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1 Introduction

Ulam type stability concept is quite significant in realistic problems in many applications in
numerical analysis, optimization, biology and economics etc. This type of stability guaran-
tees that there is a close exact solution. Recently, several authors extended and discussed
Ulam type stability to fractional differential equations. The Ulam type stability is well stud-
ied recently for Caputo fractional differential equations. For example, about Caputo frac-
tional differential equations we refer [8, 12], for Caputo fractional differential equations with
impulses [14], about Caputo fractional differential equations with delays see, for example,
[2, 13], for ψ-Hilfer fractional derivative and a constant delay [11]. Note that in the case of
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the Riemann–Louisville (RL) fractional derivative only the case without any delays is studied
(see, for example, [3, 7, 13, 16]).

In addition, many real world processes and phenomena are characterized by the influence
of past values of the state variable on the recent one and this leads to the inclusion of delays in
the models. The analysis of RL delay fractional differential equations is rather complex (ana-
lytical solution computation, controllability analysis, etc.) and a very small class of equations
could be solved in explicit form. It requires theoretical proofs of methods guarantee existence
of enough close function to the unknown solution. One of these types of method is Ulam type
stability. According to our knowledge this type of stability is not studied for nonlinear RL
fractional differential equations with delays.

The main goal of the paper is to study scalar nonlinear RL fractional differential equations
with a constant delay, to obtain some sufficient conditions for uniqueness and existence and
to study Ulam type stability. The present paper is organized as follows. In Section 2, some
notations and results about fractional calculus are given. In Section 3, an existence result,
based on the Banach contraction principle, for the studied problem is presented. In Section 4,
we prove three types of Ulam–Hyers stability results for the given RL fractional differential
equation with a constant delay. Finally, in the last section, we illustrate the application of some
of th obtained results on two fractional biological models: fractional generalization of Lasota–
Ważewska model and fractional generalization of the logistic equation with a biological delay
depending on the mechanistic details of the model.

2 Preliminary notes on fractional derivatives and equations

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout the paper. Let T : 0 < T < ∞, J̄ = [0, T], J = (0, T], τ > 0 be given (the delay).

There exists a natural number N such that Nτ < T ≤ (N + 1)τ holds, i.e. J =

∪N−1
k=0 (kτ, (k + 1)τ] ∪ (Nτ, T]. To be easier for the notation without lose of generalization we

could assume that T = (N + 1)τ and then J = ∪N
k=0(kτ, (k + 1)τ].

By C(J,R) we denote the set of all continuous function with the norm ‖x‖ = sup{|x(t)| :
t ∈ J}.

By C0 we denote the set of all functions x ∈ C([−τ, 0],R) with the norm ‖x‖0 = sup{|x(t)| :
t ∈ [−τ, 0]}.

We consider the weighted space of functions Cγ(J) = {y ∈ J → R : tγy(t) ∈ C(J,R)}
with the norm ‖y‖Cγ

= supt∈J |tγy(t)|.
Note C(J,R), Cγ(J) are Banach spaces.
In this paper we will use the following definitions for fractional derivatives and integrals:

• Riemann–Liouville fractional integral of order q ∈ (0, 1) [9]

0 Iq
t m(t) =

1
Γ(q)

∫ t

0

m(s)
(t− s)1−q ds, t ∈ J̄,

where Γ(·) is the Gamma function.

• Riemann–Liouville fractional derivative of order q ∈ (0, 1) [9]

RL
0 Dq

t m(t) =
d
dt
(

0 I1−q
t m(t)

)
=

1
Γ (1− q)

d
dt

∫ t

0
(t− s)−q m(s)ds, t ∈ J̄.
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We will give fractional integrals and RL fractional derivatives of some elementary functions
which will be used later:

Proposition 2.1 ([5]). The following equalities are true:

RL
t0

Dq
t (t− t0)

β =
Γ(1 + β)

Γ(1 + β− q)
(t− t0)

β−q,

t0 Iq
t (t− t0)

β =
Γ(β + 1)

Γ(1 + β + q)
(t− t0)

β+q,

t0 I1−q
t (t− t0)

q−1 = Γ(q),

RL
t0

Dq
t (t− t0)

q−1 = 0.

The definitions of the initial condition for fractional differential equations with RL deriva-
tives are based on the following result:

Proposition 2.2 ([9, Lemma 3.2]). Let q ∈ (0, 1), t0, T ≥ 0 : t0 < T ≤ ∞ and m ∈ Lloc
1 ([t0, T],R).

(a) If there exists a.e. a limit limt→t0+[(t− t0)q−1m(t)] = c, then there also exists a limit

t0 I1−q
t m(t)|t=t0 := lim

t→t0+
t0 I1−q

t m(t) = cΓ(q).

(b) If there exists a.e. a limit t0 I1−q
t m(t)|t=t0 = b and if the limit limt→t0+[(t− t0)1−qm(t)] exists,

then

lim
t→t0+

[(t− t0)
1−qm(t)] =

b
Γ(q)

.

In the case of a scalar linear RL fractional differential equation we have the following
result:

Proposition 2.3 ([9, Example 4.1]). The solution of the Cauchy type problem

RL
a Dq

t x(t) = λx(t) + f (t), a I1−q
t x(t)|t=a = b

has the following form [9, formula (4.1.14)]

x(t) =
b

(t− a)1−q Eq,q(λ(t− a)q) +
∫ t

a
(t− s)q−1Eq,q(λ(t− s)q) f (s)ds (2.1)

where Ep,q(z) = ∑∞
j=0

zj

Γ(jp+q) is the Mittag-Leffler function with two parameters (see, for example,
[9]).

