

(J1
n + J2

n) ≥ c9

(
1− κ

4

)2+α ∞

∑
n=1

(exp[−qBn]|In|)2+α
∫

En

a = ∞, (4.18)

which means that divergence (2.8) is also satisfied.

Proof of Corollary 2.4. We start from (4.17). If we cut out δn-neighborhoods of αn, ξn, and βn,
then we have

∞

∑
n=1

(J1
n + J2

n) ≥ c9

∞

∑
n=1

(exp[−qBn]δn)
2+α

∫
En

a

≥ c9

∞

∑
n=1

(exp[−qBn]δn)
2+α

(∫
In

a− 4δnan

)
.

Defining δn := (1/8)
∫

In
a/an, from condition (2.11) we obtain

∞

∑
n=1

(J1
n + J2

n) ≥
1
2

(
1
8

)2+α

c9

∞

∑
n=1

(
exp[−qBn]

an

)2+α (∫
In

a
)3+α

= ∞,

i.e., divergence (2.8) holds.

Proof of Corollary 2.5. If we take into account (1.4), then (2.14) implies (2.11).

Lemma 4.5. Suppose that for every γ > 0 small enough and for every {τn} with γ ≤ τn+1− τn ≤ 2γ

we have
∞

∑
n=1

∫ τn+1

τn

a(t)
(

min
{∫ t

τn

exp[−q(B(t)− B(s))ds]; τn+1 − t
})2+α

dt = ∞. (4.19)

Then the equilibrium of (1.1) is asymptotically stable.
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Proof. Suppose the contrary and consider a solution (x, y) with H∗(∞) > 0. If x is oscillatory,
then denote by {τn} the increasing sequence of the zeros of sin ϕ(t). From (4.8) we know that
τn+1 − τn ≥ π/(4p(r0, M)). Take a γ ∈ (0, π/(4p(r0, M))). If τn+1 − τn ≤ 2γ (n ∈ N) is also
satisfied, then by Lemma 4.2 condition (4.19) implies a contradiction. Now we show that we
can always suppose τn+1 − τn ≤ 2γ (n ∈N) in property (4.2).

In fact, if τm+1 − τm > 2γ for some natural number m, then add new members

τm,1 := τm + γ, τm,2 := τm + 2γ, . . . , τm, jm := τm + jmγ (τm,0 := τm, τm, jm+1 := τm+1)

to the sequence {τn} as far as τm+1 − (τm + jmγ) ≤ 2γ. After we have made this addition
for all m of the property τm+1 − τm > 2γ, we denote by {τ′n} the new sequence. Firstly,
τ′n+1− τ′n) ≥ γ for all n. Secondly, τ′n+1− τ′n ≤ 2γ (n ∈N). Finally, if (4.2) is satisfied for {τm}
then (4.2) is also satisfied with {τ′m} instead of {τm}. In fact, obviously∫ τm+1

τm

a(t)
(

min
{∫ t

τm

e−q(B(t)−B(s)) ds; τm+1 − t
})2+α

dt

≥
jm

∑
j=0

∫ τm, j+1

τm, j

a(t)
(

min
{∫ t

τm, j

e−q(B(t)−B(s)) ds; τm, j+1 − t
})2+α

dt.

This means that condition (4.19) always implies a contradiction via (4.2).
If x is non-oscillatory, then for arbitrary γ > 0 define an increasing sequence {τn} of the

properties
τ1 > T∗, γ ≤ τn+1 − τn ≤ 2γ (n ∈N),

where T∗ is taken from Lemma 4.3. Now condition (4.19) implies a contradiction by (4.7).

In the proofs of Corollaries 2.2–2.4 we established the method of cutting subintervals out.
In the proof of Theorem 2.7 we have to apply it to a variety of intervals, so we formulate its
variant we need into a lemma.

Lemma 4.6 (Cutting Out Lemma). For arbitrary ξ, η (0 ≤ ξ < η < ∞) we have

J(ξ, η) :=
∫ η

ξ
a(t)

(
min

{∫ t

ξ
exp[−q(B(t)− B(s))ds]; η − t

})2+α

dt

≥ c10

(∫ η

ξ
a
)3+α

,

c10 = c10(ξ, η) :=
1
2

(
1

4c(M)b(ξ,η)

)2+α

exp[−(2 + α)qb(ξ,η)(η − ξ)].

