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Abstract. In this paper, we show the existence of infinitely many radial nodal solutions
for the following Dirichlet problem involving mean curvature operator in Minkowski
space −div

(
∇y√

1−|∇y|2

)
= λh(y) + g(|x|, y) in B,

y = 0 on ∂B,

where B = {x ∈ RN : |x| < 1} is the unit ball in RN , N ≥ 1, λ ≥ 0 is a parameter,
h ∈ C(R) and g ∈ C(R+ ×R). By bifurcation and topological methods, we prove the
problem possesses infinitely many component of radial solutions branching off at λ = 0
from the trivial solution, each component being characterized by nodal properties.
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1 Introduction

The purpose of this paper is to deal with radial nodal solutions for the following 0-Dirichlet
problem with mean curvature operator in the Minkowski space

−div

(
∇y√

1− |∇y|2

)
= λh(y) + g(|x|, y) in B,

y = 0 on ∂B,

(1.1)

where B = {x ∈ RN : |x| < 1} is the unit ball in RN , N ≥ 1, λ ≥ 0 is a parameter,
h(y) ' |y|q−2y, 1 < q < 2 near y = 0 and g is of higher order with respect to h at y = 0. This
kind of problems are originated from differential geometry or classical relativity.
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For example, let
LN+1 := {(x, t) : x ∈ RN , t ∈ R}

be the flat Minkowski space, endowed with the Lorentzian metric

N

∑
j=1

dx2
j − dt2.

It is known (see [4, 28]) that the study of spacelike submanifolds of codimension one in LN+1

with prescribed mean extrinsic curvature leads to Dirichlet problems of the type

−div

(
∇u√

1− |∇u|2

)
= H(x, u) in Ω,

u = 0 on ∂Ω,

(1.2)

where Ω is a bounded domain in RN and the nonlinearity H : Ω×R→ R is continuous.

There are a large amount of papers in the literature on the existence, multiplicity and
qualitative properties of solutions for this type of problems, see [1–3, 7, 11, 12, 14, 16, 25, 26, 31].
It is worth pointing out that the starting point of this type of problems is the seminal paper
[9] which prove the Bernstein’s property for entire solutions of the maximal (i.e., zero mean
curvature) hypersurface equation. Bartnik and Simon [4] proved the existence of one strictly
spacelike solution when λ = 1 and H is bounded, this always can be seen as an important
universal existence result of (1.2). For the case N = 1, the existence and multiplicity of positive
solutions of the Dirichlet problem for the quasilinear ordinary differential equation

−
(

u′√
1− u′2

)′
= H(x, u), x ∈ (0, 1),

u(0) = u(1) = 0

have been extensively studied by Coelho et al. [10] via variational or topological methods.
For the special case Ω is a ball, by using upper and lower solutions, Leray–Schauder degree
arguments and critical point theory for convex, lower semicontinuous perturbations of C1-
functionals, Bereanu, Jebelean, and Torres [5, 6] obtained some nonexistence, existence and
multiplicity results of classical positive radial solutions of (1.2). Ma, Gao and Lu [24] con-
cerned with the global structure of radial positive solutions of (1.2) by using global bifurcation
techniques, and extended the results of [5, 6] to more general cases, all results, depending on
the behavior of nonlinear term H near 0. Later, Ma and Xu [27] studied the global behavior of
positive solutions of (1.2) with Ω is a general domain in RN .

However, few results on the existence of radial nodal solutions [15], even positive solutions,
have been established for problem with mean curvature operator on general domain. In this
paper, we will show an existence result of infinitely many radial nodal solutions for Dirichlet
problem (1.1) by bifurcation and topological methods. For the applications of nodal solutions,
see Kurth [20] and Lazer and McKenna [21].

Our study is motivated by some recent works on one-dimensional prescribed mean curva-
ture problems with concave-convex nonlinearities, see [19, 34].
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Setting, as usual |x| = r and y(x) = u(r), the problem (1.1) reduces to the mixed boundary
value problem

Au = λh(u) + g(r, u), r ∈ (0, 1),

u′(0) = u(1) = 0,
(1.3)

where
Au = − 1

rN−1 (r
N−1φ1(u′))′, (1.4)

and
φ1(s) =

s√
1− s2

, s ∈ R,

note that φ1 : (−1, 1)→ R is an odd, increasing homeomorphism and φ1(0) = 0. Throughout
we assume λ ≥ 0, h ∈ C(R), g ∈ C(R+ ×R) and satisfy the following conditions:

(A1) h ∈ C(R, R) with sh(s) > 0 for s 6= 0, lim
s→0

h(s)
s = ∞;

(A2) lim
s→0

g(r,s)
s = 0 uniformly for r ∈ [0, 1].