Proposition 2.4. The inequality

∫ t

0
(t− s)q−1Eq,q(a(t− s)q)ds ≤ 1

|a| (Eq(|a|tq)− 1) (2.2)

holds.
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Proof. ∫ t

0
(t− s)q−1Eq,q(a(t− s)q)ds =

∫ t

0
sq−1Eq,q(asq)ds =

∫ t

0
sq−1

∞

∑
n=0

(asq)n

Γ((n + 1)q)
ds

=
∞

∑
n=0

an
∫ t

0 s(n+1)q−1ds
Γ((n + 1)q)

=

∣∣∣∣∣ ∞

∑
n=0

ant(n+1)q

(n + 1)qΓ((n + 1)q)

∣∣∣∣∣ ≤ ∞

∑
n=1

|an−1|tnq

Γ(nq + 1)

≤ 1
|a|

∞

∑
n=0

(|a|tq)n

Γ(nq + 1)
− 1
|a| =

1
|a| (Eq(|a|tq)− 1).

From Proposition 2.3 and Proposition 2.2 (a) we obtain the following result for the weighted
form of the initial condition:

Proposition 2.5. The solution of the Cauchy type problem

RL
a Dq

t x(t) = λx(t) + f (t), lim
t→a+

(
(t− a)1−qx(t)

)
= C

has the following form

x(t) =
C Γ(q)

(t− a)1−q Eq,q(λ(t− a)q) +
∫ t

a
(t− s)q−1Eq,q(λ(t− s)q) f (s)ds. (2.3)

Proposition 2.6 ([9]). For q ∈ (0, 1) the following properties

0 ≤ Eq,q(−λtq) ≤ 1
Γ(q)

, t ≥ 0, λ ≥ 0,

lim
t→0+

Eq,q(−λtq) = Eq,q(0) =
1

Γ(q)

hold.

Proposition 2.7 ([17, Corollary 2]). Let a(t) be a nondecreasing function on J, g(t) be a nonegative,
nondecreasing continuous function on J, and

u(t) ≤ a(t) + g(t)
∫ t

0
(t− s)β−1u(s)ds, t ∈ J.

Then u(t) ≤ a(t)Eβ(g(t)Γ(β)tβ), t ∈ J.

3 Statement of the problem

Consider the initial value problem (IVP) for a nonlinear system of fractional differential equa-
tions with constant delay and q ∈ (0, 1)

RL
0 Dq

t x(t) = ax(t) + bx(t− τ) + f (t, x(t), x(t− τ)) for t ∈ J,

x(t) = g(t) for t ∈ [−τ, 0],

lim
t→0+

(
t1−qx(t)

)
= g(0)

(3.1)

where RL
0 Dq

t denotes the RL fractional derivative, a, b ∈ R are constants, τ > 0 is the constant
delay, the functions f : J ×R→ R→ R, g ∈ C0.
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First, we will consider the partial linear case of (3.1) without a delay, i.e.

RL
0 Dq

t x(t) = ax(t) + σ(t, x(t)) for t ∈ J,

lim
t→0+

(
t1−qx(t)

)
= x0.

(3.2)

where a ∈ R is a constant, σ ∈ C(J,R) , q ∈ (0, 1).

Lemma 3.1 ([9]). The linear initial value problem (3.2) has the following integral representation for a
solution

x(t) = tq−1x0Γ(q)Eq,q(atq) +
∫ t

0
(t− s)q−1Eq,q(a(t− s)q)σ(s, x(s))ds, t ∈ J.

We consider also the integral presentation (see [1]) of a special case of (3.1), i.e. we will con-
sider the non-homogeneous scalar linear Riemann–Liouville fractional differential equations
with a constant delay

RL
0 Dq

t x(t) = Ax(t) + Bx(t− τ) + σ(t) for t ∈ J, (3.3)

with the initial conditions
x(t) = g(t), t ∈ [−τ, 0], (3.4)

lim
t→0+

(
t1−qx(t)

)
= g(0) (3.5)

where σ ∈ C(R+,R), g ∈ C([−τ, 0],R), A, B are real constants.

Lemma 3.2 ([1]). The solution of the IVP (3.3), (3.4), (3.5) is given by

x(t)=



g(t) t ∈ (−τ, 0]

g(0)Γ(q)Eq,q(Atq)tq−1 +
∫ t

0 (t− s)q−1Eq,q(A(t− s)q)
(

Bg(s− τ) + σ(s)
)
ds t ∈ (0, τ]

g(0)Γ(q)Eq,q(Atq)tq−1 +
∫ t

0 (t− s)q−1Eq,q(A(t− s)q)σ(s)ds

+B ∑n−1
i=0

∫ (i+1)τ
iτ (t− s)q−1Eq,q(A(t− s)q)x(s− τ)ds

+B
∫ t

nτ(t− s)q−1Eq,q(A(t− s)q)x(s− τ)ds

for t ∈ (nτ, (n + 1)τ], n = 1, 2, . . . , N.

We will consider the assumptions:

(A1) The function f ∈ C( J̄ ×R2,R) and there exist constants K, L > 0 such that

| f (t, u1, v1)− f (t, u2, v2)| ≤ K|u1 − u2|+ L|v1 − v2|, t ∈ J̄, u1, u2, v1, v2 ∈ R.

(A2) The function g ∈ C0.

