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Abstract. The present study is concerned with the rectifiability of orbits for the two-
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1 Introduction

We consider the two-dimensional nonautonomous differential system

x′ = −e(t)x + f (t)y− p(t)x
(
x2 + y2)λ

,

y′ = −g(t)x− h(t)y− q(t)y
(
x2 + y2)λ

,
(1.1)

where e, f , g, h, p and q are continuous for t ≥ t0, and λ > 0. Since the right hand side of this
system is continuously differentiable with respect to (x, y), so it satisfies the Lipschitz condi-
tion. Therefore, the local existence and uniqueness of solutions of (1.1) are guaranteed for the
initial-value problem. We can show that, for each t0 ∈ R and (x0, y0) ∈ R2, the initial value
problem (1.1) with (x(t0), y(t0)) = (x0, y0) has a unique solution on [t0, ∞) under some con-
ditions (this fact will be shown in Lemma 3.4.). We denote it by (x(t; t0, x0, y0), y(t; t0, x0, y0)).
Clearly, (1.1) has the zero solution (x(t), y(t)) ≡ (0, 0). Throughout this paper, ‖(x, y)‖ means

BCorresponding author. Email: onitsuka@xmath.ous.ac.jp
*Email: satoshi.tanaka.d4@tohoku.ac.jp

https://doi.org/10.14232/ejqtde.2021.1.18
https://www.math.u-szeged.hu/ejqtde/


2 M. Onitsuka and S. Tanaka

the Euclidean norm of (x, y); that is, ‖(x, y)‖ :=
√

x2 + y2. Here, let us give a definition about
the zero solution of (1.1). The zero solution of (1.1) is said to be globally attractive if

lim
t→∞
‖(x(t; t1, x0, y0), y(t; t1, x0, y0))‖ = 0

for any t1 ∈ [t0, ∞) and any (x0, y0) ∈ R2. Now rewrite (x(t; t0, x0, y0), y(t; t0, x0, y0)) by
(x(t), y(t)). We define the orbit of (x(t), y(t)) by

Γ(t0,x,y) := {(x(t), y(t)) ∈ R2 : t ≥ t0}.

The orbit Γ(t0,x,y) is said to be simple if (x(t1), y(t1)) 6= (x(t2), y(t2)) for any t1, t2 ∈ [t0, ∞) with
t1 6= t2. Now, we assume that the zero solution of (1.1) is globally attractive. The simple orbit
Γ(t0,x,y) is said to be rectifiable if the length of Γ(t0,x,y) is finite, that is,

lim
t→∞

∫ t

t0

‖(x′(s), y′(s))‖ds < ∞.

Otherwise, it is said to be nonrectifiable.
When λ = 1 and e(t) = h(t) = a0, f (t) = g(t) = 1, p(t) = q(t) = 1 for all t ≥ t0, system

(1.1) reduces to the planar nonlinear differential system

x′ = y− x
(
x2 + y2 + a0

)
,

y′ = −x− y
(
x2 + y2 + a0

)
.

(1.2)

For every solution (x(t), y(t)) of (1.2), using the polar coordinate transformation x = r cos θ,
y = r sin θ, then we have

r′ = −r
(
r2 + a0

)
,

θ′ = −1.

From θ′ = −1, every orbit Γ(t0,x,y) of (1.2) is rotating in a clockwise direction. Moreover, if we
suppose a0 ≥ 0, then r′ ≤ −r3, so that

r(t) ≤ 1√
2(t− t0) + r−2(t0)

≤ 1√
2(t− t0)

for t ≥ t0. This says that a0 ≥ 0 implies that the zero solution of (1.2) is globally attractive.
Hence, every orbit Γ(t0,x,y) of (1.2) is a spiral.

Remark 1.1. Since (1.2) is an autonomous system and r′ ≤ −r3, the orbit Γ(t0,x,y) corresponding
to any nontrivial solution (x(t), y(t)) of (1.2) is simple.

Milišić, Žubrinić and Županović [10] studied rectifiability for more general autonomous
differential systems based on planar system (1.2). Theorem 8 given in [10] and the above
mentioned facts imply the following.

Theorem A. Let (x(t), y(t)) be any nontrivial solution of (1.2). Suppose that a0 ≥ 0 holds. Then
the zero solution of (1.2) is globally attractive, the orbit Γ(t0,x,y) corresponding to (x(t), y(t)) is simple,
and (i) and (ii) below hold:

(i) if a0 > 0, then the orbit Γ(t0,x,y) is rectifiable;

(ii) if a0 = 0, then the orbit Γ(t0,x,y) is nonrectifiable.
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Remark 1.2. Milišić, Žubrinić and Županović [10] and Žubrinić and Županović [23, 24] dealt
with the rectifiability and the fractal analysis of spiral orbits (or trajectories) of some au-
tonomous systems including (1.2). They dealt with more general, but autonomous systems.
This study focuses on the rectifiability of the nonautonomous systems.

For simplicity, we denote

α1(t) := min{e(t), h(t)} − | f (t)− g(t)|
2

, β1(t) := min{p(t), q(t)},

α2(t) := max{e(t), h(t)}+ | f (t)− g(t)|
2

, β2(t) := max{p(t), q(t)},
(1.3)

and

γ1(t) := −max{ f (t), g(t)} − |e(t)− h(t)|
2

− |p(t)− q(t)|
2

,

γ2(t) := −min{ f (t), g(t)}+ |e(t)− h(t)|
2

+
|p(t)− q(t)|

2
.

(1.4)

If e(t) ≡ h(t), f (t) ≡ g(t) and p(t) ≡ q(t), then

α1(t) = α2(t) = e(t), β1(t) = β2(t) = p(t) and γ1(t) = γ2(t) = − f (t)

for t ≥ t0. Moreover, for each c > 0, we denote

ρi(t; c) := exp
(

2λ
∫ t

t0

αi(s)ds
)(

c + 2λ
∫ t

t0

βi(s) exp
(
−2λ

∫ s

t0

αi(τ)dτ

)
ds
)

, i = 1, 2. (1.5)

The first main result in this paper is as follows.

Theorem 1.3. Let (x(t), y(t)) be any nontrivial solution of (1.1). Suppose that

α1(t) ≥ 0, β1(t) ≥ 0 for t ≥ t0, (1.6)

α1(t) + β1(t) > 0 for t ≥ t0, (1.7)

and

lim
t→∞

∫ t

t0

α1(s)ds = ∞ or lim
t→∞

∫ t

t0

β1(s)ds = ∞. (1.8)

Then the zero solution of (1.1) is globally attractive, the orbit Γ(t0,x,y) corresponding to (x(t), y(t)) is
simple, and (i), (ii) and (iii) below hold:

(i) if α1(t) > 0 for t ≥ t0, and

lim sup
t→∞

max{|γ1(t)|, |γ2(t)|}
α1(t)

< ∞, (1.9)

then the orbit Γ(t0,x,y) is rectifiable;

(ii) if 0 < λ < 1/2 and

lim sup
t→∞

max{|γ1(t)|, |γ2(t)|}
α1(t)ρ1(t; c) + β1(t)

< ∞ for each c > 0, (1.10)

then the orbit Γ(t0,x,y) is rectifiable;



4 M. Onitsuka and S. Tanaka

(iii) if λ ≥ 1/2 and

lim inf
t→∞

max{γ1(t),−γ2(t), 0}
α2(t)ρ2(t; c) + β2(t)

> 0 for each c > 0, (1.11)

then the orbit Γ(t0,x,y) is nonrectifiable.

