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Abstract. Main objective of this paper is to study positive decaying solutions for a
class of quasilinear problems with weights. We consider one dimensional problems on
an interval which may be finite or infinite. In particular, when the interval is infinite,
unlike the known cases in the history where constant weights force the solution not to
decay, we discuss singular weights in the diffusion and reaction terms which produce
positive solutions that decay to zero at infinity. We also discuss singular weights that
lead to positive solutions not satisfying Hopf’s boundary lemma. Further, we apply our
results to radially symmetric solutions to classes of problems in higher dimensions, say
in an annular domain or in the exterior region of a ball. Finally, we provide examples
to illustrate our results.
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1 Introduction

We consider the following quasilinear Dirichlet problem with weights−
(
ρ(t)|u′(t)|p−2u′(t)

)′
= σ(t) f (t, u(t)), t ∈ (a, b),

lim
t→a+

u(t) = lim
t→b−

u(t) = 0 ,
(1.1)

with p > 1, ρ = ρ(t) and σ = σ(t), t ∈ (a, b) are positive weight functions that are measurable
and finite everywhere in (a, b), where −∞ ≤ a < b ≤ ∞ and f = f (t, s) : (a, b) ×R → R
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is continuous. Here we allow the weights ρ and σ to be singular (details are forthcoming in
Section 2).

Study of the one dimensional model, such as (1.1), is often helpful to capture the qualitative
behavior of the solution in the presence of the weights ρ and σ. Moreover, they provide
insights for study of more complex models in higher dimension. Therefore, in this paper we
present a careful analysis of the one dimensional problem (1.1), and at the end, also apply the
obtained results to study the radially symmetric solutions to a class of problems in the higher
dimensional case.

In Section 2, we formulate basic assumptions on weight functions ρ and σ and introduce
an appropriate functional setting to study (1.1). In Section 3, we prove a general sub- and
supersolution result, Theorem 3.1, using monotone iteration methods. In Section 4 and Sec-
tion 5, we study two auxiliary problems, solutions of which are used in the construction of
sub- and supersolution in order to apply Theorem 3.1. In particular, main results of Section 4
are Theorem 4.3 and Theorem 4.4, and similarly main results of Section 5 are Theorem 5.2 and
Theorem 5.3. The asymptotic estimates derived in these theorems are utilized in the construc-
tion of a well ordered pair of sub- and supersolution. We obtain rather sharp decay estimates
of the first eigenfunction of the p-Laplacian operator with weights in Section 4. These esti-
mates are expressed in terms of the singularity or the degeneracy of the weight ρ, and are of
independent interest. In Section 6, we consider the special case (a, b) = (1,+∞) and weight
functions ρ and σ to be of “power type behavior” both near 1 and near +∞. Corollary 6.2
is the special case of Theorem 4.3 and Theorem 4.4, where the asymptotics are expressed in
terms of the powers of these weight functions ρ and σ. Similarly, Corollary 6.3 is the special
case of Theorem 5.2 and Theorem 5.3. In Section 7, we consider an application of our one di-
mensional results obtained thus far to a radially symmetric Dirichlet problem for quasilinear
PDEs on annular type domains or exterior domains in RN . In these cases, PDEs transform
to special cases of (1.1) with a > 0 and b ≤ +∞. Therefore, we can reformulate the previous
existence result, Corollary 7.2, and asymptotic analysis, Corollaries 7.3–7.6. Two illustrative
examples are provided in Section 8. In particular, first we consider a special form of (1.1),
and under appropriate assumptions on f , we construct a suitable pair of sub- and superso-
lution to guarantee the existence of a positive solution with prescribed decay rate at a and
b, see Theorem 8.1. Second, we consider an analogous radially symmetric Dirichlet problem
for a class of quasilinear PDEs, see Theorem 8.3. When the weights, ρ and σ, have power
type behavior, we show that for certain powers, our positive solution cannot satisfy the Hopf
maximum principle at the boundary, see Remark 8.5.

2 Notation and functional setting

Let p > 1, p′ = p
p−1 and, ρ = ρ(t) and σ = σ(t), t ∈ (a, b) be positive weight functions that are

measurable and finite everywhere in (a, b), where −∞ ≤ a < b ≤ ∞. We define the following
spaces which will be used throughout the paper. Let

Y := Lp(a, b; σ) be the set of all measurable functions u = u(t) in (a, b) satisfying

‖u‖Y := ‖u‖p,σ =

(∫ b

a
σ(t)|u(t)|pdt

) 1
p

< +∞ ;

C∞
0 (a, b) be the set of all smooth functions with a compact support in (a, b);
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X := W1,p
0 (a, b; ρ) be the closure of C∞

0 (a, b) with respect to the norm

‖u‖X := ‖u‖1,p,ρ =

(∫ b

a
ρ(t)|u′(t)|pdt

) 1
p

;

XL := W1,p
L (a, b; ρ) be the set of all functions u = u(t) in (a, b) such that for every compact

interval I ⊂ (a, b), u is absolutely continuous on I, limt→a+ u(t) = 0 and ‖u‖X < ∞;

XR := W1,p
R (a, b; ρ) is defined analogously, except requiring limt→b− u(t) = 0.

Properties of function spaces:

If σ ∈ L1
loc(a, b), then C∞

0 (a, b) is dense in Y. If σ1−p′ ∈ L1
loc(a, b), then Y is a uniformly

convex Banach space. If ρ1−p′ ∈ L1
loc(a, b), then X, XL, XR are uniformly convex Banach spaces,

and ρ ∈ L1
loc(a, b) implies that X = XR ∩ XL. See [8, 11] and [13] for details.