4 Existence and integral presentation of the solution

Now we will study the existence of the solution of (3.1) and its presentation, based on
Lemma 3.2. We will use the Banach contraction principle.
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Lemma 4.1. Let the assumptions (A1), (A2) be satisfied and q ∈ [0.5, 1).
Then the operator Ω : C1−q(J)→ C1−q(J) where

Ω(y(t))=



g(0)Γ(q)Eq,q(atq)tq−1

+
∫ t

0(t− s)q−1Eq,q(a(t− s)q)
(

bg(s−τ)+ f (s, y(s), g(s−τ))
)

ds, t∈ (0, τ]

g(0)Γ(q)Eq,q(atq)tq−1

+
∫ τ

0 (t− s)q−1Eq,q(a(t− s)q)
(

bg(s−τ)+ f (s, y(s), g(s− τ))
)

ds

+
∫ t

τ(t− s)q−1Eq,q(a(t− s)q)
(

by(s−τ)+ f (s, y(s), y(s−τ))
)

ds, t∈ (τ, T].

(4.1)

Proof. Let y ∈ C1−q(J). We will prove the inclusion∫ t

0
(t− s)q−1Eq,q(a(t− s)q)

(
by(s− τ) + f (s, y(s), y(s− τ))

)
ds ∈ C1−q(J) for t ∈ J.

Let t ∈ (0, τ] then according to assumption (A1) and Proposition 2.1 with β = q− 1 we get∣∣∣∣t1−q
∫ t

0
(t− s)q−1Eq,q(a(t− s)q)

(
bg(s− τ) + f (s, y(s), g(s− τ))

)
ds
∣∣∣∣

≤ Kt1−q
∫ t

0
(t− s)q−1Eq,q(a(t− s)q)|y(s)|ds

+ Lt1−q
∫ t

0
(t− s)q−1Eq,q(a(t− s)q)|g(s− τ)|ds

+ t1−q
∫ t

0
(t− s)q−1Eq,q(a(t− s)q)| f (s, 0, 0)|ds

+ |b|‖g‖0t1−q
∫ t

0
(t− s)q−1Eq,q(a(t− s)q)ds

≤ KSt1−q
∫ t

0
(t− s)q−1sq−1|s1−qy(s)|ds +

(
L‖g‖0 + C

) tS
q

≤ KStqΓ2(q)
Γ(2q)

‖y‖C1−q +
(
(L + |b|)‖g‖0 + C

)St
q

.

(4.2)

where C = supt∈J | f (t, 0, 0)|, S = supt∈J Eq,q(atq).

Let t > τ. Then according to assumption (A1), equality
∫ t

τ
(s−τ)q−1

(t−s)1−q ds = Γ2(q)
Γ(2q) (t− τ)2q−1 (see

Proposition 2.1 with β = q− 1, t0 = τ ) and t1−q(t− τ)2q−1 ≤ tq it follows∣∣∣∣t1−q
∫ t

0
(t− s)q−1Eq,q(a(t− s)q)

(
by(s− τ) + f (s, y(s), y(s− τ))

)
ds
∣∣∣∣

≤ t1−qS
∫ t

0
(t− s)q−1(|b|+ L)|y(s− τ)|ds + t1−qKS

∫ t

0
(t− s)q−1|y(s)|ds +

t
q

SC

≤ t1−qS
∫ τ

0
(t− s)q−1(|b|+ L)|g(s− τ)|ds + t1−qS

∫ t

τ
(t− s)q−1(b + L)|y(s− τ)|ds

+
t
q

SC + SK‖y(s)‖C1−q

tqΓ2(q)
Γ(2q)

≤ t− (t− τ)qt1−q

q
S(|b|+ L)‖g‖0

+ S(|b|+ L)‖y(s)‖C1−q

t1−q(t− τ)2q−1Γ2(q)
Γ(2q)

+
t
q

SC + SK‖y(s)‖C1−q

tqΓ2(q)
Γ(2q)

≤ t
q

S((b + L)‖g‖0 + C) + S(|b|+ L + K)‖y(s)‖C1−q

tqΓ2(q)
Γ(2q)

, t > τ.

(4.3)
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From inequalities (4.2) and (4.3) it follows∣∣∣∣t1−q
∫ t

0
(t− s)q−1Eq,q(a(t− s)q)

(
by(s− τ) + f (s, y(s), y(s− τ))

)
ds
∣∣∣∣

≤ T
q

S((|b|+ L)‖g‖0 + C) + S(|b|+ L + K)‖y(s)‖C1−q

TqΓ2(q)
Γ(2q)

.
(4.4)

Therefore, the integrals exist and Ωy(t) ∈ C1−q(J).

Remark 4.2. Note the restriction q ∈ [0.5, 1) is necessary to prove the inequality (4.3) and it is
deeply connected with the presence of the delay.

Lemma 4.3. Suppose (A1) and (A2) hold and q ∈ [0.5, 1).

(i) If the function y ∈ C1−q(J) is a solution of IVP (3.1) then it is a fixed-point of the operator Ω
defined by (4.1).

(ii) If the function y ∈ C1−q(J) is a fixed-point of the operator Ω with y(t) = g(t), t ∈ [−τ, 0] then
it is a solution of IVP (3.1).

Proof. (i) Let the function y ∈ C1−q(J) be a solution of IVP (3.1). We will use an induction to
prove the function y is a fixed point of the operator Ω.