Using Theorem 1.3 we get the following result, immediately.

Corollary 1.4. Let (x(t), y(t)) be any nontrivial solution of (1.1). Let (x(t), y(t)) be any nontrivial
solution of (1.1). Suppose that (1.6), (1.7) and (1.8) hold. Then the zero solution of (1.1) is globally
attractive, the orbit Γ(t0,x,y) corresponding to (x(t), y(t)) is simple, and (i), (ii) and (iii) below hold:

(i) if α1(t) > 0 for t ≥ t0, and (1.9), then the orbit Γ(t0,x,y) is rectifiable;

(ii) if 0 < λ < 1/2 and β1(t) > 0 for t ≥ t0, and

lim sup
t→∞

max{|γ1(t)|, |γ2(t)|}
β1(t)

< ∞, (1.12)

then the orbit Γ(t0,x,y) is rectifiable;

(iii) if λ ≥ 1/2 and α2(t) = 0 for t ≥ t0, and

lim inf
t→∞

max{γ1(t),−γ2(t), 0}
β2(t)

> 0, (1.13)

then the orbit Γ(t0,x,y) is nonrectifiable.

Corollary 1.4 is expressed in a form which does not include the functions ρ1 and ρ2.
If e(t) = h(t) = a0 ≥ 0, f (t) = g(t) = 1, p(t) = q(t) = 1 for all t ≥ t0, then system (1.1)

reduces to the planar system

x′ = −a0x + y− x
(
x2 + y2)λ

,

y′ = −x− a0y− y
(
x2 + y2)λ

.
(1.14)

In this case, we know that α1(t) = α2(t) = a0, β1(t) = β2(t) = 1 and γ1(t) = γ2(t) = −1 for
all t ≥ t0. Then (1.6), (1.7), (1.8), (1.12) and (1.13) hold. If a0 > 0 then (i) in Corollary 1.4 holds.
Hence, we get the following result, immediately.

Corollary 1.5. Let (x(t), y(t)) be any nontrivial solution of (1.14). Suppose that a0 ≥ 0 holds.
Then the zero solution of (1.14) is globally attractive, the orbit Γ(t0,x,y) corresponding to (x(t), y(t)) is
simple, and (i), (ii) and (iii) below hold:

(i) if a0 > 0, then the orbit Γ(t0,x,y) is rectifiable;

(ii) if a0 = 0 and 0 < λ < 1/2, then the orbit Γ(t0,x,y) is rectifiable;

(iii) if a0 = 0 and λ ≥ 1/2, then the orbit Γ(t0,x,y) is nonrectifiable.

Remark 1.6. From Corollary 1.5, Theorem A is easily obtained.

Figures 1.1–1.4 below show that the orbits corresponding to the nontrivial solution
(x(t), y(t)) of (1.14) with (x(0), y(0)) = (0.9, 0). We choose a0 and λ as follows: a0 = 0.1
and λ = 1 in Fig. 1.1; a0 = 0 and λ = 0.1 in Fig. 1.2; a0 = 0 and λ = 0.5 in Fig. 1.3; a0 = 0 and
λ = 0.9 in Fig. 1.4.
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Figure 1.1: a0 = 0.1, λ = 1; rectifi-
able.
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Figure 1.2: a0 = 0, λ = 0.1; rectifi-
able.
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Figure 1.3: a0 = 0, λ = 0.5; nonrec-
tifiable.
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Figure 1.4: a0 = 0, λ = 0.9; nonrec-
tifiable.

The second main result in this paper is as follows.

Theorem 1.7. Let (x(t), y(t)) be any nontrivial solution of (1.1). Suppose that (1.6), (1.7) and
(1.8) hold. Then the zero solution of (1.1) is globally attractive, the orbit Γ(t0,x,y) corresponding to
(x(t), y(t)) is simple, and (i) and (ii) below hold:

(i) if

lim
t→∞

∫ t

t0

√
[α2(s) + β2(s)(ρ1(s; c))−1]

2 + (max{|γ1(s)|, |γ2(s)|})2

(ρ1(s; c))
1

2λ

ds < ∞ (1.15)

for each c > 0, then the orbit Γ(t0,x,y) is rectifiable;

(ii) if

lim
t→∞

∫ t

t0

√
[α1(s) + β1(s)(ρ2(s; c))−1]

2 + (max{γ1(s),−γ2(s), 0})2

(ρ2(s; c))
1

2λ

ds = ∞ (1.16)

for each c > 0, then the orbit Γ(t0,x,y) is nonrectifiable.
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If p(t) ≡ q(t) ≡ 0, then system (1.1) reduces to the two-dimensional linear differential
system

x′ = −e(t)x + f (t)y,

y′ = −g(t)x− h(t)y.
(1.17)

Note that β1(t) ≡ β2(t) ≡ 0. For this linear system, using Theorem 1.7, we obtain the following
corollary.

Corollary 1.8. Let (x(t), y(t)) be any nontrivial solution of (1.17). Suppose that

α1(t) > 0 for t ≥ t0,

and
lim
t→∞

∫ t

t0

α1(s)ds = ∞.

Then the zero solution of (1.17) is globally attractive, the orbit Γ(t0,x,y) corresponding to (x(t), y(t)) is
simple, and (i) and (ii) below hold:

(i) if

lim
t→∞

∫ t

t0

√
α2

2(s) + (max{|γ1(s)|, |γ2(s)|})2 exp
(
−
∫ s

t0

α1(τ)dτ

)
ds < ∞,

then the orbit Γ(t0,x,y) is rectifiable;

(ii) if

lim
t→∞

∫ t

t0

√
α2

1(s) + (max{γ1(s),−γ2(s), 0})2 exp
(
−
∫ s

t0

α2(τ)dτ

)
ds = ∞,

then the orbit Γ(t0,x,y) is nonrectifiable.

In particular, if e(t) ≡ h(t), f (t) ≡ g(t) then we have the two-dimensional linear differen-
tial system

x′ = −e(t)x + f (t)y,

y′ = − f (t)x− e(t)y.
(1.18)

In this case, we know that α1(t) ≡ α2(t) ≡ e(t), β1(t) ≡ β2(t) ≡ 0 and γ1(t) ≡ γ2(t) ≡ − f (t).
We can establish the following result by Corollary 1.8.

