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Abstract. We consider the Cauchy problem of a nonlocal nonlinear Schrödinger equa-
tion with self-induced parity-time-symmetric potential. Global existence of solution
and decay estimates are obtained for suitably small initial data when the spatial dimen-
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1 Introduction

This paper is concerned with a nonlocal nolinear Schrödinger (NLS) equation which reads

iψt(t, x) +
1
2

∆ψ(t, x) + gψ(t, x)ψ(t,Px)ψ(t, x) = 0, (1.1)

where ψ : R×Rd → C is unknown, ψ is the complex conjugation of ψ, and g is a real constant
(g > 0 and g < 0 denote the focusing and defocusing cases, respectively). In the above
equation, P is a d × d matrix, which denotes a parity transformation with the determinant
satisfying

detP = −1. (1.2)

More precisely, in odd spatial dimensions, Px = −x, that is, the sign of all the coordinates
is changed, while in even spatial dimensions, a parity transformation means that the sign of
only an odd number of coordinates can be reversed. In particular, in one dimensional case,
equation (1.1) reduces to

iψt(t, x) +
1
2

ψxx(t, x) + gψ(t, x)ψ(t,−x)ψ(t, x) = 0, (t, x) ∈ R×R. (1.3)

Note that P is not unique in even dimensions. For example, if d = 2, Px can take as either
Px = (−x1, x2) or Px = (x1,−x2).
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Equation (1.1) was first derived by Ablowitz and Musslimani [1] in one dimensional
case, and by Sinha and Ghosh [9] in higher dimensional case. In the equation, the self-
induced potential V(t, x) := ψ(t, x)ψ(t,Px) is non-Hermitian but parity-time-symmetric (PT -
symmetric), that is, V(t,Px) = V(t, x). Note that the value of the potential V at x depends not
only on the information of ψ at x, but also on Px, so it is a nonlocal potential. PT -symmetric
condition is weaker than the condition of self-adjointness, however, it was shown by Bender
and Boettcher [3] that non-Hermitian Hamiltonians having PT symmetry may also exhibit
real spectra, hence, a great deal of investigations on PT -symmetric systems are carried out
both theoretically and experimentally. Using a unified two-parameter model, equation (1.1)
can be generalized to vector form [12]. If ψ(t,−x) = ψ(t, x), equation (1.1) reduces to the
classical NLS equation

iψt(t, x) +
1
2

∆ψ(t, x) + g|ψ(t, x)|2ψ(t, x) = 0. (1.4)

When d = 1, Ablowitz and Musslimani [1] showed that the nonlocal NLS equation (1.1) is
an integrable system. Exact soliton solutions were obtained in [1, 2, 6, 8, 9]. In particular, from
the identity (22) in [1], we know the focusing nonlocal NLS equation (1.3) (i.e., g > 0) has the
one-soliton solution

ψ∗(t, x) = ± 2(η1 + η2)eiθ2 ei2gη2
2 te−2

√
gη2x

1 + ei(θ1+θ2)e−i2g(η2
1−η2

2)te−2
√

g(η1+η2)x
,

where the four parameters η1, η2, θ1, θ2 are real, η1, η2 > 0 and η1 6= η2. Note that ψ∗ eventually
develops a singularity in finite time Tn at x = 0,

lim
t→Tn
|ψ∗(t, 0)| = +∞ with Tn =

(2n + 1)π − θ1 − θ2

2g(η2
2 − η2

1)
, n ∈ Z.

In particular, by setting θ1 = θ2 = 0, η1 = ε, η2 = 2ε, it can be computed that

‖ψ∗(0, x)‖L2(R) . ε
1
2 , ‖ψ∗x(0, x)‖L2(R) . ε

3
2 .

This implies that solutions of (1.1) may develop finite time blow up behavior even with H1

small initial data. Therefore, compared to the classical NLS equation (1.4) where we know
global solutions exist with arbitrarily large H1 initial data and possesses a modified scattering
behavior for small initial data [5,7], the nonlocal NLS equation exhibits a completely different
picture in one spatial dimension due to the presence of the nonlocal nonlinearity. So a natural
question is whether such phenomenon still occurs for higher space dimensions. This is the
main motivation of the present work.