(4.20)

Proof. Obviously we have

J(ξ, η) ≥ exp[−q(2 + α)b(ξ,η)(η − ξ)]
∫ η

ξ
a(t) (min{t− ξ; η − t})2+α .

Let δ > 0 be small enough (it will be defined later). We cut out δ-neighborhoods of ξ and η:∫ η

ξ
a(t) (min{t− ξ; η − t})2+α ≥ δ2+α

∫ η−δ

ξ+δ
a ≥ δ2+α

(∫ η

ξ
a− 2δa(ξ,η)

)
.

Choosing

δ :=
1

4a(ξ,η)

∫ η

ξ
a

and taking into account also (1.4) we obtain (4.20).
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Proof of Theorem 2.7. We want to use Lemma 4.5. Suppose that we have a sequence {Ik} of
property (2.15), and γ > 0, {τn} are arbitrary with γ ≤ τn+1− τn ≤ 2γ (n ∈N). We show that
(4.19) is satisfied.

Step 1. We modify {Ik} a little bit to make it more treatable. If an interval Ip does not contain
any member of {τn}, then we do not change Ip. Otherwise let τj, respectively τm be the
minimal, respectively the maximal member of the sequence {τn} in Ip. Consider the intervals
(αp, τj), (τj, τm), (τm, βp) and denote by I′p that one among them on which the integral of a is
maximal. Let us exchange Ip for I′p (and denote it by Ip again) in the sequence {Ik}. If the old
sequence satisfied condition (2.15), then the new sequence of intervals also satisfies the same
condition because of

∫
I′k

a ≥ (1/3)
∫

Ik
a.

Step 2. We make a classification for {Ik}. Taking an interval Ik = (αk, βk) arbitrarily, we have
exactly two possibilities:

a) Ik is the union of more than one but finitely many members of {(τn, τn+1)}:

Ik = (τmk , τmk+1) ∪ (τmk+1, τmk+2) ∪ · · · ∪ (τmk+Jk , τmk+Jk+1),

(mk ≥ 1, Jk ≥ 1);

b) there is an n ∈ N such that Ik ⊂ (τn, τn+1). Let pn, pn+1, . . . , pn + Pn be all the indices
possessing the properties Ipn+p ⊂ (τn, τn+1) (p = 0, 1, . . . , Pn).

Step 3. We consider case a) and apply Cutting Out Lemma. Then we obtain

Lk
j :=

∫ τmk+j+1

τmk+j

a(t)

(
min

{∫ t

τmk+j

exp[−q(B(t) −B(s))]ds; τmk+j+1 − t

})2+α

dt

≥ c11

(∫ τmk+j+1

τmk+j

a

)3+α

,

c11 :=
1
2

(
1

4c(M)bI

)2+α

exp[−2γ(2 + α)qbI ].

Step 4. By the power mean inequality [2, Theorem 86] and the property 0 < γ ≤ τn+1 − τn we
have

Jk

∑
j=0

Lk
j ≥ c11

Jk

∑
j=0

(∫ τmk+j+1

τmk+j

a

)3+α

≥ c11
1

(Jk + 1)2+α

(
Jk

∑
j=0

∫ τmk+j+1

τmk+j

a

)3+α

≥ c11γ2+α 1
|Ik|2+α

(∫
Ik

a
)3+α

.

(4.21)

Step 5. In case b) we also estimate the integral in (4.19). Similarly to Step 3, by Cutting Out
Lemma we can make the estimate∫ τn+1

τn

a(t)
(

min
{∫ t

τn

exp[−q(B(t)− B(s))ds]; τn+1 − t
})2+α

dt

≥ exp[−(2 + α)qbI ]
Pn

∑
p=0

∫ βpn+p

αpn+p

a(t)
(
min

{
t− αpn+p; βpn+p − t

})2+α dt

= c12

Pn

∑
p=0

(∫
Ipn+p

a
)3+α

≥ c12

Pn

∑
p=0

1
1 + |Ipn+p|2+α

(∫
Ipn+p

a
)3+α

(4.22)
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with a suitable defined constant c12.
By the combination of (4.21) and (4.22) condition (2.15) implies the desired divergence

(4.19).

Now we turn to proofs of results of type “exponent 2”.

Lemma 4.7. For arbitrary constant c > 0 the two conditions

∫ ∞

0

∫ t

0
exp [−c(B(t)− B(s))] ds dt = ∞, (4.23)∫ ∞

0

∫ t

0
exp [−(B(t)− B(s))] ds dt = ∞ (4.24)

are equivalent.