Let X = {u ∈ C1[0, 1] : u′(0) = u(1) = 0} with the norm ‖u‖ := ‖u′‖∞, and let E = R×X.
In the sequel by a solution of (1.1) we mean a pair (λ, u) ∈ E, such that u ∈ C1[0, 1],
maxr∈[0,1] |u′(r)| < 1, rN−1φ1(u′) ∈ C1[0, 1], and satisfies (1.1). These are strong strictly space-
like solutions of (1.1) according to the terminology of [4, 9, 18, 31].

The main result of this paper is the following.

Theorem 1.1. Let (A1) and (A2) hold. Then the point (λ, u) = (0, 0) is a bifurcation point for
problem (1.1). More precisely, there are infinitely many unbounded component (i.e., closed connected
sets) Γk ⊂ E of solutions of (1.1) branching off from (0, 0), such that

(i) If (λ, u) ∈ Γk and λ > 0, then u 6= 0.

(ii) If (λ, u) ∈ Γk, then u has exactly k− 1 simple zeros in the interval (0, 1).

(iii) There exists a constant ρ0 ∈ (0, 1/2) such that if ρ ∈ (0, ρ0], and (λ, u) ∈ Γk with ‖u‖ = ρ,
then λ > λ(ρ) > 0.

As an immediate consequence we get:

Corollary 1.2. There exists λ∗ > 0 such that problem (1.1) has infinitely many radial nodal solutions
for any λ ∈ (0, λ∗).

Remark 1.3. It is easy to find that (A2) yields that

g(r, 0) = 0 uniformly for r ∈ [0, 1].

Otherwise, from the continuity of g, we get lims→0
g(r,s)

s = ∞ for some r ∈ [0, 1], this is a
contradiction.

Remark 1.4. Let (λ, u) be a solution of (1.3), then it follows from |u′(r)| < 1 that

‖u‖∞ < 1.

This leads to the bifurcation diagrams mainly depend on the behavior of h = h(s) and g =

g(r, s) near s = 0. This is a significant difference between the Minkowski-curvature problems
and the p-Laplacian problems.
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Remark 1.5. If g(r, s) ≡ 0 for all r ∈ [0, 1], then

lim
s→0

g(r, s)
s

= 0 uniformly for r ∈ [0, 1].

Clearly, Theorem 1.1 improves some well-known existence results of positive solutions [5] and
radial nodal solutions [15] for related problems.

The rest of the paper is arranged as follows. In Section 2, we show the property of the
superior limit of a sequence of components and obtain a topological degree jumping result.
Finally in Section 3, we prove our main result and give an example to illustrate our main
result.

2 Some preliminary results

2.1 Superior limit and component

The following results are somewhat scattered in Ma and An [22, 23].

Definition 2.1 ([22,23]). Let X be a Banach space and {Cn : n = 1, 2, . . . } be a family of subsets
of X. Then the the superior limit D of {Cn} is defined by

D := lim sup
n→∞

Cn = {x ∈ X : there exist {ni} ⊂N and xni ∈ Cni such that xni → x}.

Definition 2.2 ([22, 23]). A component of a set M means a maximal connected subset of M.

Lemma 2.3 ([22, Lemma 2.4], [23, Lemma 2.2]). Assume that

(i) there exist zn ∈ Cn, n = 1, 2, . . . , and z∗ ∈ X, such that zn → z∗;

(ii) limn→∞ rn = ∞, where rn = sup{‖x‖ : x ∈ Cn};

(iii) for every R > 0,
(
∪∞

n=1 Cn
)
∩ BR is a relative compact set of X, where

BR = {x ∈ X : ‖x‖ ≤ R}.

Then there exists an unbounded component C in D with z∗ ∈ C.

2.2 Topological degree jumping result

Let us introduce the eigenvalue problem

−(rN−1u′)′ = λrN−1u, r ∈ (0, 1),

u′(0) = u(1) = 0.
(2.1)

From [29] with p = 2 or [32, p. 269], we have the following result.