In this paper, the notation A . B (A, B ≥ 0) means that there exists a constant C > 0 such
that A ≤ CB. For 1 ≤ p ≤ +∞, Lp(Rd) is the usual Lebesgue space. For s ∈ R, Hs(Rd)

denotes the inhomogeneous Sobolev space equipped with the norm

‖u‖Hs := ‖(1 + |ξ|2)s/2û‖L2 ,

where û = û(ξ) is the Fourier transform of u, namely,

û(ξ) = Fu :=
1

(2π)d/2

∫
Rd

e−ix·ξu(x)dx.

Now, we state the main result of the paper, see Theorems 1.1 and 1.2 below. The initial data
of the equation (1.1) is endowed as

ψ(0, x) = ψ0(x). (1.5)
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Theorem 1.1. Let d ≥ 3, N > d
2 be an integer. Then there exists a sufficiently small constant ε0 > 0

such that if the initial data ψ0 satisfies

‖ψ0‖HN(Rd) + ‖ψ0‖L1(Rd) ≤ ε0, (1.6)

then the nonlocal NLS equation (1.1) admits a unique global solution ψ ∈ C(R; HN(Rd)). Moreover,
for all t ∈ R, there hold that

‖ψ(t, x)‖HN(Rd) . ε0, ‖ψ(t, x)‖L∞(Rd) .
ε0

(1 + |t|)d/2 . (1.7)

Theorem 1.2. Assume d = 2 and the initial data ψ0 satisfies

‖ψ0‖HN(R2) + ‖|x|2ψ0‖L2(R2) ≤ ε0, (1.8)

where the integer N > 1 and ε0 > 0 is sufficiently small. Then the Cauchy problem (1.1) and (1.5) has
a unique global solution ψ ∈ C(R; HN(R2)) satisfying for all t ∈ R,

‖ψ(t, x)‖HN(R2) + ‖|x|2 f (t, x)‖L2(R2) . ε0, ‖ψ(t, x)‖L∞(R2) .
ε0

1 + |t| , (1.9)

where f (t, x) := e−
it∆
2 ψ(t, x) is the profile of ψ(t, x).

From the above theorems, we observe that small initial data still leads to global solution
for the nonlocal NLS equation when d ≥ 2, which is different from one dimensional case.
This shows that for long time existence, the dispersive effect dominates the nonlocal effect in
higher dimensions. By using the energy norm and the decay norm, Theorems 1.1 and 1.2 are
proved in Sections 3 and 4, respectively.

Finally, we remark that the total charge N and the Hamiltonian H of the equation (1.1) are
conserved (see [9]), namely, N (t) = N (0) and H(t) = H(0) with

N (t) :=
∫

Rd
ψ(t, x)ψ(t,Px)dx,

H(t) :=
∫

Rd

[1
2
∇ψ(t, x) · ∇ψ(t,Px)− g

2
(
ψ(t, x)ψ(t,Px)

)2]dx.

Although each term in N and H is real-valued, it is not semipositive-definite. Hence, unlike
the classical NLS equation, it is not known clearly how to use these conserved quantities in
our mathematical analysis, especially in the study of the blow up problems for the nonlocal
NLS equation (1.1). Such issues will be exploited in the further research.

2 Preliminaries

In this section, we collect preparatory materials, including some basic inequalities, linear decay
estimates for the Schrödinger operator and the local well-posedness result. Firstly, from (1.2)
and the definition of the parity transformation P , it is easy to see for any function u(x), there
hold

‖u(Px)‖Lp(Rd) = ‖u(x)‖Lp(Rd), 1 ≤ p ≤ +∞,

F [u(Px)](ξ) = û(Qξ), Q := P−1,

‖u(Px)‖Hs(Rd) = ‖u(x)‖Hs(Rd), s ≥ 0.

(2.1)
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Lemma 2.1. Assume u, v ∈ Hs(Rd) ∩ L∞(Rd) with s ≥ 0, then there holds

‖uv‖Hs . ‖u‖Hs‖v‖L∞ + ‖u‖L∞‖v‖Hs . (2.2)

The proof of this lemma can be found, for example, in [11, Lemma A.8].

Lemma 2.2. There hold that

‖ f ‖L1(R2) . ‖ f ‖1/2
L2(R2)

‖|x|2 f ‖1/2
L2(R2)

, (2.3)

‖ f ‖L4/3(R2) . ‖ f ‖1/2
L2(R2)

‖x f ‖1/2
L2(R2)

. (2.4)

Proof. Let a > 0 be determined later. Using the basic estimate
∫
|x|≥a |x|

−4dx . a−2, we deduce
by the Cauchy–Schwarz inequality that

‖ f ‖L1 ≤
∫
|x|≤a
| f (x)| · 1dx +

∫
|x|≥a
|x|2| f (x)| · |x|−2dx . ‖ f ‖L2 a + ‖|x|2 f ‖L2 a−1.

