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Abstract. We obtain an existence theorem of nonzero solution for a class of bounded
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1 Introduction

In recent years several authors studied the existence of homoclinic orbits for first or second
order Hamiltonian systems via variational methods and critical point theory, see for instance
[2, 4–6, 9, 12–16]. In particular, with the aid of a bounded self-adjoint linear operator and the
dual action principle, Coti Zelati, Ekeland and Séré [4] obtained some existence theorems of
nonzero homoclinic orbit for first order Hamiltonian systems{

x′ = JAx + JH′(t, x),

x(±∞) = 0,

via the Ambrosetti–Rabinowitz mountain-pass theorem and concentration compactness prin-
ciple. Inspired by the ideas of [4], we consider the more generalized operator equation

Lu− G′(t, u) = 0, (1.1)

where L : Lβ(R, RN) → W1,β(R, RN)
⋂

Lγ(R, RN) is a bounded linear operator for all γ ≥ β

and for some β ∈ (1, 2) and
∫

R
((Lu)(t), v(t))dt =

∫
R
((Lv)(t), u(t))dt for all u, v ∈ Lβ(R, RN),
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G : R × RN → R and G′(t, u) denotes the gradient of G with respect to u. u = u(t) ∈
Lβ(R, RN) is called a solution of (1.1) if (Lu)(t)− G′(t, u(t)) = 0 a.e. t ∈ R.

We need the following assumptions:

(L1) For any bounded {un} ⊂ Lβ(R, RN) and R > 0, there exists a subsequence {unj} such
that Lunj → w in C([−R, R], RN).

(L2) There exists v0 ∈ Lβ(R, RN) such that
∫ +∞
−∞ (Lv0, v0)dt > 0.

(L3) (Lu(·+ T))(t) = (Lu)(t + T) for all t ∈ R, where T > 0 is a constant.

(L4) |(Lu)(t)| ≤ c0
∫ +∞
−∞ e−l|t−τ||u(τ)|dτ for all u ∈ Lβ(R, RN), where c0, l > 0 are two con-

stants.

(G1) G(t, ·) and G′(t, ·) are continuous for a.e. t ∈ R, G(·, u) and G′(·, u) are measurable for
all u ∈ RN , G(t, ·) is convex for all t ∈ R and G∗′(t, ·) exists for a.e. t ∈ R .

(G2) G(t + T, u) = G(t, u) for all t ∈ R.

(G3) c1|u|β ≤ G(t, u) ≤ c2|u|β, where c2 ≥ c1 > 0 are two constants.

(G4) 0 ≤ 1
β (G

′(t, u), u) ≤ G(t, u).

(G5) |G′(t, u)| ≤ c3|u|β−1, where c3 > 0 is a constant.

Now we state our main result as follows.

Theorem 1.1. Assume L and G satisfy (L1)–(L4) and (G1)–(G5). Then (1.1) has a nonzero solution.

Remark 1.1. Although the equation (1.1) also appeared in the proof of Theorem 4.2 in [4],
the bounded linear operator L there equal (2.2) which comes from first order Hamiltonian
systems. In this paper, L discussed in (1.1) contains not only (2.2) but also (2.4) coming from
indefinite second order Hamiltonian systems. In addition, introducing the condition (L1)
makes the proof of conclusion clearer and simpler.

The rest of this paper is organized as follows. In Section 2, we firstly establish a preliminary
lemma, and then, we give two application examples for homoclinic orbit of Hamiltonian
systems. In Section 3, we give the proof of our main result.

2 Preliminaries and examples

To complete the proof of Theorem 1.1, we need a lemma.

Lemma 2.1. Let 1
α + 1

β = 1.

(1) If u ∈ Lβ(R, RN) and b > a > 0, then

(∫
|t|≥b

(∫ a

−a
e−l|t−τ||u(τ)|dτ

)α

dt
) 1

α

≤ 2(αl)−
2
α e−l(b−a)

(∫ a

−a
|u(τ)|βdτ

) 1
β

.
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(2) If w, u ∈ Lβ(R, RN) and b ≥ a > r ≥ 0, then∫
|t|≥b
|u(t)|

∫
a≥|τ|≥r

e−l|t−τ||w(τ)|dτdt

≤ 2(αl)−
2
α e−l(b−a)

(∫
|t|≥b
|u(t)|βdt

) 1
β
(∫

a≥|τ|≥r
|w(τ)|βdτ

) 1
β

.