Lemma 2.4. Problem (2.1) has infinitely many simple real eigenvalues, which can be arranged in the
increasing order

0 < λ1 < λ2 < · · · < λk < · · · → +∞ as k→ +∞,

and no other eigenvalues. Moreover, the algebraic multiplicity of λk is 1, and the eigenfunction ϕk has
exactly k− 1 simple zeros in (0, 1).
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For any t ∈ (0, 1], we consider the following auxiliary problem

− 1
rN−1

(
rN−1 u′√

1− tu′2

)′
= f (r), r ∈ (0, 1),

u′(0) = u(1) = 0
(2.2)

for a given f ∈ C[0, 1]. Letting v =
√

tu, problem (2.2) is equivalent to

− 1
rN−1

(
rN−1 v′√

1− v′2

)′
=
√

t f (r), r ∈ (0, 1),

v′(0) = v(1) = 0.
(2.3)

By Theorem 3.6 of [4], we know that there exists a unique strictly spacelike solution v ∈ C1[0, 1]
to problem (2.3) which is denoted by ψ(

√
t f ). So u = v√

t
is the unique solution of problem

(2.2).

For a given b ∈ C[0, 1], we also consider the following auxiliary problem

− 1
rN−1

(
rN−1u′

)′
= b(r), r ∈ (0, 1),

u′(0) = u(1) = 0.
(2.4)

It is well known that problem (2.4) has a solution u for every given b ∈ C[0, 1]. Let φ(b)
denote the unique solution to problem (2.4). It is easy to check that φ : C[0, 1] → X is linear
and completely continuous.

Therefore, for any given f ∈ C[0, 1], let us define G : [0, 1]× C[0, 1]→ X by

G(t, f ) =


ψ(
√

t f )√
t

, t ∈ (0, 1],

φ( f ), t = 0.
(2.5)

From the Lemma 2.3 of [14], we have G is completely continuous.

For any fixed λ, consider the following problem

− 1
rN−1

(
rN−1 u′√

1− u′2

)′
= λu, r ∈ (0, 1),

u′(0) = u(1) = 0.
(2.6)

Clearly, problem (2.6) is equivalent to the operator equation

u = ψ(λu) := ψλ(u).

From Lemma 2.3 of [14], we see that ψλ : X → X is completely continuous. And we can also
obtain the following topological degree jumping result.

Lemma 2.5. For any r > 0, we have that

deg(I − ψλ, Br(0), 0) =

{
1, if λ ∈ (0, λ1),

(−1)k, if λ ∈ (λk, λk+1), k ∈N.
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Proof. It is not difficult to show that I− ψλ is a nonlinear compact perturbation of the identity.
Thus, the Leray–Schauder degree deg(I−ψλ, Br(0), 0) is well defined for arbitrary r-ball Br(0)
and λ 6= λk. From the invariance of the degree under homotopies we obtain that

deg(I − ψλ, Br(0), 0) = deg(I − G(1, λ·), Br(0), 0)

= deg(I − G(0, λ·), Br(0), 0)

= deg(I − λφ, Br(0), 0).

Since φ is compact and linear, by [13, Lemma 3.1] or [17, Theorem 8.10], we have that

deg(I − λφ, Br(0), 0) =

{
1 if λ ∈ (0, λ1),

(−1)k if λ ∈ (λk, λk+1), k ∈N,

and accordingly,

deg(I − ψλ, Br(0), 0) =

{
1 if λ ∈ (0, λ1),

(−1)k if λ ∈ (λk, λk+1), k ∈N.

3 Proof of the main result

Before proving the Theorem 1.1, we state the following lemmas.

Lemma 3.1. Assume that (A1) and (A2). Let (λ, u) be a solution of problem (1.3). If u has a double
zero, then u ≡ 0.

Proof. Assume on the contrary that there exists a solution (λ, u), λ > 0, of (1.3) and u has a
double zero. Let τ ∈ [0, 1] be a double zero of u. Integrating the equation of (1.3) over [τ, r],
we have

u′(r)√
1− (u′(r))2

= − 1
rN−1

∫ r

τ
sN−1(λh(u(s)) + g(s, u(s))

)
ds.