Proof. We apply [9, Theorem 1.1]. Introduce the notation

B−1(r) := inf
{

t ∈ R+ :
∫ t

0
b ≥ r

}
(r ∈ R+).

In the cited theorem we proved that condition (4.24) is equivalent to

∞

∑
n=1

(B−1(nd)− B−1((n− 1)d))2 = ∞ (4.25)

for arbitrary d > 0. Define bc(t) := cb(t) and Bc(t) :=
∫ t

0 bc = cB(t). Setting d = 1, from the
cited theorem we obtain that∫ ∞

0

∫ t

0
exp

[
−
(∫ t

0
cb(u)du−

∫ s

0
cb(u)du

)]
ds dt

=
∫ ∞

0

∫ t

0
exp [−(Bc(t)− Bc(s))] ds dt = ∞

(4.26)

is equivalent to

∞

∑
n=1

(B−1
c (n)− B−1

c ((n− 1))2 =
∞

∑
n=1

(
B−1

(
1
c

n
)
− B−1

(
1
c
(n− 1)

))2

= ∞. (4.27)

By a repeated application of the cited theorem now with d = 1/c, (4.26) and(4.27) yield the
statement of the lemma.

Proof of Theorem 3.1. In [4, Theorem 2.2] we proved that the integral positivity and

∫ ∞

0

∫ t

0
exp [−q(M)(B(t)− B(s))] ds dt = ∞

are sufficient for the asymptotic stability. By Lemma 4.7 it is enough to show that (3.3) implies
(4.24). This obviously follows from the estimate

∫ ∞

0

∫ t

0
exp [−(B(t)− B(s))] ds dt ≥

∞

∑
n=1

∫ βn

αn

(∫ t

αn

exp[−(B(t)− B(s))]ds
)

dt.
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Proof of Corollary 3.2. We apply the estimate

Jn :=
∫ βn

αn

(∫ t

αn

exp[−(B(t)− B(s))]ds
)

dt

≥
∫ βn

αn

(∫ t

αn

exp[−bn(t− s)]ds
)

dt =
1
bn
|In| −

1

b
2
n

(
1− exp[−bn|In|]

)
to condition (3.3).

Proof of Corollary 3.3. In Theorem 3.1 we use the estimate

Jn ≥
∫ βn

αn

(∫ t

αn

exp[−(B(βn)− B(αn))]ds
)

dt =
1
2

exp[−Bn]|In|2.

αn

an,1

rn,1 rn,2 rn,3 rn,k rn,k+1 βn

an,2 an,3 an,k+1

Tn,1

Tn,2

Tn,k+1

s

t

Figure 4.1: To the estimation of mes(Tn,k)

Proof of Theorem 3.4. Introduce the notations

Tn,k{(t, s) ∈ [αn, βn]× [αn, βn] : (k− 1)d ≤ B(t)− B(s) < kd},
an,k := rn,k − rn,k−1 (k = 1, 2, . . . ).

Then by Figure 4.1 we have

mes(Tn,k) ≤ an,1(an,k + an,k+1) + an,2(an,k+1 + an,k+2) + . . .

≤
(

a2
n,1 +

a2
n,k + a2

n,k+1

2

)
+

(
a2

n,2 +
a2

n,k+1 + a2
n,k+2

2

)
+ . . .

≤ 2(a2
n,1 + a2

n,2 + . . .).

(4.28)
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On the other hand, obviously

mes(Tn,1) ≥
1
2
(a2

n,1 + a2
n,2 + . . .). (4.29)

From (4.29) and (4.28) we obtain the inequalities

L :=
∞

∑
n=1

∫ βn

αn

(∫ t

αn

exp[−(B(t)− B(s))]ds
)

dt

≥
∞

∑
n=1

e−dmes(Tn,1) ≥
1
2

e−d
∞

∑
n=1

∞

∑
k=1

(rn,k − rn,k−1)
2,

and

L ≤
∞

∑
n=1

∞

∑
k=1

exp[−(k− 1)d]mes(Tn,k)

≤ 2
∞

∑
n=1

((
∞

∑
k=1

exp[−(k− 1)d]

)(
∞

∑
k=1

a2
n,k

))

≤ 2
ed

ed − 1

∞

∑
n=1

(
∞

∑
k=1

(rn,k − rn,k−1)
2

)
,

respectively, which complete the proof.
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