Next two theorems establish sufficient conditions for continuous and compact embeddings
between the above defined weighted Sobolev and Lebesgue spaces. The proofs can be found
in the book [13, Chapter 1].

Proposition 2.1. Let

sup
a<t<b

(∫ b

t
σ(τ)dτ

)(∫ t

a
ρ1−p′(τ)dτ

)p−1

< ∞ . (2.1)

Then XL, X ↪→ Y (continuous embedding). Let

sup
a<t<b

(∫ t

a
σ(τ)dτ

)(∫ b

t
ρ1−p′(τ)dτ

)p−1

< ∞ . (2.2)

Then XR, X ↪→ Y.

Proposition 2.2. Let

lim
t→a+
t→b−

(∫ b

t
σ(τ)dτ

)(∫ t

a
ρ1−p′(τ)dτ

)p−1

= 0 . (2.3)

Then XL, X ↪→↪→ Y (compact embedding). Let

lim
t→a+
t→b−

(∫ t

a
σ(τ)dτ

)(∫ b

t
ρ1−p′(τ)dτ

)p−1

= 0 . (2.4)

Then XR, X ↪→↪→ Y.

Unless specified otherwise, we always assume that ρ and σ satisfy either (2.3) or (2.4).
For the sake of brevity, we use the same notation for all generic positive constants. In order

to avoid confusion, the reader is kindly asked to check the exact meaning of these constants
separately in every section.
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3 Monotone iterations

A function u ∈ X is called a weak solution of (1.1) if the integral identity∫ b

a
ρ(t)|u′(t)|p−2u′(t)φ′(t)dt =

∫ b

a
σ(t) f (t, u(t))φ(t)dt (3.1)

holds for all test functions φ ∈ X with both integrals in (3.1) being finite.
In fact, if ρ and σ are continuous functions in (a, b) then a weak solution u ∈ X of (1.1) is

regular in the following sense (see [9]):

u ∈ C1(a, b), ρ|u′|p−2u′ ∈ C1(a, b), the equation (1.1) holds

at every point and the boundary conditions are satisfied

}
. (3.2)

A function u ∈ X, such that u ∈ C1(a, b), ρ|u′|p−2u′ ∈ C1(a, b), is called a subsolution of
(1.1), if for all t ∈ (a, b) we have

−
(
ρ(t)|u′(t)|p−2u′(t)

)′ ≤ σ(t) f (t, u(t)), t ∈ (a, b) .

A supersolution u ∈ X of (1.1) is defined analogously with the reverse inequality. Note that
u, u ∈ X implies that

lim
t→a+

u(t) = lim
t→b−

u(t) = lim
t→a+

u(t) = lim
t→b−

u(t) = 0 .

We state the following existence theorem.

Theorem 3.1. Let u, u ∈ X be sub- and supersolutions of (1.1) respectively, and u ≤ u in (a, b).
Assume that there exist constants C0 > 0 and η > 0 such that the following hold:

(H1) | f (t, s)| ≤ C0|s|p−1 for all t ∈ (a, b) and all s ∈ R;

(H2) the function s 7→ f (t, s)+η|s|p−2s is increasing on the interval
[
mint∈(a,b) u(t), maxt∈(a,b) u(t)

]
for all t ∈ (a, b).

Then there exist a minimal weak solution umin and a maximal weak solution umax of (1.1) such
that

u ≤ umin ≤ umax ≤ u in (a, b) .

Proof. Let F(z)(t) := σ(t)
(

f (t, z(t)) + η|z(t)|p−2z(t)
)

, z ∈ Y. By (H1), Hölder’s inequality
and the continuity of the Nemytskii operator, F : Y → X∗ (the dual of X) is a continuous map.
For z ∈ Y, consider the following quasilinear Dirichlet problem−

(
ρ(t)|u′(t)|p−2u′(t)

)′
+ ησ(t)|u(t)|p−2u(t) = F(z)(t), t ∈ (a, b),

lim
t→a+

u(t) = lim
t→b−

u(t) = 0 .
(3.3)

Then (3.3) has a unique weak solution u ∈ X. Indeed, (3.3) understood in the weak sense is
equivalent to the operator equation

Jη(u) = F(z) (3.4)

where Jη : X → X∗ is strictly monotone, continuous and weakly coercive operator. Therefore
(3.4) has a unique solution (see [5, Sec. 12.3]) and hence (3.3) has a unique weak solution.
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By [8, Lemma 3.3], J−1
η : X∗ → X is continuous. Therefore, T := J−1

η ◦ F : Y → X is
continuous and by the compact embedding X ↪→↪→ Y, T : Y → Y is also compact. It is
straight forward to check that u = T(u) if and only if u ∈ X is a weak solution of problem
(1.1).

To complete the proof, we show that T is order preserving (monotone increasing) operator
on the order interval [u, u] ⊂ X, and u ≤ T(u) and u ≥ T(u), i.e., u and u are sub- and
supersolutions of T, respectively, see [10, Section 6.3].

Indeed, let z1, z2 ∈ Y satisfying u ≤ z1 ≤ z2 ≤ u, and let ui = T(zi), i = 1, 2. Then

−
[(

ρ(t)|u′2(t)|p−2u′2(t)
)′ − (ρ(t)|u′1(t)|p−2u′1(t)

)′]
+ ησ(t)

[
|u2(t)|p−2u2(t)− |u1(t)|p−2u1(t)

]
= σ(t)

(
f (t, z2(t)) + η|z2(t)|p−2z2(t)

)
− σ(t)

(
f (t, z1(t)) + η|z1(t)|p−2z1(t)

)
≥ 0 (3.5)

in (a, b), by the assumption (H2). We claim u1 ≤ u2 in (a, b). Suppose not. Then by continuity
of u1 and u2, there is a nonempty open interval (a1, b1) ⊆ (a, b) such that u2(t) < u1(t), t ∈
(a1, b1), limt→a1,b1(u2(t)− u1(t)) = 0. Now, multiply (3.5) in (a1, b1) by u2 − u1, integrate from
a1 to b1, perform integration by parts in the first two integrals and use limt→a1,b1(u2(t) −
u1(t)) = 0 to get

∫ b1

a1

ρ(t)
(
|u′2(t)|p−2u′2(t)− |u′1(t)|p−2u′1(t)

)′
(u′2(t)− u′1(t))dt

+ η
∫ b1

a1

σ(t)
(
|u2(t)|p−2u2(t)− |u1(t)|p−2u1(t)

)
(u2(t)− u1(t))dt ≤ 0 .