Then (2.3) follows easily if we choose a = ‖|x|2 f ‖1/2
L2 ‖ f ‖−1/2

L2 . Here we may assume ‖ f ‖L2 6= 0,
otherwise the estimate (2.3) holds obviously.

The proof for (2.4) is similar. In fact, using Hölder’s inequality, we have

‖ f ‖4/3
L4/3 ≤

∫
|x|≤b
| f (x)|4/3 · 1dx +

∫
|x|≥b
|x f (x)|4/3 · |x|−4/3

. ‖ f ‖4/3
L2 b2/3 + ‖x f ‖4/3

L2 b−2/3,

which gives the desired estimate (2.4) provided that we set b = ‖x f ‖L2‖ f ‖−1
L2 .

For the Schrödinger operator e
it∆
2 , it is known that (see e.g., [10])

‖e it∆
2 u‖Lp(Rd) .

1

|t|d(
1
2−

1
p )
‖u‖Lp′ (Rd),

1
p
+

1
p′

= 1, 2 ≤ p ≤ +∞. (2.5)

Using Duhamel’s formula, the solution ψ(t, x) of (1.1) can be expressed by

ψ(t, x) = e
it∆
2 ψ0(x)− ig

∫ t

0
e

i(t−s)∆
2 ψ(s, x)ψ(s,Px)ψ(s, x)ds. (2.6)

Equation (2.6) is the main identity that we will discuss later.
Finally, we end this section with a local well-posedness result.

Proposition 2.3. For any ψ0 ∈ HN(Rd) with N > d
2 , d ≥ 1, there exists T0 = T0(‖ψ0‖HN ) > 0

such that the Cauchy problem (1.1) and (1.5) has a unique solution ψ ∈ C([0, T0]; HN) satisfying (2.6).
Moreover, if T∗ < +∞ is the maximal existence time for this solution, then

lim sup
t↑T∗

‖ψ(t, x)‖HN = +∞. (2.7)

This proposition can be proved by applying the Banach fixed-point theorem, since the
argument is standard, we skip the details.
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3 Proof of Theorem 1.1

From now on, we focus on the case t ≥ 0 for simplicity. To prove Theorem 1.1, we first
introduce the work space AT as follows,

‖ψ‖AT := sup
t∈[0,T)

(
‖ψ(t, x)‖HN(Rd) + (1 + t)

d
2 ‖ψ(t, x)‖L∞(Rd)

)
, (3.1)

where T ∈ (0,+∞]. The result of Theorem 1.1 relies essentially on the following proposition.

Proposition 3.1. Let d ≥ 3, N > d
2 be an integer and ψ0 ∈ HN(Rd) ∩ L1(Rd). Assume ψ(t, x) ∈

C([0, T]; HN(Rd)) is the solution of (1.1) and (1.5). Then we have

‖ψ‖AT . ‖ψ0‖HN∩L1 + ‖ψ‖3
AT

, (3.2)

where the implicit constant is independent of T.

Proof. The start point is the identity (2.6). Using Lemma 2.1, (2.1) and the definition of ‖ · ‖AT ,
we have for any t ∈ [0, T],

‖ψ(t, x)‖HN ≤ ‖ψ0(x)‖HN + |g|
∫ t

0
‖ψ(s, x)ψ(s,Px)ψ(s, x)‖HN ds

. ‖ψ0(x)‖HN +
∫ t

0
‖ψ2(s, x)‖HN‖ψ(s,Px)‖L∞ ds

+
∫ t

0
‖ψ2(s, x)‖L∞‖ψ(s,Px)‖HN ds

. ‖ψ0(x)‖HN +
∫ t

0
‖ψ(s, x)‖HN‖ψ(s, x)‖2

L∞ ds

. ‖ψ0(x)‖HN + ‖ψ‖3
AT

∫ t

0
(1 + s)−dds

. ‖ψ0(x)‖HN + ‖ψ‖3
AT

. (3.3)

Next, we turn to estimate the L∞ norm of ψ(t, x). Note that

‖e it∆
2 ψ0(x)‖L∞ .