(3) If w, u ∈ Lβ(R, RN) and b > a > r > 0, then∫
a≤|t|≤b

|u(t)|
∫
|τ|≤a

e−l|t−τ||w(τ)|dτdt

≤ 2(αl)−
2
α ‖u‖Lβ

[
e−l(a−r)‖w‖Lβ +

(∫
r≤|τ|≤a

|w(τ)|βdτ

) 1
β

]
.

Proof. For u ∈ Lβ(R, RN) and b > a > 0, by some simple calculations, we have(∫
|t|≥b

(∫ a

−a
e−l|t−τ||u(τ)|dτ

)α

dt
) 1

α

≤
((∫ +∞

b
+
∫ −b

−∞

) ∫ a

−a
e−αl|t−τ|dτdt

) 1
α
(∫ a

−a
|u(τ)|βdτ

) 1
β

= 2
1
α (αl)−

2
α

(
1− e−2αal

) 1
α e−l(b−a)

(∫ a

−a
|u(τ)|βdτ

) 1
β

≤ 2(αl)−
2
α e−l(b−a)

(∫ a

−a
|u(τ)|βdτ

) 1
β

,

which implies that (1) holds. The same arguments also prove that (2) holds.
By (2), we have∫

a≤|t|≤b
|u(t)|

∫
|τ|≤a

e−l|t−τ||w(τ)|dτdt

=
∫

a≤|t|≤b
|u(t)|

(∫
|τ|≤r

+
∫

r≤|τ|≤a

)
e−l|t−τ||w(τ)|dτdt

≤ 2(αl)−
2
α ‖u‖Lβ

[
e−l(a−r)‖w‖Lβ +

(∫
r≤|τ|≤a

|w(τ)|βdτ

) 1
β

]
.

This shows that (3) holds.

Next, we return to applications to homoclinic orbit of Hamiltonian systems. For systematic
researches of homoclinic orbit of Hamiltonian systems, we refer to the excellent papers [2, 4–
6, 9, 12–16] and references therein.

As the first example we consider{
x′ = JAx + JH′(t, x),

x(±∞) = 0,
(2.1)

where J =
(

0 In
−In 0

)
is the standard symplectic matrix in R2N , A is a 2N × 2N symmetric

matrix and all the eigenvalues of JA have non-zero real part, H(t, x) satisfies
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(H1) H ∈ C(R×R2N , R), H′ ∈ C(R×R2N , R2N) and H(t, ·) is strictly convex;

(H2) H(t + T, x) = H(t, x) for some T > 0;

(H3) k1|x|α ≤ H(t, x) ≤ k2|x|α for some α > 2 and 0 < k1 ≤ k2;

(H4) H(t, x) ≤ 1
α (H′(t, x), x).

As in [4], define G(t, u) = supx∈R2N{(u, x)− H(t, x)} and G satisfies (G1)–(G5).
Define L : Lβ(R, R2N)→W1,β(R, RN)

⋂
Lα(R, R2N) by z = Lu satisfies

−Jz′ − Az = u, z(±∞) = 0

Then

z(t) =
∫ t

−∞
eE(t−τ)Ps Ju(τ)dτ −

∫ +∞

t
eE(t−τ)Pu Ju(τ)dτ, (2.2)

where E = JA, R2N = Eu ⊕ Es and Ps and Pu are the projections onto Es and Eu respectively
satisfying |etEPsξ| ≤ ke−bt|ξ| for t ≥ 0 and |etEPuξ| ≤ kebt|ξ| for t ≤ 0, ξ ∈ R2N and some
b, k > 0. So

|(Lu)(t)| ≤
∫ t

−∞
ke−b(t−τ)|u(τ)|dτ +

∫ +∞

t
keb(t−τ)|u(τ)|dτ

= k
∫ +∞

−∞
e−b|t−τ||u(τ)|dτ,

which implies that (L4) holds. From Lemma 2.1 of [4], we know that L : Lβ(R, R2N) →
W1,β(R, R2N)