Let t ∈ (0, τ]. Then y satisfies the initial value problem (3.2) with σ(t, x) = bg(t − τ) +

f (t, x, g(t− τ)) and x0 = g(0). From Lemma 3.1 it follows Ω(y(t)) = y(t), t ∈ (0, τ].
Let t ∈ (τ, 2τ]. Then y satisfies the initial value problem (3.2) with σ(t, x) = by(t− τ) +

f (t, x, y(t− τ)) and x0 = g(0). From Lemma 3.1 it follows Ω(y(t)) = y(t), t ∈ (τ, 2τ].
By induction it follows the solution y is a fixed point of the operator Ω.

(ii) Let y ∈ C1−q(J) be a fixed-point of the operator Ω with y(t) = g(t), t ∈ [−τ, 0].
Then from Lemma 4.1, inequalities (4.2), (4.3) and Proposition 2.6 we obtain that

lim
t→0+

(
t1−qΩ(y(t))

)
= g(0). (4.5)

Therefore, the function y solves the IVP (3.1).

Remark 4.4. If the conditions of Lemma 4.3 are satisfied, and y ∈ C1−q(J) is a fixed-point
of the operator Ω, then we can spread the definition of y over the entire interval [−τ, T] by
y(t) = g(t), t ∈ [−τ, 0] and then y is a solution of IVP (3.1).

Theorem 4.5 (Existence result). Let q ∈ [0.5, 1) and the assumption (A1) and (A2) be satisfied and
the inequality

α = (K + L + |b|)TqΓ2(q)
Γ(2q)

sup
t∈J

Eq,q(atq) < 1 (4.6)

holds.
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Then the initial value problem (3.1) has a unique solution y ∈ C1−q(J) satisfying the integral
presentation

y(t) =



g(t), t ∈ [−τ, 0]

g(0)Γ(q)Eq,q(atq)tq−1 + b
∫ t

0 (t− s)q−1Eq,q(a(t− s)q)g(s− τ)
)

ds

+
∫ t

0 (t− s)q−1Eq,q(a(t− s)q) f (s, y(s), g(s− τ))ds, t ∈ (0, τ]

g(0)Γ(q)Eq,q(atq)tq−1 +
∫ t

0 (t− s)q−1Eq,q(a(t− s)q) f (s, y(s), y(s− τ))ds
+b ∑n−1

i=0

∫ (i+1)τ
iτ (t− s)q−1Eq,q(a(t− s)q)y(s− τ)ds

+b
∫ t

nτ(t− s)q−1Eq,q(a(t− s)q)y(s− τ)ds
for t ∈ (nτ, (n + 1)τ], n = 1, 2, . . . , N

(4.7)

Proof. According to Lemma 4.1 the operator Ω : C1−q(J)→ C1−q(J).
We will prove the operator Ω has an unique fixed point in C1−q(J).
Let y, y∗ ∈ C1−q(J) and t ∈ (0, τ]. Then we obtain

|t1−q[Ω(y(t))−Ω(y∗(t))]|

≤ t1−q
∫ t

0
(t− s)q−1Eq,q(a(t− s)q)| f (s, y(s), g(s− τ))− f (s, y∗(s), g(s− τ))|ds

≤ t1−qKS
∫ t

0
(t− s)q−1sq−1|s1−q(y(s)− y∗(s))|ds

≤ t1−qKS‖y− y∗‖C1−q

∫ t

0
(t− s)q−1sq−1ds

≤ KSTqΓ2(q)
Γ(2q)

‖y− y∗‖C1−q ≤ α‖y− y∗‖C1−q .

(4.8)

Let y, y∗ ∈ C1−q(J) and t > τ. Then we obtain∣∣∣t1−q[Ω(y(t))−Ω(y∗(t)]
∣∣∣

≤ t1−q
∫ t

0
(t− s)q−1Eq,q(a(t− s)q)| f (s, y(s), y(s− τ))− f (s, y∗(s), y∗(s− τ))|ds

+ t1−q|b|
∫ t

τ
(t− s)q−1Eq,q(a(t− s)q)|y(s− τ)− y∗(s− τ)|ds

≤ Kt1−qS
∫ t

0
(t− s)q−1|y(s)− y∗(s)|ds

+ t1−q(L + |b|)S
∫ t

τ
(t− s)q−1(s− τ)q−1|(s− τ)1−q(y(s− τ)− y∗(s− τ))|ds

≤ KS‖y− y∗‖C1−q

tqΓ2(q)
Γ(2q)

+ (L + |b|)S‖y− y∗‖C1−q

t1−q(t− τ)2q−1Γ2(q)
Γ(2q)

≤ (K + L + |b|)StqΓ2(q)
Γ(2q)

‖y− y∗‖C1−q ≤ α‖y− y∗‖C1−q .

(4.9)

Therefore
‖Ω(y)−Ω(y∗)‖C1−q ≤ α‖y− y∗‖C1−q . (4.10)

According to Lemma 4.3 it follows the claim of Theorem 4.5.

Corollary 4.6. Let the assumptions (A1), (A2) are satisfied with a ≤ 0, q ∈ [0.5, 1) and

(K + L + |b|)TqΓ(q) < Γ(2q). (4.11)

Then the initial value problem (3.1) has a unique solution y ∈ C1−q(J).
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The proof follows from Theorem 4.5 and Proposition 2.6.
In the case of an equation without a delay we obtain the following corollary.