1

(1 + t)
d
2
‖ψ0(x)‖L1∩HN , (3.4)

which is a consequence of (2.5) for large t and the Sobolev embedding HN ↪→ L∞ for small t.
Hence, using (3.4), (2.1), Lemma 2.1 and Hölder’s inequality, it follows from (2.6) that

‖ψ(t, x)‖L∞ ≤ ‖e it∆
2 ψ0(x)‖L∞ + |g|

∫ t

0
‖e

i(t−s)∆
2 (ψ2(s, x)ψ(s,Px))‖L∞ ds

.
1

(1 + t)
d
2
‖ψ0(x)‖L1∩HN +

∫ t

0

1

(1 + t− s)
d
2
‖ψ2(s, x)ψ(s,Px)‖L1∩HN ds

.
1

(1 + t)
d
2
‖ψ0(x)‖L1∩HN +

∫ t

0

1

(1 + t− s)
d
2
‖ψ(s, x)‖2

L2‖ψ(s, x)‖L∞ ds

+
∫ t

0

1

(1 + t− s)
d
2
‖ψ(s, x)‖HN‖ψ(s, x)‖2

L∞ ds

.
1

(1 + t)
d
2
‖ψ0(x)‖L1∩HN + ‖ψ‖A3

T

∫ t

0

1

(1 + t− s)
d
2
· 1

(1 + s)
d
2

ds

.
1

(1 + t)
d
2
‖ψ0(x)‖L1∩HN +

1

(1 + t)
d
2
‖ψ‖A3

T
. (3.5)

Therefore, the desired estimate (3.2) follows easily from (3.3) and (3.5).
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Based on Proposition 3.1, we now present the proof of Theorem 1.1.

Proof of Theorem 1.1. By Proposition 2.3, we know there exists a unique solution ψ to (1.1)
and (1.5) such that ψ ∈ C([0, T∗); HN) with T∗ the maximal existence time of the solution.
In order to obtain Theorem 1.1, we shall show T∗ = +∞ if the initial data is small enough.
Define φ(t) := ‖ψ‖At for t ≥ 0, where At is given by (3.1). Then from the condition (1.6) and
Proposition 3.1, we obtain

φ(t) ≤ Cε0 + Cφ3(t), t ∈ [0, T∗). (3.6)

where C > 1 is independent of T∗.
The bound (1.6) implies φ(0) ≤ ε0, then by the continuity of the solution, there exists a

time T such that φ(t) ≤ 2Cε0 for all t ∈ [0, T]. Here, C is the same as (3.6). Let

T′ := sup{T; φ(t) ≤ 2Cε0 for all t ∈ [0, T]}

Using (3.6) and the continuity of ψ, there holds

φ(T′) ≤ Cε0 + Cφ3(T′). (3.7)

Now we claim T′ = T∗ provided that ε2
0 ≤ (16C3)−1. Indeed, if T′ < T∗, (3.7) gives

2Cε0 ≤ Cε0 + 8C4ε3
0,

which is a contradiction for sufficiently small ε0. Therefore, we conclude that if ε0 ≤ (16C3)−
1
2 ,

then φ(T∗) ≤ 2Cε0. This bound and the blowup criterion (2.7) in turn yield T∗ = +∞. Hence,
we obtain ψ ∈ C(R+; HN) and the bound (1.7) holds for t ≥ 0. The case t ≤ 0 can be proved
similarly. This ends the proof of Theorem 1.1.

4 Proof of Theorem 1.2

Since the decay rate is only t−1 in dimension two, the argument used in Section 3 can not
be applied to prove Theorem 1.2. Inspired from the work [4, 7] on the method of space-time
resonances, here we would like to work on the space BT defined by

‖ψ‖BT := sup
t∈[0,T)

(
‖ψ(t, x)‖HN(R2) + ‖|x|2 f (t, x)‖L2(R2)

)
, (4.1)

where T ∈ (0,+∞], and

f (t, x) := e−
it∆
2 ψ(t, x) (4.2)

is the profile of a solution ψ(t, x) of (1.1). Notice that (4.1) implies

‖x f (t, x)‖L2 ≤ ‖ f (t, x)‖L2 + ‖|x|2 f (t, x)‖L2

= ‖ψ(t, x)‖L2 + ‖|x|2 f (t, x)‖L2

≤ 2‖ψ‖BT .