⋂
Lγ(R, R2N) is a bounded linear operator for γ ≥ β, β ∈ (1, 2) and∫

R
((Lu)(t), v(t))dt =

∫
R
((Lv)(t), u(t))dt

for all u, v ∈ Lβ(R, R2N).
By z′(t) = Ju(t) + Ez(t) for all t ∈ R, we have

|z(t1)− z(t2)| =
∣∣∣∣∫ t2

t1

(Ju(t) + Ez(t))dt
∣∣∣∣

≤ |t2 − t1|
1
α ‖u‖Lβ + M0|t2 − t1|‖z‖∞

where M0 > 0, which implies that (L1) holds. Note that the proof of (b) of Lemma 4.1 in [4],
we see that there exists v0 ∈ Lβ(R, R2N) such that (L2) holds. The validity of (L3) is obvious.

Moreover, G∗(t, x) = H(t, x) and a solution u ∈ Lβ(R, R2N) \ {0} of Lu − G′(t, u) = 0
corresponds to a nonzero solution x = Lu of{

−Jx′ − Ax = H′(t, x),

x(±∞) = 0.

Therefore, we have the following corollary.

Corollary 2.2 ([4, Theorem 4.2]). Assume H satisfies (H1)–(H4). Then (2.1) has a nonzero solution,
i.e., the Hamiltonian system

−Jx′ − Ax = H′(t, x)

has at least one nontrivial homoclinic orbit.
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Remark 2.1. The above corollary was essentially [4, Theorem 4.2] by Coti Zelati, Ekeland and
Séré using the Ekeland variational principle and concentration compactness principle, and the
equation (1.1) also appeared in the proof the theorem already.

As a second example we consider{
Dx′′ − Bx = V ′(t, x),

x(±∞) = 0,
(2.3)

where D, B are N× N symmetric matrix, (±σ(D))
⋂
(0,+∞) 6= ∅, D is invertible, D−1B = Q2

with Q being a N × N matrix and all the eigenvalues of Q have positive real part, V : R×
RN → R and V ′(t, x) denotes the gradient of V with respect to x. The system was called
indefinite second order system in [3].

Let {
Dx′′ − Bx = u,

x(±∞) = 0.

Then {
x′′ − D−1Bx = x′′ −Q2x = D−1u,

x(±∞) = 0

and {[
etQ(x′ −Qx)

]′
= etQD−1u,

x(±∞) = 0.

Assume x′(−∞) = 0 (and this will be verified later). Then

x′ −Qx = e−tQ
∫ t

−∞
eτQD−1u(τ)dτ

and

(e−tQx)′ = e−2tQ
∫ t

−∞
eτQD−1u(τ)dτ.

So, we have

x = −etQ
∫ +∞

t
e−2sQ

(∫ s

−∞
eτQD−1u(τ)dτ

)
ds

= −Q−1

2
etQ

∫ t

−∞
e−2tQeτQD−1u(τ)dτ − Q−1

2
etQ

∫ +∞

t
e−τQD−1u(τ)dτ

= −Q−1

2

∫ +∞

−∞
e−|t−τ|QD−1u(τ)dτ.

For u ∈ Lβ(R, RN), set

x = Lu = −Q−1

2

∫ +∞

−∞
e−|t−τ|QD−1u(τ)dτ. (2.4)

We claim that
x = Lu ∈W1,β(R, RN)

⋂
Lγ(R, RN)
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for γ ≥ β, β ∈ (1, 2) and u ∈ Lβ(R, RN). In fact, from all the eigenvalues of Q have positive
real part, we know that there exist λ0 > 0 and c4 > 0 such that |e−|t|Qξ| ≤ c4e−λ0|t||ξ| for t ∈ R

and ξ ∈ RN . By
∫ +∞
−∞ e−η|t|dt = 2

η , we have

e−λ0|t| ∈ Lη(R, R) and ‖e−λ0|t|‖η
Lη =

2
λ0η

∀η ≥ 1.