Corollary 4.7. Let τ = 0, a = b = 0, q ∈ (0, 1), the function f ∈ C(J ×R,R) and there exists a
constant K > 0 such that | f (t, u1)− f (t, u2)| ≤ K|u1 − u2|, t ∈ J, u1, u2 ∈ R and

KTqΓ(q) < Γ(2q). (4.12)

Then the reduced initial value problem

RL
0 Dq

t x(t) = f (t, x(t)), t ∈ J, lim
t→0+

(
t1−qx(t)

)
= x0 (4.13)

has a unique solution y ∈ C1−q(J).

Note in the case without a delay it follows from the proof of Theorem 4.5 that we do not
need the restriction q ∈ [0.5, 1).

Remark 4.8. Note the result of Corollary 4.7 coincides the result of [3, Theorem 3.4] with
L = 0.

5 Ulam type stability

Let ε > 0 and Φ ∈ C( J̄, [0, ∞)) be non-decreasing and such that for any t ∈ J̄ the inequality∫ t
0 (t− s)q−1Φ(s)ds < ∞ holds.

Definition 5.1 ([10]). The equation (3.1) is Ulam–Hyers stable if there exists a real number
c f > 0 such that for each ε > 0 and for each solution y ∈ C1−q(J) of the inequalities∣∣∣ RL

0 Dq
t y(t)− ay(t)− by(t− τ)− f (t, y(t), y(t− τ))

∣∣∣ ≤ ε for t ∈ J,

y(t) = g(t) for t ∈ [−τ, 0],

lim
t→0+

(
t1−qx(t)

)
= g(0)

(5.1)

there exists a solution x ∈ C1−q(J) of the problem (3.1) with

|x(t)− y(t)| ≤ ε c f for t ∈ J. (5.2)

Definition 5.2 ([10]). The problem (3.1) is Ulam–Hyers–Rassias stable with respect to Φ if
there exists a real number c f > 0 such that for each ε > 0 and for each solution y ∈ C1−q(J) of
the inequality∣∣∣ C

0 Dq
t y(t)− ay(t)− by(t− τ)− f (t, y(t), y(t− τ))

∣∣∣ ≤ εΦ(t) for t ∈ J,

y(t) = g(t) for t ∈ [−τ, 0],

lim
t→0+

(
t1−qx(t)

)
= g(0)

(5.3)

there exists a solution x ∈ C1−q(J) of the problem (3.1) with

|y(t)− x(t)| ≤ ε c f Φ(t), t ∈ J. (5.4)



10 R. Agarwal, S. Hristova and D. O’Regan

Definition 5.3 ([10]). The problem (3.1) is generalized Ulam–Hyers–Rassias stable with respect
to Φ if there exists a real number c f > 0 such that for each solution y ∈ C1−q(J) of the
inequality ∣∣∣ C

0 Dq
t y(t)− ay(t)− by(t− τ)− f (t, y(t), y(t− τ))

∣∣∣ ≤ Φ(t) for t ∈ J,

y(t) = g(t) for t ∈ [−τ, 0],

lim
t→0+

(
t1−qx(t)

)
= g(0)

(5.5)

there exists a solution x ∈ C1−q(J) of the problem (3.1) with

|y(t)− x(t)| ≤ c f Φ(t), t ∈ J. (5.6)

Remark 5.4. If the function f ∈ C(J×R2,R) then the function y ∈ C1−q(J) is a solution of the
inequality (5.1) iff there exist a function G ∈ C1−q(J) which depends on y such that

(i) ‖G(t)‖ ≤ ε;

(ii) C
0 Dq

t y(t) = ay(t) + by(t− τ) + f (t, y(t), y(t− τ)) + G(t) for t ∈ J

with initial conditions y(t) = g(t), t ∈ [−τ, 0], limt→0+
(
t1−qx(t)

)
= g(0).

Remark 5.5. If the function f ∈ C( J̄×R2,R) then the function y ∈ C1−q(J) is a solution of the
inequality (5.5) iff there exist a function G ∈ C1−q(J) which depends on y such that

(i) |G(t)| ≤ Φ(t) for t ∈ J;

(ii) C
0 Dq

t y(t) = ay(t) + by(t− τ) + f (t, y(t), y(t− τ)) + G(t) for t ∈ J

with initial conditions y(t) = g(t), t ∈ [−τ, 0], limt→0+
(
t1−qx(t)

)
= g(0).

Note we have a similar remark for inequality (5.3).
Based on Remark 5.4 and Definition 5.1 we get the following result.

Lemma 5.6. Let the conditions of Theorem 4.5 be satisfied. If y ∈ C1−q(J) is a solution of inequalities
(5.1) then it satisfies the following integral-algebraic inequalities∣∣∣∣∣y(t)− g(0)Γ(q)Eq,q(atq)tq−1

−
∫ t

0
(t− s)q−1Eq,q(a(t− s)q)

(
bg(s− τ) + f (s, y(s), g(s− τ))

)
ds

∣∣∣∣∣
≤ ε

|a| (Eq(|a|tq)− 1), t ∈ (0, τ]∣∣∣∣∣y(t)− g(0)Γ(q)Eq,q(Atq)tq−1

−
∫ t

0
(t− s)q−1Eq,q(a(t− s)q)

(
by(s− τ) + f (s, y(s), y(s− τ))

)
ds

∣∣∣∣∣
≤ ε

|a| (Eq(|a|tq)− 1), t ∈ (τ, T].

(5.7)
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Proof. Let y ∈ C1−q(J) be a solution of inequalities (5.1). According to Remark 5.5 it satisfies
the IVP

C
0 Dq

t y(t) = ay(t) + by(t− τ) + f (t, y(t), y(t− τ)) + G(t) for t ∈ J,

y(t) = g(t) for t ∈ [−τ, 0],

lim
t→0+

(
t1−qx(t)

)
= g(0).