If τ = 0, then for r ∈ [0, 1], from (A1) and the fact

|u′(r)| < 1,

it follows that
|u′(r)| ≤ 1

rN−1

∫ r

0
sN−1|g(s, u)|ds ≤ r

N
|g(s, u)|.

Recalling (A2), there exists a constant M > 0 such that |g(s, u)| ≤ M|u| for any s ∈ [0, 1] and
u ∈ [−1, 1]. Using the boundary conditions u′(0) = u(1) = 0, we get

|u′(r)| ≤ Mr
N
|u| ≤ Mr

N

∫ r

1
|u′(s)|ds.

By the Gronwall–Bellman inequality [8], we obtain u′(r) ≡ 0 on [0, 1]. Therefore, u(r) ≡ 0 on
[0, 1].

If τ > 0, we first assume that r ∈ [0, τ]. Since

u(r) = −
∫ r

τ
φ−1

1

(
1

tN−1

∫ t

τ
sN−1(λ h(u(s)) + g(s, u(s))

)
ds
)

dt
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for all r ∈ [0, τ], where φ−1
1 is the inverse function of φ1, namely

φ−1
1 (s) =

s√
1 + s2

, s ∈ R.

It is easy to check that φ−1
1 is increasing. Hence, by (A1), we have

u(r) =
∫ τ

r
φ−1

1

(
1

tN−1

∫ t

τ
sN−1 (λ h(u(s)) + g(s, u(s))) ds

)
dt

=
∫ τ

r
φ−1

1

(
1

tN−1

∫ τ

t
sN−1 (−λ h(u(s))− g(s, u(s))) ds

)
dt

≤
∫ τ

r
φ−1

1

(
1

tN−1

∫ t

τ
sN−1g(s, u(s))ds

)
dt

=
∫ τ

r

1
tN−1

∫ t
τ sN−1g(s, u(s))ds√

1 +
( 1

tN−1

∫ t
τ sN−1g(s, u(s))ds

)2
dt,

since 0 ≤ r
t ≤ 1 and N ≥ 1, this implies

rN−1|u(r)| ≤
∫ τ

r

∫ t

τ
sN−1|g(s, u(s))|dsdt ≤ M

∫ τ

r
sN−1|u(s)|ds.

By Gronwall–Bellman inequality, we have rN−1|u(r)| ≡ 0 on [0, τ]. And accordingly, u(r) ≡ 0
on (0, τ]. This fact together with the continuity of u, we conclude that u(r) ≡ 0 on [0, τ].

Similarly, if τ > 0 and r ∈ [τ, 1], then by Gronwall–Bellman inequality again, we can get
u(r) ≡ 0 on [τ, 1] and the proof is completed.

Lemma 3.2. There exists ρ0 > 0 such that any nontrivial solution u of

Au = g(r, u), r ∈ (0, 1),

u′(0) = u(1) = 0
(3.1)

satisfies ‖u‖ > ρ0.

Proof. Assume, by contradiction, that there is a sequence {un} of solutions of (3.1) and such
that un 6= 0 and ‖un‖ → 0. For all n ∈N, let vn = un

‖un‖ . Then ‖vn‖ = ‖v′n‖∞ = 1, consequently,
‖vn‖∞ is bounded. By the Ascoli–Arzelà theorem, there exists a subsequence of {vn} which
uniformly converges to v ∈ C[0, 1]. We again denote the subsequence by {vn}. For any un, we
have

− 1
rN−1

(
rN−1 u′n√

1− u′2n

)′
= g(r, un), r ∈ (0, 1),

u′n(0) = un(1) = 0.

(3.2)

Multiplying both sides of (3.2) by ‖un‖−1, we have

− 1
rN−1

(
rN−1 v′n√

1− u′2n

)′
=

g(r, un)

un
vn, r ∈ (0, 1),

v′n(0) = vn(1) = 0.
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Since ‖un‖ → 0 implies ‖un‖∞ → 0. From (A2) and Lebesgue’s dominated convergence
theorem, we conclude that

− 1
rN−1

(
rN−1v′

)′
= 0, r ∈ (0, 1),

v′(0) = v(1) = 0,

which means that v ≡ 0 contradicting with ‖v‖ = 1.