Corollary 1.9. Let (x(t), y(t)) be any nontrivial solution of (1.18). Suppose that

e(t) > 0 for t ≥ t0, (1.19)

and
lim
t→∞

∫ t

t0

e(s)ds = ∞. (1.20)

Then the zero solution of (1.18) is attractive, the orbit Γ(t0,x,y) corresponding to (x(t), y(t)) is simple,
and the orbit Γ(t0,x,y) is rectifiable if and only if

lim
t→∞

∫ t

t0

√
e2(s) + f 2(s) exp

(
−
∫ s

t0

e(τ)dτ

)
ds < ∞. (1.21)

Remark 1.10. It is well known that the local attractivity and the global attractivity are equiv-
alent in the linear case (see [1, 20–22]). Hence, the attractivity of (1.18) means the global
attractivity.
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Consider the two-dimensional nonautonomous linear system

x′ = −1
t

x + tσy,

y′ = −tσx− 1
t

y,
(1.22)

where σ ∈ R and t ≥ 1. Then assumptions (1.19) and (1.20) are easily satisfied. By Corol-
lary 1.9, the zero solution of (1.22) is attractive, the orbit Γ(t0,x,y) corresponding to (x(t), y(t))
is simple. Moreover, we can see that the orbit Γ(t0,x,y) is rectifiable if and only if σ < 0 (The
conditions of Corollary 1.9 will be confirmed in Section 5).

Remark 1.11. Our result on the rectifiability of orbits (or trajectories) of (1.22) is the same as
one that the special case of the result given by Naito, Pašić and Tanaka [12, Example 5.2].
Note here that they dealt with half-linear systems. On the other hand, as related research,
the rectifiability results of the authors [13, 14] can be mentioned, but note that this study has
no inclusion relation with them. Moreover, we can find many results on the rectifiability
and the fractal analysis of the systems and equations. For example, the reader is referred to
[4–7, 9, 11, 15–19].

In the next section, we will discuss the rectifiability for more general systems under the
assumption that the zero solution is globally attractive, and the orbit Γ(t0,x,y) is simple. In
Section 3, the simplicity and the global attractivity for (1.1) are considered. In Section 4, we
prove Theorems 1.3 and 1.7. In Section 5, some examples and numerical simulations are
presented.

2 Rectifiability

In this section, we consider the two-dimensional nonautonomous differential system

x′ = F1(t, x, y),

y′ = F2(t, x, y),
(2.1)

where F1 and F2 are continuously differentiable with respect to (x, y), and satisfying

(F1(t, 0, 0), F2(t, 0, 0)) ≡ (0, 0).

For every solution (x(t), y(t)) of (2.1), we introduce the polar coordinate transformation
x = r cos θ, y = r sin θ. Then we obtain

r′ = G1(t, r, θ),

rθ′ = G2(t, r, θ),
(2.2)

where G1 and G2 are defined by

G1(t, r, θ) = cos θF1(t, r cos θ, r sin θ) + sin θF2(t, r cos θ, r sin θ) (2.3)

and
G2(t, r, θ) = cos θF2(t, r cos θ, r sin θ)− sin θF1(t, r cos θ, r sin θ). (2.4)

The obtained result is as follows.
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Theorem 2.1. Let G1 and G2 be the functions given by (2.3) and (2.4), respectively. Let (x(t), y(t)) be
any nontrivial solution of (2.1) on [t0, ∞). Suppose that the zero solution of (2.1) is globally attractive,
and the orbit Γ(t0,x,y) corresponding to (x(t), y(t)) is simple. Then, (i) and (ii) below hold:

(i) if there exist an r > 0 and a continuous function h : (0, r)→ (0, ∞) such that

‖(G1(t, r, θ), G2(t, r, θ))‖ ≤ −h(r)G1(t, r, θ), (t, r, θ) ∈ [t0, ∞)× (0, r)×R, (2.5)

and

lim
r→+0

∫ r

r
h(η)dη < ∞, (2.6)

then the orbit Γ(t0,x,y) is rectifiable;

(ii) if there exist an r > 0 and a continuous function h : (0, r)→ (0, ∞) such that

‖(G1(t, r, θ), G2(t, r, θ))‖ ≥ −h(r)G1(t, r, θ), (t, r, θ) ∈ [t0, ∞)× (0, r)×R, (2.7)

and

lim
r→+0

∫ r

r
h(η)dη = ∞, (2.8)

then the orbit Γ(t0,x,y) is nonrectifiable.

Proof. Let (x(t), y(t)) be any nontrivial solution of (2.1). Define the functions r and θ by

x(t) = r(t) cos θ(t), y(t) = r(t) sin θ(t)

for t ≥ t0, where
r(t) = ‖(x(t), y(t))‖.

Then (r(t), θ(t)) is a solution to (2.2). Since the existence and uniqueness of solutions of (2.1)
are guaranteed for the initial-value problem, the zero solution (x(t), y(t)) ≡ (0, 0) is unique.
Thus, r(t) > 0 for t ≥ t0. This together with the global attractivity of (2.1) implies that
limt→∞ r(t) = 0, and there exists a T > 0 such that

r(t) ∈ (0, r) (2.9)

for t ≥ t0 + T.
Now, we consider case (i). Using (2.5) and (2.9), we have

‖(x′(t), y′(t))‖ = ‖(F1(t, x(t), y(t)), F2(t, x(t), y(t)))‖

=
√
(cos θF1 + sin θF2)2 + (cos θF2 − sin θF1)2

= ‖(G1(t, r(t), θ(t)), G2(t, r(t), θ(t)))‖
≤ −h(r(t))G1(t, r(t), θ(t)) = −h(r(t))r′(t)

for t ≥ t0 + T. Since h(r) is a positive continuous function on (0, r), and (2.9) holds, we see
that ∫ t

t0+T
‖(x′(s), y′(s))‖ds ≤ −

∫ t

t0+T
h(r(s))r′(s)ds =

∫ r(t0+T)

r(t)
h(η)dη

≤
∫ r

r(t)
h(η)dη
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for t ≥ t0 + T. Therefore, we have∫ t

t0

‖(x′(s), y′(s))‖ds =
∫ t0+T

t0

‖(x′(s), y′(s))‖ds +
∫ t

t0+T
‖(x′(s), y′(s))‖ds

≤
∫ t0+T

t0

‖(x′(s), y′(s))‖ds +
∫ r

r(t)
h(η)dη

for t ≥ t0 + T. Using (2.6), (2.9) with limt→∞ r(t) = 0, we conclude that

lim
t→∞

∫ t

t0

‖(x′(s), y′(s))‖ds < ∞.