This contradicts the fact that s 7→ |s|p−2s is strictly increasing. Hence u1 ≤ u2. A similar
argument as above yields u ≤ T(u) and u ≥ T(u). Hence Theorem 3.1 holds.

In the next two sections, we investigate special forms of (1.1) whose solutions are used in
the construction of an ordered pair of sub- and supersolution in Section 8.

4 Asymptotic analysis of principal eigenfunction

We consider the following quasilinear eigenvalue problem with weights−
(
ρ(t)|u′(t)|p−2u′(t)

)′
= λσ(t)|u(t)|p−2u(t), t ∈ (a, b),

lim
t→a+

u(t) = lim
t→b−

u(t) = 0 .
(4.1)

We define eigenvalues and eigenfunctions associated with (4.1) in the usual way.
Taking advantage of the compact embedding, X ↪→↪→ Y, from Proposition 2.2, we can

construct a sequence of variational eigenvalues and corresponding eigenfunctions of (4.1)
using the Lusternik–Schnirelman “inf-sup” argument provided ρ and σ satisfy (2.3) or/and
(2.4). In particular, we have the following assertions concerning the principal eigenvalue λ1

and associated principal eigenfunction ϕ1 ∈ X.

Proposition 4.1. Let (2.3) or (2.4) hold. Then

λ1 := inf
u 6=0
u∈X

∫ b
a ρ(t)|u′(t)|pdt∫ b
a σ(t)|u(t)|pdt

> 0
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is the principal eigenvalue of (4.1), and the infimum is achieved at a unique ϕ1 ∈ X, ϕ1 > 0 in (a, b),
‖ϕ1‖Y = 1. Moreover, if ρ and σ are continuous weight functions, ϕ1 enjoys regularity properties
(3.2).

The proof follows from standard arguments, see for example, [1–3, 8, 12, 14].

Remark 4.2. It follows from Rolle’s theorem, from the positivity of ϕ1 and from the equation(
ρ(t)|ϕ′1(t)|p−2ϕ′1(t)

)′
= −λ1σ(t)ϕ

p−1
1 (t) (< 0), t ∈ (a, b) , (4.2)

that there exist ã, b̃ ∈ (a, b), ã ≤ b̃, such that ϕ′1(ã) = ϕ′1(b̃) = 0, ϕ′1(t) > 0 for all t ∈ (a, ã) and
ϕ′1(t) < 0 for all t ∈ (b̃, b). Notice that it is possible to have ã = b̃. This is the case, when, e.g.,
ρ = σ = 1 and −∞ < a < b < +∞.

For certain classes of reaction terms f , the principal eigenfunction ϕ1 or its suitable mod-
ifications very often serve as positive subsolutions to problem (1.1). To establish the ordering
between subsolution and supersolution, behavior of subsolution near the boundary of the do-
main plays a crucial rule. Therefore, the goal of this section is to study asymptotic properties
of ϕ1(t) as t→ a+ and t→ b−.

Theorem 4.3. Let ρ and σ be continuous in (a, b) and, ã be as in Remark 4.2. Further, assume

(i) there exist c > 0, ε ∈ (0, p− 1) such that for all t ∈ (a, ã)(∫ b

t
σ(τ)dτ

)(∫ t

a
ρ1−p′(τ)dτ

)ε

≤ c (4.3)

and

(ii)

lim
t→b−

(∫ b

t
σ(τ)dτ

)(∫ t

a
ρ1−p′(τ)dτ

)p−1

= 0 . (4.4)

Then there exist a ∈ (a, ã), c1, c2, c̃2 > 0 such that for all t ∈ (a, a) we have

c1

∫ t

a
ρ1−p′(τ)dτ ≤ ϕ1(t) ≤ c2

∫ t

a
ρ1−p′(τ)dτ , (4.5)

and
c1ρ1−p′(t) ≤ ϕ′1(t) ≤ c̃2ρ1−p′(t) . (4.6)

Theorem 4.4. Let ρ and σ be continuous in (a, b) and, b̃ be as in Remark 4.2. Further, assume

(i) there exist d > 0, ε ∈ (0, p− 1) such that for all t ∈ (b̃, b)(∫ t

a
σ(τ)dτ

)(∫ b

t
ρ1−p′(τ)dτ

)ε

≤ d (4.7)

and

(ii)

lim
t→a+

(∫ t

a
σ(τ)dτ

)(∫ b

t
ρ1−p′(τ)dτ

)p−1

= 0 . (4.8)
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Then there exist b ∈ (b̃, b), d1, d2, d̃2 > 0 such that for all t ∈ (b, b) we have

d1

∫ b

t
ρ1−p′(τ)dτ ≤ ϕ1(t) ≤ d2

∫ b

t
ρ1−p′(τ)dτ (4.9)

and
d1ρ1−p′(t) ≤ −ϕ′1(t) ≤ d̃2ρ1−p′(t) . (4.10)

Remark 4.5. Condition (4.3) implies that for any t ∈ (a, b) we have

σ ∈ L1(t, b) and ρ1−p′ ∈ L1(a, t) .