Proof of Theorem 1.1. Theorem 1.1 cannot be proved using standard bifurcation techniques
by linearization. Actually, from (A1), we have known the nonlinear term h has infinite deriva-
tive at u = 0. To overcome this problem we shall employ a limiting procedure. Let us define
a function h̃ : R→ R by setting

h̃(s) =


h(s), 0 ≤ |s| ≤ 1,

linear, 1 < |s| < 2,

0, |s| ≥ 2,

and define a function g̃ : [0, 1]×R→ R by setting, for r ∈ [0, 1],

g̃(r, s) =


g(r, s), 0 ≤ |s| ≤ 1,

linear, 1 < |s| < 2,

0, |s| ≥ 2.

Observe that, within the context of positive solutions, problem (1.3) is equivalent to the same
problem with h, g replaced by h̃, g̃. Indeed, if u is a positive solution, then ‖u′‖∞ < 1 and
hence ‖u‖∞ < 1. Clearly, h̃ and g̃ satisfy all the properties assumed in the statement of the
theorem. In the sequel, we shall replace h, g with h̃ and g̃, however, for the sake of simplicity,
the modified functions h̃, g̃ will still be denoted by h, g. Next, for any δ ∈ (0, 1), let us define
hδ by setting

hδ(s) =


h(δ)

δ
s, 0 ≤ |s| ≤ δ,

h(s), |s| > δ.

Obviously,

lim
δ→0

hδ(s) = h(s), (hδ)0 = lim
s→0

hδ(s)
s

=
h(δ)

δ
> 0. (3.3)

This together with (A1) implies that

lim
δ→0

(hδ)0 = ∞. (3.4)

Let us consider the approximated problems

Au = λhδ(u) + g(r, u), r ∈ (0, 1),

u′(0) = u(1) = 0,
(3.5)

where A is given by (1.4).

Define

Fδ(λ, u) = λhδ(u) + g(r, u) +
1

rN−1

(
rN−1 u′√

1− u′2

)′
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for any (λ, u) ∈ R× X and fixed δ > 0. Then, from Remark 1.3, and by a simple calculation,
we have that

(Fδ)u(λ, 0)v = lim
t→0

Fδ(λ, tv)− Fδ(λ, 0)
t

= λ
h(δ)

δ
v +

1
rN−1

(
rN−1v′

)′. (3.6)

Let λk,δ = λk · δ
h(δ) . Then from (3.6), it follows that if (λk,δ, 0) is a bifurcation point of problem

(3.5), then λk is an eigenvalue of problem (2.1).

For any γ ∈ [0, 1], we consider the following problem

Au = λhδ(u) + γg(r, u), r ∈ (0, 1),

u′(0) = u(1) = 0.
(3.7)

Then problem (3.7) is equivalent to

u = ψ(λhδ(u) + γg(r, u)) := Fδ,λ(γ, u).

From [14, Lemma 2.3], it follows that Fδ,λ : [0, 1] × X → X is completely continuous. In
particular, Hδ,λ := Fδ,λ(1, ·) : X → X is completely continuous.

By (A2) and an argument similar to that of Lemma 2.5, we can show that the Leray–
Schauder degree deg(I − Fδ,λ(γ, ·), Br(0), 0) is well defined for λ ∈ (0, ∞) \ {λk}. From the
invariance of the degree under homotopies we obtain that

deg(I − Hδ,λ, Br(0), 0) = deg(I − Fδ,λ(1, ·), Br(0), 0)

= deg(I − Fδ,λ(0, ·), Br(0), 0)

= deg
(

I − ψ

(
λ

h(δ)
δ
·
)

, Br(0), 0
)

.

So by Lemma 2.5, we have that

deg(I − Hδ,λ, Br(0), 0) =


1, if λ ∈

(
0,

δ

h(δ)
λ1

)
,

(−1)k, if λ ∈
(

δ

h(δ)
λk,

δ

h(δ)
λk+1

)
, k ∈N.

Denote
zδ = {(λ, u) : (λ, u) ∈ [0, ∞)× X, u is a solution of (3.5)}R×X

.