Hence, the simple orbit Γ(t0,x,y) is rectifiable.
Next, we consider case (ii). From (2.7) and (2.9), we have

‖(x′(t), y′(t))‖ ≥ −h(r(t))G1(t, r(t), θ(t)) = −h(r(t))r′(t)

for t ≥ t0 + T. Since h(r) is a positive continuous function on (0, r), and (2.9) holds, we see
that ∫ t

t0

‖(x′(s), y′(s))‖ds ≥
∫ t

t0+T
‖(x′(s), y′(s))‖ds

≥ −
∫ t

t0+T
h(r(s))r′(s)ds =

∫ r(t0+T)

r(t)
h(η)dη

=
∫ r

r(t)
h(η)dη −

∫ r

r(t0+T)
h(η)dη

for t ≥ t0 + T. From (2.8), (2.9) with limt→∞ r(t) = 0, we get

lim
t→∞

∫ t

t0

‖(x′(s), y′(s))‖ds = ∞.

Consequently, the simple orbit Γ(t0,x,y) is nonrectifiable. This completes the proof.

For our main system (1.1), we find that

F1(t, x, y) = −e(t)x + f (t)y− p(t)x
(
x2 + y2)λ

,

F2(t, x, y) = −g(t)x− h(t)y− q(t)y
(
x2 + y2)λ

,

and
G1(t, r, θ) = −

(
e(t) cos2 θ + h(t) sin2 θ

)
r + ( f (t)− g(t))r sin θ cos θ

−
(

p(t) cos2 θ + q(t) sin2 θ
)

r2λ+1,

G2(t, r, θ) = −
(

g(t) cos2 θ + f (t) sin2 θ
)

r + (e(t)− h(t))r sin θ cos θ

+ (p(t)− q(t))r2λ+1 sin θ cos θ.

(2.10)

3 Simplicity and global attractivity

In this section, we deal with the simplicity and the global attractivity for our main system
(1.1). First, we give two lemmas.
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Lemma 3.1. Let G1 be the function given in (2.10). Then

G1(t, r, θ) ≤ −
(

α1(t) + β1(t)r2λ
)

r

holds for t ≥ t0 and r ∈ [0, ∞), where α1 and β1 are given in (1.3).

Proof. By (2.10), we get

G1(t, r, θ) ≤ −min{e(t), h(t)}r + | f (t)− g(t)|
2

r−min{p(t), q(t)}r2λ+1

= −
(

α1(t) + β1(t)r2λ
)

r

for t ≥ t0 and r ∈ [0, ∞).

Lemma 3.2. Suppose that (1.6) and (1.7) hold. Then(
α1(t) + β1(t)r2λ

)
r > 0

holds for t ≥ t0 and r ∈ (0, ∞), where α1 and β1 are given in (1.3).

Proof. By way of contradiction, we suppose that there exists a t1 ≥ t0 such that(
α1(t1) + β1(t1)r2λ

)
r ≤ 0.

From (1.6) and r ∈ (0, ∞), we have

α1(t1) + β1(t1)r2λ = 0.

This together with (1.6) says that α1(t1) = β1(t1) = 0. However, this contradicts assumption
(1.7).

We now consider the simplicity of the nontrivial solutions to (1.1). The obtained result is
as follows.

Lemma 3.3. Let (x(t), y(t)) be a nontrivial solution of (1.1). Suppose that (1.6) and (1.7) hold. Then
the orbit Γ(t0,x,y) corresponding to (x(t), y(t)) is simple.

Proof. Let (x(t), y(t)) be a nontrivial solution of (1.1). Assume to the contrary that there exist
t1, t2 ∈ [t0, ∞) such that t1 < t2 with (x(t1), y(t1)) = (x(t2), y(t2)). Let (r(t), θ(t)) be the
solution of (2.2) with (2.10) corresponding to (x(t), y(t)). Then r(t1) = r(t2) holds. Since
(x(t), y(t)) is a nontrivial solution and the zero solution is unique, we know that r(t) > 0
for all t ≥ t0. From Lemmas 3.1 and 3.2, we see that r′(t) < 0 for t ≥ t0. Integrating this
inequality from t1 to t2, we obtain

r(t2)− r(t1) =
∫ t2

t1

r′(t)dt < 0.

This is a contradiction. Consequently, Γ(t0,x,y) is a simple orbit.

We will give an important inequality.
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Lemma 3.4. Let (x(t), y(t)) be a nontrivial solution of (1.1) with the initial condition (x(t0), y(t0)) =

(x0, y0). Let (r(t), θ(t)) be the solution of (2.2) with (2.10) corresponding to (x(t), y(t)). Suppose
that β1(t) ≥ 0 holds for t ≥ t0. Then (x(t), y(t)) exists on [t0, ∞) and is the unique solution of (1.1)
with (x(t0), y(t0)) = (x0, y0), and the inequality

0 < r(t) ≤ exp
(
−
∫ t

t0

α1(s)ds
)(

r−2λ(t0) + 2λ
∫ t

t0

β1(s) exp
(
−2λ

∫ s

t0

α1(τ)dτ

)
ds
)− 1

2λ

(3.1)

holds for t ≥ t0, where α1 and β1 are given in (1.3).

Proof. Let (x(t), y(t)) be a nontrivial solution of (1.1) with (x(t0), y(t0)) = (x0, y0). Let
(r(t), θ(t)) be the solution of (2.2) with (2.10) corresponding to (x(t), y(t)). Let I ⊂ [t0, ∞)

be the maximal interval of the existence of (x(t), y(t)). Then r(t) > 0 holds for t ∈ I, from the
uniqueness of the zero solution. Using Lemma 3.1, we have

r′(t) ≤ −
(

α1(t) + β1(t)r2λ(t)
)

r(t)

for t ∈ I. Set z(t) := r−2λ(t). Then, it follows from the above inequality and r(t) > 0 that

z′(t) = −2λr−2λ−1(t)r′(t) ≥ 2λr−2λ(t)
(

α1(t) + β1(t)r2λ(t)
)
= 2λα1(t)z(t) + 2λβ1(t)

for t ∈ I. Hence(
exp

(
−2λ

∫ t

t0

α1(s)ds
)

z(t)
)′
≥ 2λβ1(t) exp

(
−2λ

∫ t

t0

α1(s)ds
)

for t ∈ I. Integrating this inequality from t0 to t, we get

exp
(
−2λ

∫ t

t0

α1(s)ds
)

z(t) ≥ z(t0) + 2λ
∫ t

t0

β1(s) exp
(
−2λ

∫ s

t0

α1(τ)dτ

)
ds,

and so that

r−2λ(t) = z(t) ≥ exp
(

2λ
∫ t

t0

α1(s)ds
)(

r−2λ(t0) + 2λ
∫ t

t0

β1(s) exp
(
−2λ

∫ s

t0

α1(τ)dτ

)
ds
)

for t ∈ I. Therefore, if β1(t) ≥ 0 for t ≥ t0, then we obtain (3.1) for t ∈ I.
Using the above inequality and β1(t) ≥ 0 for t ≥ t0, we have

r−2λ(t) ≥ exp
(

2λ
∫ t

t0

α1(s)ds
)

r−2λ(t0),

and thus,

0 < ‖(x(t), y(t))‖ ≤ ‖(x0, y0)‖ exp
(
−
∫ t

t0

α1(s)ds
)

for t ∈ I. (3.2)

This inequality means that I = [t0, ∞), that is, any nontrivial solution of (1.1) exists on [t0, ∞)

by a standard argument of a general theory on ordinary differential equations. Consequently,
the initial value problem (1.1) with (x(t0), y(t0)) = (x0, y0) has a unique solution on [t0, ∞).