Similarly, condition (4.7) implies that for any t ∈ (a, b) we have

σ ∈ L1(a, t) and ρ1−p′ ∈ L1(t, b) .

Remark 4.6. ε < p− 1 implies that (4.3) and (4.4) yield

lim
t→a+

(∫ b

t
σ(τ)dτ

)(∫ t

a
ρ1−p′(τ)dτ

)p−1

= 0 . (4.11)

Similarly, (4.7) and (4.8) yield

lim
t→b−

(∫ t

a
σ(τ)dτ

)(∫ b

t
ρ1−p′(τ)dτ

)p−1

= 0 . (4.12)

Since (4.4) and (4.11) are nothing but (2.3), the assumptions of Theorem 4.3 guarantee that
ϕ1 ∈ X exists, it is well defined, and satisfies the properties specified in Proposition 4.1. Also,
since (4.8) and (4.12) are nothing but (2.4), similar conclusion can be drawn for Theorem 4.4
as well.

Remark 4.7. Estimate (4.9) can be found in [7] but its proof contains small gaps. Most gaps
are filled in [6] for weights associated with the radial symmetric PDE case, cf. Section 7 of this
paper. For completeness, we provide very careful and detailed proof for the general case of
weights ρ and σ near the left end point a ≥ −∞ of the interval (a, b). The case of the right end
point b ≤ +∞ is similar.

Proof of Theorem 4.3. Let ϕ1 ∈ X be the normalized (‖ϕ1‖Y = 1) and positive principal
eigenfunction, the existence of which follows from Proposition 4.1.

We first establish inequalities in (4.6). Integrating (4.2) from τ ∈ (a, ã) to ã and using
Remark 4.2, we get,

ρ(τ)|ϕ′1(τ)|p−2ϕ′1(τ) = −λ1

∫ τ

ã
σ(θ)ϕ

p−1
1 (θ)dθ ,

and hence

ϕ′1(τ) = λ
p′−1
1 ρ1−p′(τ)

(∫ ã

τ
σ(θ)ϕ

p−1
1 (θ)dθ

)p′−1

. (4.13)

Choose a ∈ (a, ã). Then

c1 := λ
p′−1
1

(∫ ã

a
σ(θ)ϕ

p−1
1 (θ)dθ

)p′−1

≤ λ
p′−1
1

(∫ ã

a
σ(θ)dθ

) 1
p(p−1)

(∫ b

a
σ(θ)ϕ

p
1(θ)dθ

) 1
p

< ∞ .



8 M. Chhetri, P. Drábek and R. Shivaji

Thus for t ∈ (a, a), we get from (4.13)

ϕ′1(t) ≥ λ
p′−1
1 ρ1−p′(t)

(∫ ã

a
σ(θ)ϕ

p−1
1 (θ)dθ

)p′−1

= c1ρ1−p′(t) ,

establishing the left inequality in (4.6).

We assume for a moment that the right inequality in (4.5) holds and derive from here the
right inequality in (4.6). Indeed, using the right inequality from (4.5) in (4.13), for τ ∈ (a, a),
we get

ϕ′1(τ) ≤ c2λ
1−p′
1 ρ1−p′(τ)

(∫ ã

τ
σ(θ)

(∫ θ

a
ρ1−p′(θ1)dθ1

)p−1

dθ

)p′−1

(4.3)
≤ c

1
ε c2λ

1−p′
1 ρ1−p′(τ)

∫ ã

τ
σ(θ)

(∫ b

θ
σ(θ1)dθ1

)− p−1
ε

dθ

p′−1

=
c

1
ε c2λ

1−p′
1 ρ1−p′(τ)(

p−1
ε − 1

)p′−1

∫ ã

τ

d
dθ

(∫ b

θ
σ(θ1)dθ1

)1− p−1
ε

dθ

p′−1

=
c

1
ε c2λ

1−p′
1 ρ1−p′(τ)(

p−1
ε − 1

)p′−1

(∫ b

ã
σ(θ1)dθ1

)1− p−1
ε

−
(∫ b

τ
σ(θ1)dθ1

)1− p−1
ε

p′−1

≤
c

1
ε c2λ

1−p′
1(

p−1
ε − 1

)p′−1

(∫ b

ã
σ(θ1)dθ1

) 1
p−1−

1
ε

ρ1−p′(τ) = c̃2ρ1−p′(τ) ,

where

c̃2 :=
c

1
ε c2λ

1−p′
1(

p−1
ε − 1

)p′−1

(∫ b

ã
σ(θ1)dθ1

) 1
p−1−

1
ε

< ∞.

The right inequality in (4.6) follows.

Next, we prove the left inequality in (4.5). For t ∈ (a, a), we integrate (4.13) from a to t, we
get

ϕ1(t) =
∫ t

a
ϕ′1(τ)dτ = λ

p′−1
1

∫ t

a
ρ1−p′(τ)

(∫ ã

τ
σ(θ)ϕ

p−1
1 (θ)dθ

)p′−1

dτ

≥ λ
p′−1
1

(∫ ã

a
σ(θ)ϕ

p−1
1 (θ)dθ

)p′−1 (∫ t

a
ρ1−p′(τ)dτ

)
= c1

∫ t

a
ρ1−p′(τ)dτ

and the left inequality of (4.5) follows.