(5.8)

Then according to Lemma 4.3 (i) y(t) is a fixed-point of the operator Ω defined by (4.1),
where f (t, x, y) is replaced by f (t, x, y) + G(t).

Let t ∈ (0, τ]. Apply the inequalities |G(t)| ≤ ε and (2.2) and obtain∣∣∣∣∣y(t)− g(0)Γ(q)Eq,q(atq)tq−1 −
∫ t

0
(t− s)q−1Eq,q(a(t− s)q)

(
bg(s− τ) + f (s, y(s), g(s− τ))

)
ds

∣∣∣∣∣
=

∣∣∣∣∫ t

0
(t− s)q−1Eq,q(a(t− s)q)G(s)ds

∣∣∣∣ ≤ ε

|a| (Eq(|a|tq)− 1).

The proof for t ∈ (τ, T] is similar and we omit it.

Now we will study Ulam type stability of problem (3.1).

Theorem 5.7 (Stability results). Assume the conditions of Theorem 4.5 are satisfied.

(i) Suppose for any ε > 0 the inequality (5.1) has at least one solution. Then problem (3.1) is
Ulam–Hyers stable.

(ii) Suppose there exists a nondecreasing function Φ ∈ C( J̄, [0, ∞)) such that for any t ∈ J̄ the
inequality

∫ t
0 (t− s)q−1Φ(s)ds ≤ ΛΦΦ(t) holds where ΛΦ > 0 is a constant and for any ε > 0

the inequality (5.3) has at least one solution. Then problem (3.1) is Ulam–Hyers–Rassias stable
with respect to Φ.

(iii) If there exists a nondecreasing function Φ ∈ C( J̄, [0, ∞)) such that for any t ∈ J̄ the inequality∫ t
0 (t− s)q−1Φ(s)ds ≤ ΛΦΦ(t) holds, ΛΦ > 0 is a constant, and inequality (5.5) has at least

one solution then problem (3.1) is generalized Ulam–Hyers–Rassias stable with respect to Φ.

Proof. According to Theorem 4.5 the problem (3.1) has an unique solution x ∈ C1−q(J) for
which the integral presentation (4.7) holds.

(i) Let ε > 0 be an arbitrary number and y ∈ C1−q(J) be a solution of the inequality (5.1).
Therefore, the integral inequalities (5.7) hold.

Denote

Q = (K + L + |b|)CEq(Γ(q)KCτq)
τq

q
, C = max

t∈J
Eq,q(atq),

and

Mk+1 = M(1 + Q)k, k = 0, 1, 2, . . . , N, M =
1
|a| (Eq(|a|Tq)− 1).
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Let t ∈ (0, τ] be an arbitrary fixed point. According to Lemma 5.6, Theorem 4.5, inequality
(5.7) and equality (4.7) we obtain

|x(t)− y(t)|

≤
∣∣∣∣∫ t

0
(t− s)q−1Eq,q(a(t− s)q)

(
f (s, x(s), g(s− τ))− f (s, y(s), g(s− τ))

)
ds
∣∣∣∣

+

∣∣∣∣∫ t

0
(t− s)q−1Eq,q(a(t− s)q)G(s)ds

∣∣∣∣
≤ ε

|a| (Eq(|a|tq)− 1) + KC
∫ t

0
(t− s)q−1|x(s)− y(s)|ds

≤ εM + KC
∫ t

0
(t− s)q−1|x(s)− y(s)|ds.

(5.9)

According to Proposition 2.7 we get

|x(t)− y(t)| ≤ εMEq(Γ(q)KCtq), t ∈ [0, τ], (5.10)

and

|x(t)− y(t)| ≤ εMEq(Γ(q)KCτq) = εM1, t ∈ [0, τ], (5.11)

Let t ∈ (τ, 2τ] be an arbitrary fixed point. According to Lemma 5.6, Theorem 4.5, inequal-
ities (5.7), (5.11) and (2.2) we obtain

|x(t)− y(t)|

≤
∣∣∣∣∫ t

0
(t− s)q−1Eq,q(a(t− s)q)

(
f (s, x(s), x(s− τ))− f (s, y(s), y(s− τ))

)
ds
∣∣∣∣

+

∣∣∣∣b ∫ t

τ
(t− s)q−1Eq,q(a(t− s)q)

(
x(s− τ)− y(s− τ)

)
ds
∣∣∣∣

+

∣∣∣∣∫ t

0
(t− s)q−1Eq,q(a(t− s)q)G(s)ds

∣∣∣∣
≤
∫ t

0
(t− s)q−1Eq,q(a(t− s)q)

(
K|x(s)− y(s)|+ L|x(s− τ)− y(s− τ)|

)
ds

+ ε|b|M1C
∫ t

τ
(t− s)q−1ds + εM

≤ KC
∫ t

τ
(t− s)q−1|x(s)− y(s)|ds + εMEq(Γ(q)KCτq)(L + |b|)C (t− τ)q

q
+ εM

+ εMEq(Γ(q)KCτq)KC
τq

q

≤ εM(1 + Q) + KC
∫ t

τ
(t− s)q−1|x(s)− y(s)|ds.