Next, we consider the global attractivity for (1.1). Assuming a stronger condition, we can
get stronger stability. The zero solution is said to be globally exponentially stable if there exists
a k > 0 and, for any η > 0, there exists a δ(η) > 0 such that t1 ∈ R with t1 ≥ t0 and
‖(x0, y0)‖ < η imply

‖(x(t; t1, x0, y0), y(t; t1, x0, y0))‖ ≤ δ(η)‖(x0, y0)‖e−k(t−t1)

for all t ≥ t1. The following lemma is established.
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Lemma 3.5. Suppose that (1.6) and (1.8) hold, where α1 and β1 are given in (1.3). Then the zero
solution of (1.1) is globally attractive. In particular, if there exists an a > 0 such that

α1(s) ≥ a for t ≥ t0, (3.3)

then the zero solution of (1.1) is globally exponentially stable.

Proof. Let t1 satisfy t1 ≥ t0. Let (x(t), y(t)) be any nontrivial solution of (1.1) with (x(t1), y(t1))

= (x0, y0). Let (r(t), θ(t)) be the solution of (2.2) with (2.10) corresponding to (x(t), y(t)).
Using Lemma 3.4, we have inequality (3.1) for t ≥ t1.

Now we consider the case limt→∞
∫ t

t0
α1(s)ds < ∞. This together with (1.8) yields

lim
t→∞

∫ t

t0

β1(s)ds = ∞.

Let L := limt→∞
∫ t

t0
α1(s)ds ≥ 0. Using this and (3.1), we obtain

0 < ‖(x(t), y(t))‖ = r(t) ≤ 1(
r−2λ(t1) + 2λe−2λL

∫ t
t1

β1(s)ds
) 1

2λ

<
1(

2λe−2λL
∫ t

t1
β1(s)ds

) 1
2λ

for t ≥ t1. Hence, any nontrivial solution of (1.1) tends to (0, 0) as t → ∞. That is, the zero
solution of (1.1) is globally attractive.

Next we consider the case limt→∞
∫ t

t0
α1(s)ds = ∞. Then, by assumption (1.6), we obtain

inequality (3.2). Therefore, the zero solution of (1.1) is globally attractive. Moreover, if we sup-
pose condition (3.3), then inequality (3.2) implies global exponential stability. This completes
the proof.

Remark 3.6. If α1(t) ≡ 0 then, it does not imply the (global) exponential stability for (1.1). For
example, we consider the case λ = 1, e(t) = h(t) = 0 and f (t) = g(t) = 1 and p(t) = q(t) = 1
for t ≥ t0. That is, α1(t) = α2(t) = 0, β1(t) = β2(t) = 1 and γ1(t) = γ2(t) = −1 for t ≥ t0.
From (2.2) and (2.10), we have

r′ = −r3.

Solving this equation, we get

r(t) =
1√

2(t− t0) + r−2(t0)

for t ≥ t0. Thus, the zero solution is not exponentially stable. Although not described here
in detail, we can see that the zero solution of this system is uniformly asymptotically stable.
It is well known that the exponential stability implies the uniform asymptotic stability; the
uniform asymptotic stability implies the asymptotic stability (the zero solution is attractive
and stable). If (1.1) is a periodic or autonomous system, then the asymptotic stability and
the uniform asymptotic stability are equivalent. For example, see [2, 3, 8, 21, 22]. Moreover,
if (1.1) is a linear system, the uniform asymptotic stability and the exponential stability are
equivalent. For example, the reader is referred to [3,21,22] and the references cited therein. In
general, our main equations are nonautonomous and nonlinear, so their stabilities are often
different.
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4 Proofs of the main theorems

Before proving the main theorems, we give three lemmas.

Lemma 4.1. Let G1 be the function given in (2.10). Then

G1(t, r, θ) ≥ −
(

α2(t) + β2(t)r2λ
)

r (4.1)

holds for t ≥ t0 and r ∈ [0, ∞), where α2 and β2 are given in (1.3).

Proof. By (2.10), we get

G1(t, r, θ) ≥ −max{e(t), h(t)}r− | f (t)− g(t)|
2

r−max{p(t), q(t)}r2λ+1

= −
(

α2(t) + β2(t)r2λ
)

r

for t ≥ t0 and r ∈ [0, ∞).

Lemma 4.2. Let (x(t), y(t)) be any nontrivial solution of (1.1). Let (r(t), θ(t)) be the solution of
(2.2) with (2.10) corresponding to (x(t), y(t)). Suppose that β2(t) ≥ 0 holds for t ≥ t0. Then the
inequality

r(t) ≥ exp
(
−
∫ t

t0

α2(s)ds
)(

r−2λ(t0) + 2λ
∫ t

t0

β2(s) exp
(
−2λ

∫ s

t0

α2(τ)dτ

)
ds
)− 1

2λ

(4.2)

holds for t ≥ t0, where α2 and β2 are given in (1.3).

Proof. Let (x(t), y(t)) be any nontrivial solution of (1.1). Let (r(t), θ(t)) be the solution of (2.2)
with (2.10) corresponding to (x(t), y(t)). Using Lemma 4.1, we have

r′(t) ≥ −
(

α2(t) + β2(t)r2λ(t)
)

r(t)

for t ≥ t0. Set z(t) := r−2λ(t). Then, it follows from the above inequality and r(t) > 0 that

z′(t) ≤ 2λα2(t)z(t) + 2λβ2(t)

for t ≥ t0. Hence(
exp

(
−2λ

∫ t

t0

α2(s)ds
)

z(t)
)′
≤ 2λβ2(t) exp

(
−2λ

∫ t

t0

α2(s)ds
)

for t ≥ t0. Integrating this inequality from t0 to t, we get

r−2λ(t) ≤ exp
(

2λ
∫ t

t0

α2(s)ds
)(

r−2λ(t0) + 2λ
∫ t

t0

β2(s) exp
(
−2λ

∫ s

t0

α2(τ)dτ

)
ds
)

for t ≥ t0. Therefore, if β2(t) ≥ 0 for t ≥ t0, then we obtain the inequality in Lemma 4.2.

Lemma 4.3. Let G2 be the function given in (2.10). Then

γ1(t)r ≤ G2(t, r, θ) ≤ γ2(t)r (4.3)

holds for t ≥ t0 and r ∈ [0, 1), where γ1 and γ2 are given by (1.4).



14 M. Onitsuka and S. Tanaka

Proof. By (2.10) and r ∈ [0, 1), we obtain

G2(t, r, θ) ≥ −max{ f (t), g(t)}r− |e(t)− h(t)|
2

r− |p(t)− q(t)|
2

r2λ+1

≥ γ1(t)r

and

G2(t, r, θ) ≤ −min{ f (t), g(t)}r + |e(t)− h(t)|
2

r +
|p(t)− q(t)|

2
r2λ+1

≤ γ2(t)r.