Using the convolution inequality, we have(∫ +∞

−∞
|Lu|rdt

) 1
r

≤ c4‖Q−1‖ · ‖D−1‖
2

(∫ +∞

−∞

(∫ +∞

−∞
e−λ0|t−τ||u(τ)|dτ

)r

dt
) 1

r

≤ c4‖Q−1‖ · ‖D−1‖
2

‖e−λ0|t|‖Lp · ‖u‖Lβ (2.5)

for 1
r = 1

p + 1
β − 1 and r, p ≥ 1, which shows that Lu ∈ Lr(R, RN) ∀r ∈ [β,+∞]. Similarly,

from the equation

x′ = Qx +
∫ t

−∞
e−(t−τ)QD−1u(τ)dτ, (2.6)

it is easy to see that Lu ∈W1,β(R, RN). Moreover, by (2.5), we can also see that L : Lβ(R, RN)→
W1,β(R, RN)

⋂
Lγ(R, RN) is a bounded linear operator for γ ≥ β. This implies x(±∞) = 0

and x′(−∞) = 0 via the above equation.
Let x = Lu and y = Lv. Then∫

R
((Lu)(t), v(t))dt =

∫ +∞

−∞
(x, Dy′′ − By))dt

=
∫ +∞

−∞
(Dx′′ − Bx), y)dt

=
∫

R
(u(t), (Lv)(t))dt

for all u, v ∈ Lβ(R, RN), which implies that L : Lβ → Lα is self-adjoint.
By (2.6) for all t1, t2 ∈ R, we have

|x(t1)− x(t2)| =
∣∣∣∣∫ t2

t1

(
Qx +

∫ t

−∞
e−(t−τ)QD−1u(τ)dτ

)
dt
∣∣∣∣

≤ ‖Q‖ · ‖x‖∞ · |t2 − t1|+ c4(λ0α)
−1
α ‖D−1‖ · ‖u‖Lβ · |t2 − t1|,

which implies that (L1) holds.
Since (±σ(D))

⋂
(0,+∞) 6= ∅, we know that there exist λ1 < 0 and ξ0 ∈ RN\{0} such that

|ξ0| = 1 and Dξ0 = λ1ξ0. Let

x0(t) =


ξ0 sin kt, t ∈ [0, 2mπ],

ξ0[
k

π2 (t− 2mπ − π)3 + k
π (t− 2mπ − π)2], t ∈ [2mπ, 2mπ + π],

0, t ≥ 2mπ + π,

−x0(−t), t < 0,

where k, m ∈ N\{0}. Then {
Dx′′0 − Bx0 = v0,

x0(±∞) = 0
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and ∫ +∞

−∞
(Lv0, v0)dt = 2

∫ +∞

0
(Dx′′0 (t)− Bx0(t), x0(t))dt

= 2
(∫ 2mπ

0
+
∫ 2mπ+π

2mπ

)
(Dx′′0 (t)− Bx0(t), x0(t)dt

≥ 2
(∫ 2mπ

0
+
∫ 2mπ+π

2mπ

) [
−λ1|x′0(t)|2 − ‖B‖ · |x0(t)|2

]
dt

= −2λ1

(
k2mπ +

2
15

k2π

)
− 2‖B‖ ·

(
mπ +

k2π3

105

)
> −2λ1mk2 − 2π‖B‖ · (m + k2)

> 0

provided m = k2 and k2 > 2π‖B‖
−λ1

. This shows that there exists v0 ∈ Lβ(R, RN) such that (L2)

holds. The validity of (L3) and (L4) are obvious.
Further, assume V satisfies (H1)–(H4) with H(t, x) replaced with V(t, x) and 2N replaced

with N. Define V∗(t, u) = supx∈RN{(u, x)− V(t, x)}. Then V∗(t, u) satisfies (G1)–(G5) with
G(t, u) replaced with V∗(t, u). By the Legendre reciprocity formula

V∗′(t, u) = x ⇔ u = V ′(t, x),

we see that (2.3) is equivalent to

Lu−V∗′(t, u) = 0, u ∈ Lβ(R, RN). (2.7)

Therefore, we have the following result from Theorem 1.1.