(5.12)

According to Proposition 2.7 we get

|x(t)− y(t)| ≤ εM(1 + Q)Eq(Γ(q)KCtq) = εM2Eq(Γ(q)KC(t− τ)q), t ∈ (τ, 2τ]. (5.13)

and

|x(t)− y(t)| ≤ εM2Eq(Γ(q)KCτq), t ∈ (τ, 2τ]. (5.14)
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Let t ∈ (2τ, 3τ] be an arbitrary fixed point. According to Lemma 5.6, Theorem 4.5, in-
equalities (5.9), (5.11) and (5.14) we obtain

|x(t)− y(t)|

≤
∫ t

0
(t− s)q−1Eq,q(a(t− s)q)

(
K|x(s)− y(s)|+ L|x(s− τ)− y(s− τ)|

)
ds

+ |b|
∫ t

τ
(t− s)q−1Eq,q(a(t− s)q)|x(s− τ)− y(s− τ)|ds

+

∣∣∣∣∫ t

0
(t− s)q−1Eq,q(a(t− s)q)G(s)ds

∣∣∣∣
≤ KC

∫ t

0
(t− s)q−1|x(s)− y(s)|ds + (L + |b|)C

∫ 2τ

τ
(t− s)q−1|x(s− τ)− y(s− τ)|ds

+ (L + |b|)C
∫ t

2τ
(t− s)q−1|x(s− τ)− y(s− τ)|ds + εM

≤ KC
∫ t

2τ
(t− s)q−1|x(s)− y(s)|ds + εM(1 + Q)2.

(5.15)

According to Proposition 2.7 we get

|x(t)− y(t)| ≤ εM(1 + Q)2Eq(Γ(q)KCtq) = εM3Eq(Γ(q)KC(t− 2τ)q), t ∈ (2τ, 3τ] (5.16)

and
|x(t)− y(t)| ≤ εM3Eq(Γ(q)KCτq), t ∈ (2τ, 3τ]. (5.17)

Continuing the induction process we prove

|x(t)− y(t)| ≤ εMk+1Eq(Γ(q)KCτq), t ∈ (kτ, (k + 1)τ], k = 0, 1, 2, . . . , N. (5.18)

Inequality (5.18) proves the claim (i) with c f = M(1 + Q)NEq(Γ(q)KCτq).

(iii) Let y ∈ C1−q(J) be a solution of the inequality (5.5) with the function Φ(t) defined in the
condition (iii) of Theorem 5.7.

Denote
Q = (K + L + |b|)CΛΦEq(Γ(q)KCτq), C = max

t∈J
Eq,q(atq),

and
Mk+1 = M(1 + Q)k, k = 0, 1, 2, . . . , N, M = CΛΦ.

Similar to the case (i) we use an induction to prove the inequality

|x(t)− y(t)| ≤ Mk+1Eq(Γ(q)KCτq)Φ(t), t ∈ (kτ, (k + 1)τ], k = 0, 1, 2, . . . , N. (5.19)

Therefore, the problem (3.1) is generalized Ulam–Hyers–Rassias stable with respect to Φ
with c f = CΛΦ(1 + Q)nEq(Γ(q)KCτq).

(ii) The proof is similar to the one in (i).

6 Applications to some biological models

In this section we will apply the obtained results to some biological models and their fractional
generalizations.
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Model 1. The investigation of blood cell dynamics is connected with formulating and studyig
mathematical methods and models, numerical results, schemes to estimate parameters and
prognosticate optimal treatments to particular diseases. In order to describe the survival of
red blood cells in animals, Ważewska-Czyżewska and Lasota proposed in [15] the following
delayed equation x′(t) = −γx(t) + βe−αx(t−τ) where x(t) represents the number of red blood
cells at time t, γ > 0 is the death probability for a red blood cell, a and β are positive constants
related to the production of red blood cells per unit time and τ is the time delay between the
production of immature red blood cells and their maturation for release in circulating blood
stream. The well known Lasota–Ważewska model was extended and generalized by many
authors. Now we will consider one fractional generalization.

Consider the following fractional generalization of the mentioned above model:

RL
0 Dq

t x(t) = βe−αx(t−τ) − γx(t), t ∈ J (6.1)

with the initial conditions (3.4), (3.5), where q ∈ [0.5, 1), x is the number of red blood cells,
β > 0 is the demand for oxygen, τ > 0 is the time required for erythrocytes to attain maturity,
γ > 0 is the cell destruction rate.

In this case a = −γ, b = 0, f (t, x, y) = βe−αy and | f (t, x, y)− f (t, u, v)| = |βe−αy− βe−αv| ≤
βα|y− v|, i.e. the condition (A1) is satisfied with K = 0, L = βα.

If βαTΓ(q) < Γ(2q) then according to Theorem 4.5 the initial value problem (6.1), (3.4),
(3.5) has an unique solution x ∈ C1−q(J) satisfying the integral presentation

x(t) = g(0)Γ(q)Eq,q(−γtq)tq−1 + β
∫ t

0
(t− s)q−1Eq,q(−γ(t− s)q)e−αx(s−τ)ds, t ∈ (0, T]. (6.2)

Consider the partial case of q = 0.8, β = 0.05, α = 0.9,, γ = 0.01, and τ = 2, T = 12,
g(t) = t2. Then the inequality 0.9(0.05)Γ(0.8)12 < Γ(1.6) holds and therefore the model (6.1)
has a solution satisfying the integral presentation

x(t) = 0.05
∫ t

0
(t− s)−0.2E0.8,0.8(−0.5(t− s)0.8)e−0.9x(s−2)ds, t ∈ (0, 12].