Thus, (4.3) holds.

Now, we will prove the main theorems.

Proof of Theorem 1.3. From Lemma 3.5, the zero solution of (1.1) is globally attractive. Let
(x(t), y(t)) be any nontrivial solution of (1.1). By Lemma 3.3, the orbit Γ(t0,x,y) corresponding
to (x(t), y(t)) is simple. Let x = r cos θ, y = r sin θ. Then we have (2.3) and (2.4). By Lemmas
3.1, 3.2, 4.1 and 4.3, the inequalities

0 <
(

α1(t) + β1(t)r2λ
)

r ≤ |G1(t, r, θ)| = −G1(t, r, θ) ≤
(

α2(t) + β2(t)r2λ
)

r, (4.4)

and
max{γ1(t),−γ2(t), 0}r ≤ |G2(t, r, θ)| ≤ max{|γ1(t)|, |γ2(t)|}r (4.5)

hold for t ≥ t0 and r ∈ (0, 1). Therefore, we obtain

max{γ1(t),−γ2(t), 0}
α2(t) + β2(t)r2λ

≤
∣∣∣∣G2(t, r, θ)

G1(t, r, θ)

∣∣∣∣ ≤ max{|γ1(t)|, |γ2(t)|}
α1(t) + β1(t)r2λ

(4.6)

for t ≥ t0 and r ∈ (0, 1).
First, we consider case (i). Suppose that α1(t) > 0 for t ≥ t0, and (1.9), that is, there exists

a µ > 0 and a t1 ≥ t0 such that

max{|γ1(t)|, |γ2(t)|}
α1(t)

≤ µ

holds for t ≥ t1. By (1.6), β1(t) ≥ 0 for t ≥ t0. This together with the above inequality implies√
1 +

(
max{|γ1(t)|, |γ2(t)|}

α1(t) + β1(t)r2λ

)2

≤

√
1 +

(
max{|γ1(t)|, |γ2(t)|}

α1(t)

)2

≤
√

1 + µ2

for t ≥ t1. Moreover, we can choose an M1 ≥
√

1 + µ2 such that√
1 +

(
max{|γ1(t)|, |γ2(t)|}

α1(t) + β1(t)r2λ

)2

≤ M1

for t0 ≤ t ≤ t1. Using these inequalities and (4.6), we have

‖(G1(t, r, θ), G2(t, r, θ))‖ ≤ −

√
1 +

(
max{|γ1(t)|, |γ2(t)|}

α1(t) + β1(t)r2λ

)2

G1(t, r, θ) ≤ −M1G1(t, r, θ)
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for t ≥ t0 and r ∈ (0, 1), so that we get (2.5) with r = 1 and h(r) = M1. By

lim
r→+0

∫ 1

r
h(η)dη = M1,

we have (2.6). Consequently, the orbit Γ(t0,x,y) is rectifiable.
Let (r(t), θ(t)) be the solution of (2.2) with (2.10) corresponding to (x(t), y(t)). Before

proving cases (ii) and (iii), we will discuss some properties of r(t). By the global attractivity
for (1.1), there exits a t1 ≥ t0 such that

0 < r(t) ≤ 1 for t ≥ t1.

From Lemmas 3.4 and 4.2, we have

ρ1(t; c0) ≤ r−2λ(t) ≤ ρ2(t; c0) for some c0 > 0, (4.7)

and for t ≥ t0, where ρ1 and ρ2 are given by (1.5). This together with (4.6) implies that

max{γ1(t),−γ2(t), 0}
α2(t)ρ2(t; c0) + β2(t)

r−2λ(t) ≤
∣∣∣∣G2(t, r(t), θ(t))
G1(t, r(t), θ(t))

∣∣∣∣ ≤ max{|γ1(t)|, |γ2(t)|}
α1(t)ρ1(t; c0) + β1(t)

r−2λ(t) (4.8)

for t ≥ t1.
Now, we consider case (ii). Suppose that 0 < λ < 1/2 and (1.10) hold, that is, there exists

a µ > 0 and a t2 ≥ t1 such that

max{|γ1(t)|, |γ2(t)|}
α1(t)ρ1(t; c) + β1(t)

≤ µ

holds for t ≥ t2. By (4.8), we have√
1 +

∣∣∣∣G2(t, r(t), θ(t))
G1(t, r(t), θ(t))

∣∣∣∣2 ≤
√

r4λ(t) +
(

max{|γ1(t)|, |γ2(t)|}
α1(t)ρ1(t; c0) + β1(t)

)2

r−2λ(t)

≤

√
1 +

(
max{|γ1(t)|, |γ2(t)|}
α1(t)ρ1(t; c0) + β1(t)

)2

r−2λ(t)

≤
√

1 + µ2r−2λ(t)

for t ≥ t2. Moreover, we can choose an M2 ≥
√

1 + µ2 such that√
1 +

(
max{|γ1(t)|, |γ2(t)|}
α1(t)ρ1(t; c0) + β1(t)

)2

≤ M2

for t0 ≤ t ≤ t2. Therefore, we see that

‖(x′(t), y′(t))‖ = ‖(F1(t, x(t), y(t)), F2(t, x(t), y(t)))‖ = ‖(G1(t, r(t), θ(t)), G2(t, r(t), θ(t)))‖

=

√
1 +

∣∣∣∣G2(t, r(t), θ(t))
G1(t, r(t), θ(t))

∣∣∣∣2|G1(t, r(t), θ(t))|

≤ M2r−2λ(t)|G1(t, r(t), θ(t))| = −M2r−2λ(t)r′(t)

holds for t ≥ t0. Integrating this inequality, we obtain∫ t

t0

‖(x′(s), y′(s))‖ds ≤ M2

∫ r(t0)

r(t)
η−2λdη =

M2

1− 2λ

(
r1−2λ(t0)− r1−2λ(t)

)
<

M2r1−2λ(t0)

1− 2λ
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for t ≥ t0. Hence, we conclude that the orbit Γ(t0,x,y) is rectifiable.
Finally, we consider case (iii). Suppose that λ ≥ 1/2 and (1.11) hold, that is, there exists a

ν > 0 and a t2 ≥ t1 such that
max{γ1(t),−γ2(t), 0}

α2(t)ρ2(t; c) + β2(t)
≥ ν

holds for t ≥ t2. By (4.8), we have√
1 +

∣∣∣∣G2(t, r(t), θ(t))
G1(t, r(t), θ(t))

∣∣∣∣2 >

∣∣∣∣G2(t, r(t), θ(t))
G1(t, r(t), θ(t))