Corollary 2.3. Assume V satisfies (H1)–(H4) with H(t, x) replaced with V(t, x) and 2N replaced
with N. Then (2.3) has a nonzero solution.

3 Proof of Theorem 1.1

In this section we prove Theorem 1.1. The method comes from [4] with some modifications.

Proof of Theorem 1.1. We define the functional I on Lβ(R, RN) by

I(u) =
∫

R
G(t, u)dt− 1

2

∫
R
(Lu, u)dt (3.1)

for all u ∈ Lβ(R, RN). From (G3), we have

0 ≤
∫

R
G(t, u)dt ≤ c2

∫
R
|u|βdt < +∞.

Noticing that Lu ∈ Lα(R, RN) and L is a bounded linear operator, then
∫

R
(Lu, u)dt is well

defined. Since G(t, ·) and G′(t, ·) are continuous for a.e. t ∈ R, from (G5), we know that the
functional I is a C1 functional. Moreover, a solution of (1.1) correspond to a critical point of
the functional I.

Next, we take five steps to prove the existence of the critical point of the functional I.

Step 1. There exists a sequence {un} ⊂ Lβ(R, RN) such that I(un)→ c > 0 and I′(un)→ 0.
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By (L2) and (G3), for v0 ∈ Lβ(R, RN), β ∈ (1, 2) and s > 0 we have

I(sv0) =
∫

R
G(t, sv0)dt− s2

2

∫
R
(Lv0, v0)dt

≤ c2sβ
∫

R
|v0|βdt− s2

2

∫
R
(Lv0, v0)dt

→ −∞ as s→ +∞,

which shows there is s0 > 0 such that I(s0v0) < 0. Set u0 = s0v0 and define

c = inf
γ∈Γ

sup
u∈γ([0,1])

I(u),

where Γ = {γ ∈ C([0, 1], Lβ(R, RN))|γ(0) = 0, γ(1) = u0}.
By (G3), we have

I(u) ≥ c1

∫
R
|u|βdt− 1

2

∫
R
(Lu, u)dt

≥ c1‖u‖
β

Lβ −
M
2
‖u‖2

Lβ ,

where M > 0 and ‖Lu‖Lα ≤ M‖u‖Lβ . Since β ∈ (1, 2), there exists r ∈ (0, ‖u0‖Lβ) such that
c1rβ − M

2 r2 > 0. So supu∈γ([0,1]) I(u) ≥ c1rβ − M
2 r2 > 0 and c > 0. By [7, Theorem V.1.6], the

result follows.

Step 2. We prove that the sequence {un} ⊂ Lβ(R, RN) is bounded and there exist δ2 > δ1 > 0
such that ‖un‖Lβ ∈ [δ1, δ2].

Clearly,

〈I′(un), un〉 =
∫

R
(G′(t, un), un)dt−

∫
R
(Lun, un)dt.

Using (G3) and (G4), we have

I(un) +
1
2
‖I′(un)‖Lα · ‖un‖Lβ ≥ I(un)−

1
2
〈I′(un), un〉

=
∫

R
G(t, un)dt− 1

2

∫
R
(G′(t, un), un)dt

≥ (1− β

2
)
∫

R
G(t, un)dt

≥ (1− β

2
)c1‖un‖β

Lβ .

Since c1 > 0, 1 < β < 2, I(un) → c > 0 and ‖I′(un)‖Lα → 0, we deduce that {un} is bounded
in Lβ(R, RN).

Again, from (3.1) and (G3), we have

I(un) ≤ c2

∫
R
|un|βdt− 1

2

∫
R
(Lun, un)dt

≤ c2‖un‖β

Lβ +
M
2
‖un‖2

Lβ .

If there is a subsequence{unk} such that ‖unk‖Lβ → 0, then

I(unk) ≤ c2‖unk‖
β

Lβ +
M
2
‖unk‖2

Lβ → 0⇒ c ≤ 0,
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which contradicts c > 0.