Then by a variant of the global bifurcation theorem of Rabinowitz [30], or index jump principle
of Zeidler [33], for any δ > 0, there exists a maximal closed connected set Sk,δ in zδ such that
(λk,δ, 0) ∈ Sk,δ and at least one of the following conditions holds:

(i) Sk,δ is unbounded in R× X;

(ii) Sk,δ ∩ (R\{λk,δ} × {0}) 6= ∅.
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Since (0, 0) is the only solution of (3.5) for λ = 0 and 0 is not the eigenvalue of eigenvalue
problem (2.1), therefore Sk,δ ∩ (R\{λk,δ} × {0}) = ∅. Recalling Remark 1.4, we get Sk,δ is
unbounded in λ-direction for each fixed δ.

Combining this and (3.3) and (3.4) and using Lemma 2.3, it follows that for each k ∈ N,
there exists a component Γk in lim sup Sk,δ which joins (0, 0) to infinity in λ-direction.

In the following, we will prove the properties (i)–(iii) of Theorem 1.1, respectively.

(i) Let δ0 be a positive constant such that λ h(δ0)
δ0

> λ1. Let us consider (λ, u) ∈ S1,δ, with λ > 0
and δ ∈ (0, δ0].

Fixing ε > 0 small, from (A1) and (A2), we obtain there exists c = c(λ) > 0 such that

λhδ(s) + g(r, s) > (λ1 + ε)s, ∀s ∈ (0, c].

Hence, we obtain if ‖u1‖∞ ≤ c, then u1 satisfies

Au1 > (λ1 + ε)u1.

From [6], we have u1 is an upper solution of the eigenvalue problem

Au = (λ1 + ε)s. (3.8)

On the other hand, it is easy to verify that u2 ≡ 0 is a lower solution of (3.8). Therefore,
[6, Proposition 1] yields the existence of a positive solution u ∈ X of the eigenvalue problem
(3.8). However, this is a contradiction, because λ1 + ε is not the first eigenvalue of (2.1).

This shows that if (λ, u) ∈ S1,δ, with λ > 0 and δ ∈ (0, δ0], then ‖u‖∞ > c(λ). Passing to
the limit as δ→ 0 it follows that if (λ, u) ∈ Γ1 then ‖u‖∞ ≥ c(λ).

When we consider Γk with k > 1 the argument is similar. If (λ, u) ∈ Sk,δ, then there exists
at least one interval Ik with length 1/k where u has constant sign. Therefore if we restrict the
discussion to the interval Ik and replace λ1 by the first eigenvalue of (2.1) on the interval Ik,
then we can get the same contradiction as before.

(ii) From (i), we have for any (λ, u) ∈ Γk, if λ > 0, then u 6= 0.

Let {(λn, un)} ⊆ Sk,n be a sequence, converging to (λ, u) in R× X. First, if k = 1, then
we have un > 0 in [0, 1), therefore u ≥ 0, moreover, the strong Maximum Principle yields that
u > 0 in [0, 1).

Next, if k > 1, then let {xn} and {yn} be two consecutive zeros of un with xn → ξ and
yn → η. Obviously, u(ξ) = u(η) = 0. We claim that ξ 6= η. Otherwise, there exists a third
sequence {zn} such that u′n(zn) = 0 and limn→∞ zn = ξ. Therefore, we can find a u, it is a
solution of

Au = λh(u) + g(r, u),

and satisfies
u(ξ) = u′(ξ) = 0.

However, from Lemma 3.1, we know this is impossible. Therefore, we conclude that for any
(λ, u) ∈ Γk and λ > 0, u has exactly k− 1 simple zeros in the interval (0, 1).
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(iii) Suppose on the contrary that there exists a sequence {(λn, un)} ⊆ Sk,n such that λn → 0,
un → u and ‖un‖ = ρ ≤ ρ0. Passing to the limit we find that u 6= 0 is a solution of (3.1) and u
satisfies ‖u‖ ≤ ρ0, however this contradicts Lemma 3.2.

Example 3.3. Let us consider the following Dirichlet problem with mean curvature operator
in the Minkowski space

−div

(
∇u√

1− |∇u|2

)
= λh(u) + g(r, u), r = |x| < 1,

u = 0, r = |x| = 1,

(3.9)

where

h(u) =

{√
u, u ≥ 0,

−
√
−u, u < 0,

and

g(r, u) =

{
u2, u ≥ 0,

−u2, u < 0.

Obviously, q = 3
2 and all assumptions of Theorem 1.1 are valid. Therefore, from Theorem 1.1,

we know there are infinitely many unbounded component of radial nodal solutions of (3.9)
branching off from (0, 0).
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