∣∣∣∣ ≥ max{γ1(t),−γ2(t), 0}
α2(t)ρ2(t; c0) + β2(t)

r−2λ(t) ≥ νr−2λ(t)

for t ≥ t2. From this, we see that

‖(x′(t), y′(t))‖ =

√
1 +

∣∣∣∣G2(t, r(t), θ(t))
G1(t, r(t), θ(t))

∣∣∣∣2|G1(t, r(t), θ(t))|

> νr−2λ(t)|G1(t, r(t), θ(t))| = −νr−2λ(t)r′(t) (4.9)

for t ≥ t2. Now, we consider the case λ = 1/2. Integrating (4.9), we obtain

∫ t

t0

‖(x′(s), y′(s))‖ds ≥ −ν
∫ r(t)

r(t2)
η−1dη = −ν log

r(t)
r(t2)

for t ≥ t2. Since the zero solution of (1.1) is globally attractive, we conclude that the orbit
Γ(t0,x,y) is nonrectifiable. On the other hand, we consider the case λ > 1/2. Integrating (4.9),
we obtain ∫ t

t0

‖(x′(s), y′(s))‖ds ≥ −ν
∫ r(t)

r(t2)
η−2λdη =

ν

2λ− 1

(
1

r2λ−1(t)
− 1

r2λ−1(t2)

)
for t ≥ t2. Consequently, Γ(t0,x,y) is nonrectifiable. This completes the proof of Theorem 1.3.

Proof of Theorem 1.7. Let (x(t), y(t)) be any nontrivial solution of (1.1). From Lemmas 3.3 and
3.5, the zero solution of (1.1) is globally attractive, and the orbit Γ(t0,x,y) corresponding to
(x(t), y(t)) is simple. Let (r(t), θ(t)) be the solution of (2.2) with (2.10) corresponding to
(x(t), y(t)). Then the global attractivity for (1.1) implies that there exits a t1 ≥ t0 such that

0 < r(t) < 1 for t ≥ t1.

From Lemmas 3.4 and 4.2, we have (4.7) for t ≥ t0. Using Lemmas 3.1, 3.2, 4.1 and 4.3, we get
inequalities (4.4) and (4.5) for t ≥ t0 and r ∈ (0, 1). Therefore,

‖(G1(t, r, θ), G2(t, r, θ))‖ ≤
√
(α2(t) + β2(t)r2λ)

2
+ (max{|γ1(t)|, |γ2(t)|})2r (4.10)

and

‖(G1(t, r, θ), G2(t, r, θ))‖ ≥
√
(α1(t) + β1(t)r2λ)

2
+ (max{γ1(t),−γ2(t), 0})2r (4.11)

for t ≥ t0 and r ∈ (0, 1).
First we consider case (i). By (4.7), (4.10) and the fact

‖(x′(t), y′(t))‖ = ‖(F1(t, x(t), y(t)), F2(t, x(t), y(t)))‖ = ‖(G1(t, r(t), θ(t)), G2(t, r(t), θ(t)))‖,
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we obtain

‖(x′(t), y′(t))‖ ≤

√
[α2(t) + β2(t)(ρ1(t; c0))−1]

2 + (max{|γ1(t)|, |γ2(t)|})2

(ρ1(t; c0))
1

2λ

for t ≥ t1. Hence from (1.15) it follows that Γ(t0,x,y) is rectifiable.
Next we consider case (iii). By (4.7) and (4.11), we obtain

‖(x′(t), y′(t))‖ ≥

√
[α1(t) + β1(t)(ρ2(t; c0))−1]

2 + (max{γ1(t),−γ2(t), 0})2

(ρ2(t; c0))
1

2λ

for t ≥ t1. Integrating this inequality and using (1.16), we conclude that Γ(t0,x,y) is nonrectifi-
able. This completes the proof of Theorem 1.7.

Using Theorems 1.3 and 1.7, and Lemma 3.5, we can establish the following result.

Theorem 4.4. Let (x(t), y(t)) be any nontrivial solution of (1.1). Suppose that (1.6) and (3.3) hold.
Then the zero solution of (1.1) is globally exponentially stable, the orbit Γ(t0,x,y) corresponding to
(x(t), y(t)) is simple, and (i), (ii) and (iii) below hold:

(i) if (1.9) holds, then the orbit Γ(t0,x,y) is rectifiable;

(ii) if (1.15) holds, then the orbit Γ(t0,x,y) is rectifiable;

(iii) if (1.16) holds, then the orbit Γ(t0,x,y) is nonrectifiable.

Corollary 1.9 and Lemma 3.5 imply the following.

Corollary 4.5. Let (x(t), y(t)) be any nontrivial solution of (1.18). Suppose that there exists an e > 0
such that

e(t) ≥ e for t ≥ t0. (4.12)

Then the zero solution of (1.18) is exponentially stable, the orbit Γ(t0,x,y) corresponding to (x(t), y(t))
is simple, and the orbit Γ(t0,x,y) is rectifiable if and only if (1.21) holds.

5 Examples and numerical simulations

In this section we will present some examples and numerical simulations.

Example 5.1. Let λ = 0.5. Consider the two-dimensional nonautonomous differential system
(1.1) with

e(t) = h(t) =
1
t

, f (t) = g(t) =
10 cos t

t
and p(t) = q(t) = t. (5.1)

Then

α1(t) = α2(t) = e(t) =
1
t

, β1(t) = β2(t) = p(t) = t and γ1(t) = γ2(t) = − f (t) = −10 cos t
t

.

Hence, assumptions (1.6), (1.7) and (1.8) are easily satisfied. Moreover,

α1(t) =
1
t
> 0 for t ≥ 1,
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and
max{|γ1(t)|, |γ2(t)|}

α1(t)
= 10| cos t| ≤ 10 for t ≥ 1.

By Theorem 1.3 (i), we conclude that the zero solution of (1.1) with (5.1) is globally attractive,
the orbit Γ(t0,x,y) is simple and rectifiable. Fig. 5.1 shows the orbit Γ(1,x,y) corresponding to the
nontrivial solution (x(t), y(t)) of (1.1) with (5.1) and (x(1), y(1)) = (0.9, 0).

Example 5.2. Let λ = 0.1. Consider the two-dimensional nonautonomous differential system
(1.1) with

e(t) = h(t) = 0, f (t) = g(t) =
1
2
+

cos t
t

and p(t) = q(t) = 0.1. (5.2)

Then

α1(t) = α2(t) = 0, β1(t) = β2(t) = 0.1 and γ1(t) = γ2(t) = −
1
2
− cos t

t
.

Hence, assumptions (1.6), (1.7) and (1.8) are easily satisfied. Moreover,

max{|γ1(t)|, |γ2(t)|}
β1(t)

= 10
(

1
2
+

cos t
t

)
≤ 15 for t ≥ 1.

By Corollary 1.4 (ii), we conclude that the zero solution of (1.1) with (5.2) is globally attractive,
the orbit Γ(t0,x,y) is simple and rectifiable. Fig. 5.2 shows the orbit Γ(1,x,y) corresponding to the
nontrivial solution (x(t), y(t)) of (1.1) with (5.2) and (x(1), y(1)) = (0.9, 0).