Set ρn(t) =
|un(t)|β

‖un‖β

Lβ

. Then
∫ +∞
−∞ ρn(t)dt = 1. By [4, page 145, Lemma] (also see [10, 11]), we

have three possibilities:

(i) vanishing

sup
y∈R

∫ y+R

y−R
ρn(t)dt→ 0 as n→ ∞ ∀R > 0;

(ii) concentration

∃yn ∈ R : ∀ε > 0 ∃R > 0 :
∫ yn+R

yn−R
ρn(t)dt ≥ 1− ε ∀n;

(iii) dichotomy

∃yn ∈ R, ∃λ ∈ (0, 1), ∃R1
n, R2

n ∈ R such that

(a) R1
n, R2

n → +∞, R1
n

R2
n
→ 0;

(b)
∫ yn+R1

n
yn−R1

n
ρn(t)dt→ λ as n→ ∞;

(c) ∀ε > 0 ∃R > 0 such that
∫ yn+R

yn−R ρn(t)dt ≥ λ− ε ∀n;

(d)
∫ yn+R2

n
yn−R2

n
ρn(t)dt→ λ as n→ ∞.

Step 3. Vanishing cannot occur.
Otherwise, there exists a nonnegative sequence εn → 0 such that∫ s+1

s−1
|un(t)|βdt ≤ εn‖un‖β

Lβ ∀s ∈ R.

By (L4), we have

|(Lun)(t)| ≤ c0

∫ +∞

−∞
e−l|t−τ||un(τ)|dτ

= c0

∫ +∞

t
e−l|t−τ||un(τ)|dτ + c0

∫ t

−∞
e−l|t−τ||un(τ)|dτ

≤ c0elt
+∞

∑
k=0

(∫ t+k+1

t+k
e−αlτdτ

) 1
α
(∫ t+k+1

t+k
|un(τ)|βdτ

) 1
β

+ c0e−lt
+∞

∑
k=0

(∫ t−k

t−k−1
eαlτdτ

) 1
α
(∫ t−k

t−k−1
|un(τ)|βdτ

) 1
β

≤ 2c0ε
1
β
n‖un‖Lβ

(
1− e−αl

αl

) 1
α

· 1
1− e−l → 0

as n→ ∞ uniformly for t ∈ R, which implies that ‖Lun‖∞ → 0.
From L : Lβ(R, RN) → W1,β(R, RN)

⋂
Lγ(R, RN) is a bounded linear operator for γ ≥ β,

we obtain ‖Lun‖Lβ ≤ c5‖un‖Lβ , where c5 > 0. Since

‖Lun‖α
Lα =

∫
R
|Lun|αdt ≤ ‖Lun‖α−β

∞

∫
R
|Lun|βdt ≤ c5‖un‖Lβ‖Lun‖α−β

∞ ,
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we have ‖Lun‖Lα → 0. By (G3) and the convexity of G(t, ·), G(t, 0) ≡ 0 and G(t, un) ≤
(G′(t, un), un). So∫

R
|un|βdt ≤ 1

c1

∫
R
(G′(t, un), un)dt ≤ 1

c1
‖G′(t, un)‖Lα · ‖un‖Lβ → 0,

since G′(t, un) = Lun + I′(un)→ 0 in Lα(R, RN). This is a contradiction to ‖un‖Lβ ≥ δ1 > 0.

Step 4. Concentration implies the existence of a nontrivial solution of (1.1).
If concentration occurs, we set

wn(t) = un(t + yn), vn(t) =
wn(t)
‖wn‖Lβ

.

Then
∫

R
|vn(t)|βdt = 1 and for every ε1 > 0 there exists R > 0 such that

1− ε1 ≤
∫ R

−R
|vn(t)|βdt ≤ 1. (3.2)

We claim there is z and a subsequence denoted also by itself such that

Lvn → z in Lα(R, RN). (3.3)

In fact it suffices to show that for every ε > 0 there exist zε ∈ Lα(R, RN) and subsequence vnj

such that
‖Lvnj − zε‖Lα ≤ ε.