(4.3)

Moreover, using (2.3), (2.5), (4.1) and (4.2), we have

‖ψ(t, x)‖L∞(R2) = ‖e
it∆
2 f (t, x)‖L∞(R2) .

1
1 + t

‖ψ‖BT , t ∈ [0, T], (4.4)

which shows that the decay rate of the solution ψ is bounded by the norm ‖ψ‖BT .
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Proposition 4.1. Assume ψ(t, x) ∈ C([0, T]; HN(R2)) (N > 1) is the solution of (1.1) with the
initial data satisfying ψ0 ∈ HN(R2) and |x|2ψ0 ∈ L2(R2), then we have x f (t, x), |x|2 f (t, x) ∈
C([0, T]; L2(R2)) and

‖ψ‖BT . ‖ψ0‖HN + ‖|x|2ψ0‖L2 + ‖ψ‖3
BT

, (4.5)

where the implicit constant is independent of T.

Proof. We first show the continuity for x f (t, x) and |x|2 f (t, x). Recall the definition (4.2), it
follows from (1.1) that

ft(t, x) = ige−
it∆
2 [ψ(t, x)ψ(t,Px)ψ(t, x)]. (4.6)

Using the identity

x(e±
it∆
2 u(x)) = e±

it∆
2 (xu(x))∓ ite±

it∆
2 ∇u(x), (4.7)

which can be verified by taking Fourier transform on both sides of (4.7), then we can obtain

(x f )t = ige−
it∆
2 [xψ(t, x)ψ(t,Px)ψ(t, x)]− gte−

it∆
2 ∇[ψ(t, x)ψ(t,Px)ψ(t, x)].

Integrating this equality with respect to time over [0, t] gives (using also the fact f (0, x) =

ψ0(x), and ψ0 ∈ L2, |x|2ψ0 ∈ L2 implies xψ0 ∈ L2 )

sup
s∈[0,t]

‖x f (s, x)‖L2 ≤ ‖xψ0‖L2 + Ct sup
s∈[0,T]

‖ψ(s, x)‖2
HN sup

s∈[0,t]
‖x f (s, x)‖L2 + Ct2 sup

s∈[0,T]
‖ψ(s, x)‖3

HN .

This implies x f (t, x) ∈ L2 for t ≤ T0 := [2C sups∈[0,T] ‖ψ(s, x)‖2
HN ]
−1. Moreover, with the same

arguments as above, it is easy to obtain

‖x f (t2, x)− x f (t1, x)‖L2 . |t2 − t1| sup
s∈[0,T]

‖ψ(s, x)‖3
HN , t1, t2 ∈ [0, T0],

which gives x f ∈ C([0, T0]; L2). Note that T0 depends only on sups∈[0,T] ‖ψ(s, x)‖HN , so a stan-
dard bootstrap argument clearly yields that the continuity of x f holds in the whole interval
[0, T]. The continuity of |x|2 f can be proved similarly but with more complicated computation,
we thus omit the detailed proof for simplicity.

Next, we prove the bound (4.5). For the HN norm part, one can use (4.4) and similar
treatment as (3.3) to obtain

‖ψ(t, x)‖HN . ‖ψ0‖HN + ‖ψ‖3
BT

∫ t

0
(1 + s)−2ds . ‖ψ0‖HN + ‖ψ‖3

BT
. (4.8)

So it remains to estimate the weighted norm. To this end, we integrate the equation (4.6) with
respect to time and rewrite the resulted identity in the form of Fourier space, then we obtain
(using also (4.2) and (2.1))

f̂ (t, ξ) = f̂ (0, ξ) +
ig

(2π)2

∫ t

0

∫
R2×R2

eisΦ(ξ,η,σ) f̂ (s, ξ − η) f̂ (s, η − σ) f̂ (s,Qσ)dηdσds, (4.9)

where the phase Φ(ξ, η, σ) is given by

Φ(ξ, η, σ) :=
1
2
(|ξ|2 − |ξ − η|2 − |η − σ|2 + |σ|2) = ξ · η − |η|2 + η · σ. (4.10)
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Using Plancharel’s identity, we know ‖|x|2 f ‖L2 = ‖∆ξ f̂ ‖L2 . Now applying ∆ξ to (4.9) and
recalling the fact f (0, x) = ψ0(x), we have