It remains to prove the right inequality in (4.5). This is the most profound part of the proof.
We choose t ∈ (a, a) and integrate (4.13) from a to t. Then applying Hölder’s inequality and
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using
( ∫ b

a σ(θ)ϕ
p
1(θ)dθ

) 1
p = ‖ϕ1‖Y = 1, we get

ϕ1(t) = λ
p′−1
1

∫ t

a
ρ1−p′(τ)

(∫ ã

τ
σ(θ)ϕ

p−1
1 (θ)dθ

)p′−1

dτ

≤ λ
p′−1
1

∫ t

a
ρ1−p′(τ)

(∫ ã

τ
σ(θ)ϕ

p
1(θ)dθ

) 1
p
(∫ ã

τ
σ(θ)dθ

) p′−1
p

dτ

≤ λ
p′−1
1

(∫ b

a
σ(θ)ϕ

p
1(θ)dθ

) 1
p ∫ t

a
ρ1−p′(τ)

(∫ ã

τ
σ(θ)dθ

) p′−1
p

dτ

= λ
p′−1
1

∫ t

a
ρ1−p′(τ)Ip′−1

1 (τ)dτ , (4.14)

where

I1(τ) :=
(∫ ã

τ
σ(θ)dθ

) 1
p

.

We integrate (4.13) again from a to t ∈ (a, a) and use (4.14) to get

ϕ1(t) = λ
p′−1
1

∫ t

a
ρ1−p′(τ)

(∫ ã

τ
σ(θ)ϕ

p−1
1 (θ)dθ

)p′−1

dτ

≤ λ
p′−1
1

∫ t

a
ρ1−p′(τ)

(∫ ã

τ
σ(θ)

(
λ

p′−1
1

∫ θ

a
ρ1−p′(θ1)Ip′−1

1 (θ1)dθ1

)p−1

dθ

)p′−1

dτ

= k2

∫ t

a
ρ1−p′(τ)Ip′−1

2 (τ)dτ ,

where k2 := λ
(p′−1)+(p′−1)2(p−1)
1 and

I2(τ) :=
∫ ã

τ
σ(θ)

(∫ θ

a
ρ1−p′(θ1)Ip′−1

1 (θ1)dθ1

)p−1

dθ .

By induction, for n = 3, 4, . . . , we get

ϕ1(t) ≤ kn

∫ t

a
ρ1−p′(τ)Ip′−1

n (τ)dτ , (4.15)

where kn := λ
(p′−1)+(n−1)(p′−1)2(p−1)
1 and

In(τ) :=
∫ ã

τ
σ(θ)

(∫ θ

a
ρ1−p′(θn−1)Ip′−1

n−1 (θn−1)dθn−1

)p−1

dθ .

It suffices to show that there exist K > 0 and n0 ∈ N, such that for all τ ∈ (a, a) we actually
have

In0(τ) ≤ K . (4.16)

Indeed, once (4.16) is established, then (4.15) and (4.16) would imply the right inequality in
(4.5) with c2 := kn0 Kp′−1 > 0. Therefore, we concentrate on the proof of (4.16) with certain
K > 0 and n0 ∈N.

We start with the estimate of I2 (we will denote by a1, a2, . . . the generic positive constants).

I2(τ) =
∫ ã

τ
σ(θ)

(∫ θ

a
ρ1−p′(θ1)Ip′−1

1 (θ1)dθ1

)p−1

dθ
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=
∫ ã

τ
σ(θ)

(∫ θ

a
ρ1−p′(θ1)

(∫ ã

θ1

σ(τ1)dτ1

) 1
p(p−1)

dθ1

)p−1

dθ

≤
∫ ã

τ
σ(θ)

(∫ θ

a
ρ1−p′(θ1)

(∫ b

θ1

σ(τ1)dτ1

) 1
p(p−1)

dθ1

)p−1

dθ

(4.3)
≤ a1

∫ ã

τ
σ(θ)

(∫ θ

a
ρ1−p′(θ1)

(∫ θ1

a
ρ1−p′(τ1)dτ1

)− ε
p(p−1)

dθ1

)p−1

dθ

= a1

∫ ã

τ
σ(θ)

(∫ θ

a

d
dθ1

(
1

1− ε
p(p−1)

)(∫ θ1

a
ρ1−p′(τ1)dτ1

)1− ε
p(p−1)

dθ1

)p−1

dθ

= a1

∫ ã

τ
σ(θ)

(
1

1− ε
p(p−1)

(∫ θ

a
ρ1−p′(τ1)dτ1

)1− ε
p(p−1)

)p−1

dθ

≤ a2

∫ ã

τ
σ(θ)

(∫ θ

a
ρ1−p′(τ1)dτ1

)p−1− ε
p

dθ . (4.17)

Notice that the last inequality holds thanks to ε < p(p− 1). It follows from (4.3) that(∫ θ

a
ρ1−p′(τ1)dτ1

)p−1− ε
p

≤ a3

(∫ b

θ
σ(τ1)dτ1

) 1
p−

p−1
ε

. (4.18)

Therefore (4.17) and (4.18) yield

I2(τ) ≤ a4

∫ ã

τ
σ(θ)

(∫ b

θ
σ(τ1)dτ1

) 1
p−

p−1
ε

dθ

= a4

∫ ã

τ

d
dθ

 −1
1
p +

ε−p+1
ε

(∫ b

θ
σ(τ1)dτ1

) 1
p+

ε−p+1
ε

dθ

=
a4

1
p +

ε−p+1
ε

(∫ b

τ
σ(τ1)dτ1

) 1
p+

ε−p+1
ε

−
(∫ b

ã
σ(τ1)dτ1

) 1
p+

ε−p+1
ε

 . (4.19)

We may assume, without loss of generality, that

ε 6= p
p + 1

(p− 1) i.e.,
1
p
+

ε− p + 1
ε

6= 0 .