Let v(1)n (t) = vn(t)χ[−R,R](t) and v(2)n (t) = vn(t) − v(1)n (t). By (L1), for every t0 > 0 there

exist {v(1)nj } and u(1)
ε ∈ C([−t0, t0], RN) such that Lv(1)nj → u(1)

ε in C([−t0, t0], RN). Define

uε(t) = u(1)
ε (t) for t ∈ [−t0, t0] and uε(t) = 0 otherwise. Then

‖Lvnj − uε‖Lα ≤ ‖Lv(2)nj ‖Lα + ‖Lv(1)nj − uε‖Lα ≤ Mε
1
β

1 + ‖Lv(1)nj − uε‖Lα ,

and (∫ +∞

−∞
|Lv(1)nj − uε|αdt

) 1
α

≤
(∫
|t|≥t0

|Lv(1)nj |
αdt + 2t0‖Lv(1)nj − uε‖α

C[−t0,t0]

) 1
α

≤ c0

(∫
|t|≥t0

(∫ R

−R
e−l|t−τ||v(1)nj (τ)|dτ

)α

dt
) 1

α

+ (2t0)
1
α ‖Lv(1)nj − uε‖C[−t0,t0]

≤ 2c0(αl)−
2
α e−l(t0−R)

(∫ R

−R
|v(1)nj (τ)|

βdτ

) 1
β

+ (2t0)
1
α ‖Lv(1)nj − uε‖C[−t0,t0]

≤ 2c0(αl)−
2
α e−l(t0−R) + (2t0)

1
α ‖Lv(1)nj − uε‖C[−t0,t0]

via (1) of Lemma 2.1 and
∫

R
|vn(t)|βdt = 1, where t0 > R.

For any ε > 0, there is ε1 > 0 such that Mε
1
β

1 ≤
ε
3 , and there exists R = R(ε1) > 0 such that

(3.2) is satisfied. For the above R > 0, there exists t0 > R such that

2c0(αl)−
2
α e−l(t0−R) ≤ ε

3
.
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Then we can choose subsequence vnj such that

(2t0)
1
α ‖Lv(1)nj − uε‖C[−t0,t0] ≤

ε

3

via (L1). It follows that
‖Lvnj − uε‖Lα ≤ ε

3
+

ε

3
+

ε

3
= ε.

From (3.3) and the boundedness of ‖wn‖Lβ , there exists z ∈ Lα(R, RN) such that Lwn →
z in Lα(R, RN). We assume yn

T ∈ Z. It follows that I(wn) = I(un) and that I′(wn)(t) =

I′(un)(t + yn), and I(wn)→ c, I′(wn)→ 0 in Lα(R, RN). Then

zn(t) = G′(t, wn) = I′(wn)(t) + (Lwn)(t)→ z in Lα(R, RN).

We have wn = G∗′(t, zn)→ G∗′(t, z) = w on Lβ(R, RN). Taking limit on both sides of

G′(t, wn)− Lwn = I′(wn),

we have G′(t, w)− Lw = 0, i.e., u = w is a nontrivial solution of (1.1).

Step 5. Dichotomy also leads to a nontrivial solution of (1.1).
If dichotomy occurs, we set

wn(t) = un(t + yn),

w(1)
n (t) = wn(t)χ[−R1

n,R1
n]
(t),

w(2)
n (t) = wn(t)(1− χ[−R2

n,R2
n]
(t)),

w(3)
n (t) = wn(t)− w(1)

n (t)− w(2)
n (t),

v(1)n (t) =
w(1)

n (t)

‖w(1)
n ‖Lβ

.

By (b) of the dichotomy, we have

∫ +∞

−∞

|w(1)
n (t)|β

‖wn‖β

Lβ

dt =
∫ R1

n

−R1
n

|wn(t)|β

‖wn‖β

Lβ

dt→ λ > 0.

From δ2 ≥ ‖wn‖Lβ = ‖un‖Lβ ≥ δ1, we can see that there exists δ3 > 0 such that ‖w(1)
n ‖Lβ > δ3.