Consider the function y(t) = t2. Then RL
0 D0.8

t t2 = Γ(3)
Γ(2.2) t1.2 and the inequality

∣∣∣∣ Γ(3)
Γ(2.2)

t1.2 − 0.05e−0.9(t−2)2
+ 0.01t2

∣∣∣∣ ≤ 3.5t + 0.0015 for t ∈ [0, 12], (6.3)

holds (see Figure 6.1a).
Consider Φ(t) = 3.5t + 0.0015. Then

∫ t
0 (t − s)−0.2(3.5s + 0.0015)ds ≤ ΛΦ(3.5t + 0.0015)

with ΛΦ = 5.5 (see Figure 6.1b).
According to Theorem 5.7(iii) the solution x(t) of (6.1) satisfies∣∣∣x(t)− t2

∣∣∣ ≤ 39.9618t + 0.0199809, t ∈ [0, 12]

where c f = CΛΦ(1 + Q)4Eq(0) = 5.5(1.2475)4 = 13.3206, C = maxt∈[0,12] E0.8,0.8(−0.01t0.8) =

1, Q = (K + L + |b|)CΛΦEq(Γ(q)KCτq = 0.2475.
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(b) Graph of the fractional integral of the func-
tion Φ(t) = 3.5t + 0.0015 and the function
ΛΦΦ(t) on [0, 12].

Figure 6.1: Model 1.

Model 2. Consider the logistic equation where the effect of a biological delay depends on
the mechanistic details of the model. For example, suppose that a period of time τ elapses
between egg laying and hatching. Let us consider the case of and constant harvesting rate
µ > 0 ([6]): N′(t) = BN(t− τ)e−δτ

(
1− N(t)

A

)
− µN(t), where δ is egg mortality and e−δτ could

be the birth rate (given as a fraction). Hatchlings were produced by parents alive τ time ago,
but complete for sites with individuals alive at their dispersal and recruitment. It has a zero
equilibrium.

Now, consider the fractional generalization of the model with q ∈ (0, 1):

RL
0 Dq

t N(t) = BN(t− τ)e−δτ
(

1− N(t)
A

)
− µN(t) (6.4)

with the initial conditions
N(t) = g(t), t ∈ [−τ, 0], (6.5)

lim
t→0+

(
t1−qN(t)

)
= g(0) (6.6)

Note (6.4) has a zero equilibrium.
In this case f (t, x, y) = − B

A eδτxy and a = −µ, b = Be−δτ. Then | f (t, x, y)− f (t, u, v)| =
B
A e−δτ|xy− uv| ≤ B

A e−δτ|x(y− u) +U(x− v)| ≤ K|x− v|+ L|y− u| with K = B
A e−δτ max v and

L = B
A e−δτ max x. We will consider the case N ≤W, W ∈ (0, A]. Therefore, K = L = B

A We−δτ.
According to Theorem 4.5 if α =

( 2
A W + 1

)
Be−δτ TΓ(q)

Γ(2q) < 1 then (6.4) has a solution in C1−q

satisfying the integral presentation

N(t)=


g(0)Γ(q)Eq,q(−µtq)tq−1

+
∫ t

0 (t− s)q−1Eq,q(−µ(t− s)q)
(

Beδτg(s− τ)− B
A e−δτ N(s)N(s− τ)

)
ds, t ∈ (0, τ]

g(0)Γ(q)Eq,q(−µtq)tq−1 − B
A e−δτ

∫ t
0 (t− s)q−1Eq,q(−µ(t− s)q)N(s)N(s− τ)ds

+Be−δτ
∫ t

0 (t− s)q−1Eq,q(−µ(t− s)q)N(s− τ)ds, t ∈ (nτ, (n + 1)τ], n = 1, 2, . . .

Consider the partial case B = 0.07, δ = 0.1, T = 6, q = 0.8, τ = 2, β = 2, A = 100, W =

30, µ = 0.1 and N ≤ 1. Then α ≈ 0.716881 < 1 and K = L = 0.07
100 30e−0.02 = 0.0205842,

a = −0.1, b = 0.07e−0.2. According to Theorem 4.5 the equation (6.4) has a solution.
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Consider the function y(t) = t2. Because RL
0 D0.8

t t2 = Γ(3)
Γ(1.5) t1.2 the inequality

∣∣∣∣ Γ(3)
Γ(3− 0.8)

t2−0.8 − 0.07(t− 2)2e−0.2
(

1− t2

100

)
+ 0.1t2

∣∣∣∣ ≤ 4.5t, t ∈ [0, 12].

holds (see Figure 6.2a).
Consider Φ(t) = 4.5t. The inequality

∫ t
0 (t− s)0.8−14.5sds ≤ ΛΦ(4.5t) holds with ΛΦ = 5.2

(see Figure 6.2b).
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(b) Graph of the fractional integral of the func-
tion Φ(t) = 4.5t and the function ΛΦΦ(t) on
[0, 12].

Figure 6.2: Model 2.

According to Theorem 5.7(iii) the solution N(t) of (6.4) satisfies∣∣∣N(t)− t2
∣∣∣ ≤ 37.5892t, t ∈ [0, 12]

since c f = 5.2(1 + Q)41.04604 = 5.5(1.2475)4 = 8.35315, C = maxt∈[0,12] E0.8,0.8(−0.1t0.8) = 1,
Q = (0.0205842 + 0.0205842 + 0.07e−0.2)5.2E0.8(Γ(0.8)0.0205842 20.8) = 0.535671.
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