Therefore, one of the following two cases occurs.
Case 1: ε < p

p+1 (p− 1), i.e., 1
p +

ε−p+1
ε < 0. Then it follows from (4.19) that there exists K > 0

such that

I2(τ) ≤ −
a4

1
p +

ε−p+1
ε

(∫ b

ã
σ(τ1)dτ1

) 1
p+

ε−p+1
ε

≤ K ,

i.e., (4.16) holds with n0 = 2 and the proof is complete.
Case 2: ε > p

p+1 (p− 1), i.e., 1
p +

ε−p+1
ε > 0. Then it follows from (4.19) that

I2(τ) ≤
a4

1
p +

ε−p+1
ε

(∫ b

τ
σ(τ1)dτ1

) 1
p+

ε−p+1
ε

= a5

(∫ b

τ
σ(τ1)dτ1

) 1
p+

ε−p+1
ε

. (4.20)
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We continue our iterations:

I3(τ) =
∫ ã

τ
σ(θ)

(∫ θ

a
ρ1−p′(θ2)Ip′−1

2 (θ2)dθ2

)p−1

dθ

(4.20)
≤ a6

∫ ã

τ
σ(θ)

∫ θ

a
ρ1−p′(θ2)

(∫ b

θ2

σ(τ1)dτ1

) 1
p(p−1)+

ε−p+1
ε(p−1)

dθ2

p−1

dθ

(4.3)
≤ a7

∫ ã

τ
σ(θ)

∫ θ

a
ρ1−p′(θ2)

(∫ θ2

a
ρ1−p′(τ1)dτ1

)− ε
p(p−1)−

ε−p+1
p−1

dθ2

p−1

dθ

= a7

∫ ã

τ
σ(θ)

∫ θ

a

1

1− ε
p(p−1) −

ε−p+1
ε(p−1)

d
dθ2

(∫ θ2

a
ρ1−p′(τ1)dτ1

)1− ε
p(p−1)−

ε−p+1
p−1

dθ2

p−1

dθ

= a7

∫ ã

τ
σ(θ)

 1

1− ε
p(p−1) −

ε−p+1
ε(p−1)

(∫ θ

a
ρ1−p′(τ1)dτ1

)1− ε
p(p−1)−

ε−p+1
p−1

p−1

dθ

≤ a8

∫ ã

τ
σ(θ)

(∫ θ

a
ρ1−p′(τ1)dτ1

)2p−2− ε
p−ε

dθ .

Notice that ε ∈ (0, p − 1) and p > 1 yield the last inequality thanks to ε < 2p
p+1 (p− 1), i.e.,

1− ε
p(p−1) −

ε−p+1
p−1 > 0. It follows from (4.3) that(∫ θ

a
ρ1−p′(τ1)dτ1

)2p−2− ε
p−ε

≤ a9

(∫ b

θ
σ(τ1)dτ1

) 1
p+1− 1

ε (2p−2)

.

Therefore,

I3(τ) ≤ a10

∫ ã

τ
σ(θ)

(∫ b

θ
σ(τ1)dτ1

) 1
p+1− 1

ε (2p−2)

dθ

= a10

∫ ã

τ

d
dθ

 −1
1
p + 2 ε−p+1

ε

(∫ b

θ
σ(τ1)dτ1

) 1
p+2 ε−p+1

ε

dθ

=
a10

1
p + 2 ε−p+1

ε

(∫ b

τ
σ(τ1)dτ1

) 1
p+2 ε−p+1

ε

−
(∫ b

ã
σ(τ1)dτ1

) 1
p+2 ε−p+1

ε

 . (4.21)

Without loss of generality, we may assume ε 6= 2p
2p+1 (p− 1). Therefore, we distinguish between

two cases again.

Case 1: ε < 2p
2p+1 (p− 1) i.e., 1

p + 2 ε−p+1
ε < 0. Then it follows from (4.21) that there exists K > 0

such that

I3(τ) ≤ −
a10

1
p + 2 ε−p+1

ε

(∫ b

ã
σ(τ1)dτ1

) 1
p+2 ε−p+1

ε

≤ K ,

i.e., (4.16) holds with n0 = 3 and the proof is complete.

Case 2: ε > 2p
2p+1 (p− 1) i.e., 1

p + 2 ε−p+1
ε > 0. Then it follows from (4.21) that

I3(τ) ≤
a10

1
p + 2 ε−p+1

ε

(∫ b

τ
σ(τ1)dτ1

) 1
p+2 ε−p+1

ε
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and we continue iterations.
Repeating the argument n times, we may assume without loss of generality, that ε 6=

np
np+1 (p− 1). We have then two different cases.

Case 1: ε < np
np+1 (p− 1) i. e., 1

p + n ε−p+1
ε < 0. Then there exists K > 0 such that

In+1(τ) ≤ −
a11

1
p + n ε−p+1

ε

(∫ b

ã
σ(τ1)dτ1

) 1
p+n ε−p+1

ε

≤ K ,

i.e., (4.16) holds with n0 = n and the proof is complete.

Case 2: ε > np
np+1 (p− 1) i.e., 1

p + n ε−p+1
ε > 0. Then

In+1(τ) ≤
a11

1
p + n ε−p+1

ε

(∫ b

τ
σ(τ1)dτ1

) 1
p+n ε−p+1

ε

and we continue iterations.
Notice that for a given ε ∈ (0, p− 1), the second case does not occur after finite number

of steps due to limn→∞
np

np+1 = 1. Therefore the proof is complete after a finite number of
iterations. This completes the proof of Theorem 4.3.

The proof of Theorem 4.4 follows by using analogous arguments.