By Step 4 and (L1), w(1)
n (t)→ z in Lβ(R, RN) and ‖z‖Lβ ≥ δ3. We will show that I′(w(1)

n )→ 0,
and hence I′(z) = 0, that is, u = z is a nontrivial solution of (1.1). In fact, for any u ∈
Lβ(R, RN), as the splitting of wn, u = u(1) + u(2) + u(3), and

〈I′(w(1)
n ), u〉 =

∫ +∞

−∞
(G′(t, w(1)

n ), u(1))dt−
∫ +∞

−∞
(Lw(1)

n , u)dt

= 〈I′(wn), u(1)〉 −
∫ +∞

−∞
(Lw(1)

n , u(2) + u(3))dt +
∫ +∞

−∞
(L(w(2)

n + w(3)
n ), u(1))dt.

In the following we assume ‖u‖Lβ ≤ 1 and the limits will be taken as n→ +∞. From (b) and
(d) of the dichotomy, we have

‖w(3)
n ‖

β

Lβ =
∫ +∞

−∞
|w(3)

n |βdt =
∫
|t|≤R2

n

|wn|βdt−
∫
|t|≤R1

n

|w(1)
n |βdt→ 0,
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which shows that∣∣∣∣∫ +∞

−∞
(Lw(3)

n , u(1))dt
∣∣∣∣ ≤ M‖w(3)

n ‖Lβ‖u(1)‖Lβ ≤ M‖w(3)
n ‖Lβ → 0. (3.4)

Using (L4), (2) of Lemma 2.1 and (a) of the dichotomy, we have∣∣∣∣∫ +∞

−∞
(Lw(2)

n , u(1))dt
∣∣∣∣ ≤ c0

∫ R1
n

−R1
n

|u(t)|
∫
|τ|≥R2

n

e−l|t−τ||wn(τ)|dτdt

≤ 2c0(αl)−
2
α e−l(R2

n−R1
n)‖u‖Lβ‖wn‖Lβ

≤ 2c0(αl)−
2
α e−l(R2

n−R1
n)δ2 → 0 (3.5)

and ∣∣∣∣∫ +∞

−∞
(Lw(1)

n , u(2))dt
∣∣∣∣ = ∣∣∣∣∫ +∞

−∞
(Lu(2), w(1)

n )dt
∣∣∣∣

≤ 2c0(αl)−
2
α e−l(R2

n−R1
n)δ2 → 0. (3.6)

By (c) of the dichotomy, we have that for any ε1 > 0 there is R > 0 such that
∫ R
−R
|wn(t)|β

‖wn‖β

Lβ

dt ≥

λ− ε1. Using (b) of the dichotomy, we obtain
∫

R≤|τ|≤R1
n
|wn(τ)|βdτ ≤ ε1‖wn‖β

Lβ . By (L4), (3)
of Lemma 2.1 and (a) of the dichotomy, we have

∣∣∣∣∫ +∞

−∞
(Lw(1)

n , u(3))dt
∣∣∣∣ ≤ c0

∫
R1

n≤|t|≤R2
n

|u(t)|
∫
|τ|≤R1

n

e−l|t−τ||wn(τ)|dτdt

≤ 2c0(αl)−
2
α ‖u‖Lβ

[
e−l(R1

n−R)‖wn‖Lβ +

(∫
R≤|τ|≤R1

n

|wn(τ)|βdτ

) 1
β

]

≤ 2c0(αl)−
2
α ‖u‖Lβ‖wn‖Lβ

(
e−l(R1

n−R) + ε
1
β

1

)
≤ 2c0(αl)−

2
α δ2

(
e−l(R1

n−R) + ε
1
β

1

)
→ 2c0(αl)−

2
α δ2ε

1
β

1 . (3.7)

Noticing I′(wn)→ 0, from (3.4)–(3.7), for any ε> 0 choosing ε1 > 0 satisfying 2c0(αl)−
2
α δ2ε

1
β

1 ≤ ε,
we find that lim supn→+∞ ‖I′(w(1)

n )‖Lβ ≤ ε and hence I′(w(1)
n )→ 0. The proof is complete.
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