∆ξ f̂ (t, ξ) = ∆ξ ψ̂0 + I1 + I2 + I3 (4.11)

with

I1 := ig(2π)−2
∫ t

0

∫
R2×R2

eisΦ(ξ,η,σ)∆ξ f̂ (s, ξ − η) f̂ (s, η − σ) f̂ (s,Qσ)dηdσds,

I2 := 2ig(2π)−2
∫ t

0

∫
R2×R2

eisΦ(ξ,η,σ)(is∇ξΦ)∇ξ f̂ (s, ξ − η) f̂ (s, η − σ) f̂ (s,Qσ)dηdσds,

I3 := ig(2π)−2
∫ t

0

∫
R2×R2

eisΦ(ξ,η,σ)(is)2|∇ξΦ|2 f̂ (s, ξ − η) f̂ (s, η − σ) f̂ (s,Qσ)dηdσds.

Note that both I2 and I3 contain growth factor of s. However, the factor will not cause any
difficulty for small s such as s ∈ [0, 1]. Hence, the contribution of the time integral from 0 to 1
in I2 and I3 can be easily estimated by using only the energy bound and the weighted norm.
In the following, we mainly deal with the time integral from 1 to t (still denoted by I2 and I3).
In order to eliminate the growth factor s in the term I2, we use the following crucial relation
for Φ (see (4.10))

∇ξΦ = η = ∇σΦ (4.12)

to integrate by part in σ, then I2 = I2,1 + I2,2 with

I2,1 := −2ig(2π)−2
∫ t

1

∫
R2×R2

eisΦ(ξ,η,σ)∇ξ f̂ (s, ξ − η)∇σ f̂ (s, η − σ) f̂ (s,Qσ)dηdσds,

I2,2 := −2ig(2π)−2
∫ t

1

∫
R2×R2

eisΦ(ξ,η,σ)∇ξ f̂ (s, ξ − η) f̂ (s, η − σ)∇σ f̂ (s,Qσ)dηdσds.

Similarly, using (4.12) to integrate I3 by part twice, then I3 = I3,1 + I3,2 + I3,3 with

I3,1 := ig(2π)−2
∫ t

1

∫
R2×R2

eisΦ(ξ,η,σ) f̂ (s, ξ − η)∆σ f̂ (s, η − σ) f̂ (s,Qσ)dηdσds,

I3,2 := ig(2π)−2
∫ t

1

∫
R2×R2

eisΦ(ξ,η,σ) f̂ (s, ξ − η) f̂ (s, η − σ)∆σ f̂ (s,Qσ)dηdσds,

I3,3 := 2ig(2π)−2
∫ t

1

∫
R2×R2

eisΦ(ξ,η,σ) f̂ (s, ξ − η)∇σ f̂ (s, η − σ)∇σ f̂ (s,Qσ)dηdσds.

Returning back to the physical space and using Hölder’s inequality and (4.4), then

‖I1‖L2 + ‖I3,1‖L2 + ‖I3,2‖L2 .
∫ t

0
‖ψ(t, x)‖2

L∞‖|x|2 f (s, x)‖L2 ds

. ‖ψ‖3
BT

∫ t

0
(1 + s)−2ds

. ‖ψ‖3
BT

. (4.13)

For the remaining terms, we should use the inequality

‖e is∆
2 (x f (s, x))‖L4 . s−

1
2 ‖ψ‖BT .
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which follows from (2.4), (2.5) and (4.3), then

‖I2,1‖L2 + ‖I2,2‖L2 + ‖I3,3‖L2 .
∫ t

1
‖ψ(t, x)‖L∞‖e is∆

2 (x f (s, x))‖2
L4 ds

. ‖ψ‖3
BT

∫ t

1
(1 + s)−2ds

. ‖ψ‖3
BT

. (4.14)

Now, combing (4.11), (4.13) and (4.14) together yields

‖|x|2 f (t, x)‖L2 . ‖|x|2ψ0‖L2 + ‖ψ‖3
BT

. (4.15)

Therefore, the desired bound (4.5) follows immediately from (4.8) and (4.15).

Finally, based on Proposition 4.1, one can argue analogously as the proof of Theorem 1.1
and obtain global existence of solution as stated in Theorem 1.2. The L∞ decay bound in (1.9)
follows also by using (4.4). Since the proof is similar as Theorem 1.1, we thus omit further
details.
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