5 Asymptotic analysis of an auxiliary function

A suitable multiple of the solution e = e(t) of the auxiliary Dirichlet problem−
(
ρ(t)|u′(t)|p−2u′(t)

)′
= σ(t), t ∈ (a, b),

lim
t→a+

u(t) = lim
t→b−

u(t) = 0
(5.1)

with σ ∈ X∗ serves as a positive supersolution of the problem (1.1). If we interpret (5.1) in the
weak sense, then it is equivalent to the operator equation

J(u) = σ (5.2)

where J : X → X∗ is strictly monotone, continuous and weakly coercive operator. Therefore,
there exists unique e = e(t) ∈ X which is a solution of (5.2) and hence a weak solution of
(5.1). Moreover, when σ = σ(t) and ρ = ρ(t) are continuous in (a, b) then the solution e enjoys
regularity properties (3.2) of Section 3.

Moreover, since σ > 0 in (a, b), it follows from (5.1) that e(t) > 0 in (a, b). In addition,
there exist ãe, b̃e ∈ (a, b), ãe ≤ b̃e such that e′(ãe) = e′(b̃e) = 0, e′(t) > 0 for all t ∈ (a, ãe) and
e′(t) < 0 for all t ∈ (b̃e, b).

Remark 5.1. Notice that σ ∈ L1(a, b) is a sufficient condition for σ ∈ X∗. Also observe that
σ ∈ L1(a, b) implies that (4.3) and (4.7) hold for an arbitrary ε ∈ (0, p− 1).

The following assertion is a counterpart of Theorem 4.3.
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Theorem 5.2. Let σ, ρ be continuous in (a, b), σ ∈ L1(a, b) and ρ1−p′ ∈ L1(a, t) for any t ∈ (a, b).
Let ãe be associated with e = e(t), and ε ∈ (0, p− 1). Then there exist ae ∈ (a, ãe), c1, c2, c̃2 > 0 such
that for all t ∈ (a, ae), we have

c1

∫ t

a
ρ1−p′(τ)dτ ≤ e(t) ≤ c2

(∫ t

a
ρ1−p′(τ)dτ

)1− ε
p−1

(5.3)

and

c1ρ1−p′(t) ≤ e′(t) ≤ c̃2
d
dt

(∫ t

a
ρ1−p′(τ)dτ

)1− ε
p−1

. (5.4)

Similarly, the following assertion is a counterpart of Theorem 4.4.

Theorem 5.3. Let σ, ρ be continuous in (a, b), σ ∈ L1(a, b) and ρ1−p′ ∈ L1(t, b) for any t ∈ (a, b).
Let b̃e be associated with e = e(t), and ε ∈ (0, p− 1). Then there exist be ∈ (b̃e, b), d1, d2, d̃2 > 0 such
that for all t ∈ (be, b), we have

d1

∫ b

t
ρ1−p′(τ)dτ ≤ e(t) ≤ d2

(∫ b

t
ρ1−p′(τ)dτ

)1− ε
p−1

(5.5)

and

d1ρ1−p′(t) ≤ −e′(t) ≤ d̃2
d
dt

(∫ b

t
ρ1−p′(τ)dτ

)1− ε
p−1

. (5.6)

Proof of Theorem 5.2. It follows by directly integrating the equation in (5.1) from ãe to t ∈
(a, ae) with ae < ãe that

e′(t) = ρ1−p′(t)
(∫ ãe

t
σ(τ)dτ

)p′−1

≥ c1ρ1−p′(t) , (5.7)

with c1 :=
( ∫ ãe

ae
σ(τ)dτ

)p′−1, i.e., the left inequality in (5.4) holds. Now, integrating the equal-
ity in (5.7) from a to t ∈ (a, ae) yields

e(t) =
∫ t

a
e′(τ)dτ =

∫ t

a
ρ1−p′(τ)

(∫ ãe

τ
σ(θ)dθ

)p′−1

dτ

≥
(∫ ãe

ae

σ(θ)dθ

)p′−1 ∫ t

a
ρ1−p′(τ)dτ = c1

∫ t

a
ρ1−p′(τ)dτ

and the left inequality in (5.3) follows.
In view of Remark 5.1, the condition (4.3) is satisfied for any ε ∈ (0, p− 1). For ε ∈ (0, p− 1)

arbitrary, and for t ∈ (a, ae), we have

e′(t) = ρ1−p′(t)
(∫ ãe

t
σ(τ)dτ

)p′−1

≤ ρ1−p′(t)
(∫ b

t
σ(τ)dτ

)p′−1

(4.3)
≤ cp′−1ρ1−p′(t)

(∫ t

a
ρ1−p′(τ)dτ

)−ε(p′−1)

= c̃2
d
dt

(∫ t

a
ρ1−p′(τ)dτ

)1− ε
p−1

, (5.8)

where c̃2 := cp′−1

1− ε
p−1

. Thus the right inequality in (5.4) holds. Finally, integrating (5.8) from a to

t ∈ (a, ae), we establish the right inequality in (5.3). Indeed,

e(t) =
∫ t

a
e′(τ)dτ ≤

∫ t

a
c̃2

d
dτ

(∫ τ

a
ρ1−p′(θ)dθ

)1− ε
p−1

dτ = c2

(∫ t

a
ρ1−p′(τ)dτ

)1− ε
p−1

,

where c2 := cp′−1. The proof of Theorem 5.2 is complete.

The proof of Theorem 5.3 is similar.
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6 Weight functions of special type

Here we consider the case a = 1, b = +∞ and the following pair of continuous weight
functions ρ and σ defined on (1,+∞):

ρ(t) =


(t− 1)α1 , t ∈ (1, 2) ,

1, t ∈ [2, 10] ,( 10
t

)α∞ , t ∈ (10,+∞) ,

and σ(t) =


(t− 1)β1 , t ∈ (1, 2) ,

1, t ∈ [2, 10] ,( 10
t

)β∞ , t ∈ (10,+∞) .