Example 5.3. Let λ = 0.5. Consider the two-dimensional nonautonomous differential system
(1.1) with (5.2). Then

max{γ1(t),−γ2(t), 0}
β2(t)

≥ −γ2(t)
β2(t)

= 10
(

1
2
+

cos t
t

)
>

5
2

for t ≥ 4.

By Corollary 1.4 (iii), the zero solution of (1.1) with (5.2) is globally attractive, the orbit Γ(t0,x,y)
is simple and nonrectifiable. Fig. 5.3 shows the orbit Γ(1,x,y) corresponding to the nontrivial
solution (x(t), y(t)) of (1.1) with (5.2) and (x(1), y(1)) = (0.9, 0).

Example 5.4. Let λ = 0.5. Consider the two-dimensional nonautonomous differential system
(1.1) with

e(t) = h(t) =
1
t

, f (t) = g(t) = 2 + cos t and p(t) = q(t) =
1
t2 . (5.3)

Then

α1(t) = α2(t) =
1
t

, β1(t) = β2(t) =
1
t2 and γ1(t) = γ2(t) = −2− cos t.

Hence, assumptions (1.6), (1.7) and (1.8) are easily satisfied. Since

exp
(

2λ
∫ t

t0

α2(s)ds
)
= exp

(
log

t
t0

)
=

t
t0

for t ≥ t0, we have

ρ2(t; c) =
t
t0

(
c + t0

∫ t

t0

s−3ds
)
= t

(
c
t0

+
1

2t2
0
− 1

2t2

)
,
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Figure 5.1: Example 5.1; Theo-
rem 1.3 (i); rectifiable.
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Figure 5.2: Example 5.2; Corol-
lary 1.4 (ii); rectifiable.

and hence
max{γ1(t),−γ2(t), 0}

α2(t)ρ2(t; c) + β2(t)
≥ 2 + cos t

c
t0
+ 1

2t2
0
+ 1

2t2

≥ 1
c
t0
+ 1

t2
0

for t ≥ t0. Hence (1.11) is satisfied. By Theorem 1.3 (iii), the zero solution of (1.1) with (5.3)
is globally attractive, the orbit Γ(t0,x,y) is simple and nonrectifiable. Fig. 5.4 shows the orbit
Γ(1,x,y) corresponding to the nontrivial solution (x(t), y(t)) of (1.1) with (5.3) and (x(1), y(1)) =
(0.9, 0).

Example 5.5. Consider the two-dimensional nonautonomous linear system (1.18) with

e(t) = 1 and f (t) = et. (5.4)

Then assumption (4.12) is easily satisfied. It is clear that∫ t

t0

√
e2(s) + f 2(s) exp

(
−
∫ s

t0

e(τ)dτ

)
ds ≥

∫ t

t0

ese−s+t0 ds = et0(t− t0)

for all t ≥ t0. Hence, by Corollary 4.5 we conclude that the zero solution of (1.18) with (5.4)
is exponentially stable, the orbit Γ(t0,x,y) corresponding to (x(t), y(t)) is simple and nonrecti-
fiable. Fig. 5.5 shows the orbit Γ(1,x,y) corresponding to the nontrivial solution (x(t), y(t)) of
(1.18) with (5.4) and (x(1), y(1)) = (0.9, 0).

Example 5.6. Consider the two-dimensional nonautonomous linear system (1.22), where
σ ∈ R. Then assumptions (1.19) and (1.20) are easily satisfied. By Corollary 1.9 we con-
clude that the zero solution of (1.22) is globally attractive, the orbit Γ(t0,x,y) corresponding to
(x(t), y(t)) is simple. Moreover, the orbit Γ(t0,x,y) is rectifiable if and only if

lim
t→∞

∫ t

t0

√
e2(s) + f 2(s) exp

(
−
∫ s

t0

e(τ)dτ

)
ds < ∞.

Let

ω(t) :=
√

e2(t) + f 2(t) exp
(
−
∫ t

t0

e(s)ds
)
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Figure 5.3: Example 5.3; Corol-
lary 1.4 (iii); nonrectifiable.
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Figure 5.4: Example 5.4; Theo-
rem 1.3 (iii); nonrectifiable.
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Figure 5.5: Example 5.5; Corol-
lary 4.5; exponentially stable; non-
rectifiable.

for all t ≥ 1. Then we have
ω(t) = t−1

√
t−2 + t2σ (5.5)

holds for all t ≥ 1. We will consider the three cases (i) σ ≤ −1, (ii) −1 < σ < 0 and (iii) σ ≥ 0.
Case (i). Using (5.5), we get

∫ t

1
ω(s)ds =

∫ t

1
s−2
√

1 + s2(σ+1)ds ≤
√

2
∫ t

1
s−2ds = −

√
2(t−1 − 1) <

√
2

for all t ≥ 1. By Theorem 1.9 we see that the orbit Γ(t0,x,y) is rectifiable.
Case (ii). From (5.5), we have

∫ t

1
ω(s)ds =

∫ t

1
sσ−1

√
s−2(σ+1) + 1ds ≤

√
2
∫ t

1
sσ−1ds =

√
2

σ
(tσ − 1) <

√
2
−σ

for all t ≥ 1. By Corollary 1.9 we see that the orbit Γ(t0,x,y) is rectifiable.
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Case (iii). Using (5.5), we get∫ t

1
ω(s)ds ≥

∫ t

1
sσ−1ds ≥

∫ t

1
s−1ds = log t

for all t ≥ t0. By Corollary 1.9 we see that the orbit Γ(t0,x,y) is nonrectifiable. Consequently, we
can conclude that the orbit Γ(t0,x,y) is rectifiable if and only if σ < 0.

Acknowledgements

Masakazu Onitsuka was supported by JSPS KAKENHI Grant Number 20K03668. Satoshi
Tanaka was supported by JSPS KAKENHI Grant Number 19K03595. The authors would like
to thank the referee for his/her careful reading and comments.

References

[1] A. Bacciotti, L. Rosier, Liapunov functions and stability in control theory, 2nd ed., Com-
munications and Control Engineering Series, Springer-Verlag, Berlin, 2005. https://doi.
org/10.1007/b139028; MR2146587; Zbl 1078.93002

[2] W. A. Coppel, Stability and asymptotic behavior of differential equations, D. C. Heath and Co.,
Boston, 1965. MR0190463; Zbl 0154.09301

[3] J. K. Hale, Ordinary differential equations, Pure and Applied Mathematics, Vol. 11, Wiley-
Interscience, New York, London, Sydney, 1969. MR0419901; Zbl 0186.40901
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[16] M. Pašić, S. Tanaka, Fractal oscillations of self-adjoint and damped linear differential
equations of second-order, Appl. Math. Comput. 218(2011), 2281–2293. https://doi.org/
10.1016/j.amc.2011.07.047; MR2831502; Zbl 1244.34052
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