(6.1)

The weight functions ρ and σ have “power type behavior” prescribed by α1 and β1 near a = 1
and by α∞ and β∞ near b = +∞. The following assertion is an immediate consequence of
(6.1), (2.3) and (2.4).

Lemma 6.1. Condition (2.3) holds if and only if

α1 < min{β1 + p, p− 1} and β∞ > max{α∞ + p, 1} . (6.2)

Condition (2.4) holds if and only if

β1 > max{α1 − p,−1} and α∞ < min{β∞ − p, 1− p} . (6.3)

In particular,

(6.2)⇒ XL, X ↪→↪→ Y and (6.3)⇒ XR, X ↪→↪→ Y .

In this section, we discuss an application of Theorems 4.3, 4.4, 5.2 and 5.3. At first, we
concentrate on assumptions (4.3) and (4.7) and interpret an asymptotic behavior of ϕ1 given
by (4.5), (4.6), (4.9) and (4.10) in terms of α1, α∞, β1 and β∞.

Corollary 6.2. Let us assume that (6.2) holds and ϕ1 ∈ X be the principal eigenfunction of (4.1) with
ρ and σ given by (6.1). Then there exist a > 1, c1, c̃1, c2, c̃2 > 0 such that for all t ∈ (1, a) we have

c1(t− 1)1− α1
p−1 ≤ ϕ1(t) ≤ c2(t− 1)1− α1

p−1

and

c̃1(t− 1)−
α1

p−1 ≤ ϕ′1(t) ≤ c̃2(t− 1)−
α1

p−1 .

Similarly, assume that (6.3) holds. Then there exist b > 1, d1, d̃1, d2, d̃2 > 0 such that for all t ∈
(b,+∞) we have

d1t1+ α∞
p−1 ≤ ϕ1(t) ≤ d2t1+ α∞

p−1

and

d̃1t
α∞
p−1 ≤ −ϕ′1(t) ≤ d̃2t

α∞
p−1 .

Proof. The proof consists of verifying the assumptions of Theorem 4.3 and Theorem 4.4 in
the case of the weight functions, ρ and σ, given by (6.1). Indeed, if we assume (6.2) then we
distinguish between two cases. In the case β1 ≥ −1 the condition (4.3) holds with arbitrary
ε ∈ (0, p− 1), and in the case β1 < −1 we can take any ε ∈

( (p−1)(β1+1)
α1−p+1 , p− 1

)
. Similarly, if

we assume (6.3), condition (4.7) holds with arbitrary ε ∈ (0, p− 1) in the case β∞ ≥ 1, and any
ε ∈

( (p−1)(1−β∞)
1−p−α∞

, p− 1
)

in the case β∞ < 1.
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Secondly, we discuss the asymptotic behavior of solution e of (5.1). Notice that in order to
guarantee σ ∈ L1(1,+∞), we must assume β1 > −1 and β∞ > 1. Then condition (6.2) reduces
to

α1 < p− 1 and β∞ > max {α∞ + p, 1} (6.4)

and condition (6.3) reduces to

β1 > max{α1 − p,−1} and α∞ < 1− p . (6.5)

Corollary 6.3. Let us assume that (6.4) holds and e ∈ X is a weak solution of (5.1) with ρ and σ

given by (6.1). Let ε ∈ (0, p− 1) be arbitrary. Then there exist ae > 1, c1, c̃1, c2, c̃2 > 0 such that for
all t ∈ (1, ae) we have

c1(t− 1)1− α1
p−1 ≤ e(t) ≤ c2(t− 1)

(
1− α1

p−1

)(
1− ε

p−1

)
and

c̃1(t− 1)−
α1

p−1 ≤ e′(t) ≤ c̃2(t− 1)
(

1− α1
p−1

)(
1− ε

p−1

)
−1 .

Similarly, assume that (6.5) holds, and ε ∈ (0, p− 1) is arbitrary. Then there exist be > 1, d1, d̃1, d2,
d̃2 > 0 such that for all t ∈ (be,+∞) we have

d1t1+ α∞
p−1 ≤ e(t) ≤ d2t

(
1+ α∞

p−1

)(
1− ε

p−1

)
and

d̃1t
α∞
p−1 ≤ −e′(t) ≤ d̃2t

(
1+ α∞

p−1

)(
1− ε

p−1

)
−1 .

Remark 6.4. With obvious modifications we can derive analogous assertions if a, b ∈ R (i.e.,
(a, b) is a bounded interval), a = −∞, b ∈ R (i.e., (a, b) = (−∞, b) is bounded above) and
a = −∞, b = +∞ (i.e., (a, b) = R).

7 Application to partial differential equations

In this section, we will apply the one dimensional results obtained thus far to study the
radially symmetric solutions to a class of quasilinear PDEs satisfying Dirichlet boundary con-
ditions. Our results in this section are valid in various domains in RN with N ≥ 2 such as
BR :=

{
x ∈ RN : |x| < R

}
⊂ RN where BR is a ball if R < +∞ and entire RN if R = +∞, or

AR2
R1

:=
{

x ∈ RN : R1 < |x| < R2

}
for 0 < R1 < R2 ≤ +∞

where AR2
R1

is an annular domain if R2 < +∞ and an exterior domain if R2 = +∞.
Here we focus on radially symmetric solutions to the boundary value problem:{

−div
(
v(|x|)|∇u(|x|)|p−2∇u(|x|)

)
= w(|x|) f (|x|, u(|x|)), x ∈ AR2

R1

u(x) = 0, x ∈ ∂AR2
R1

,
(7.1)

where v and w are positive continuous weight functions. After substitution r = |x|, the above
problem transforms to−

(
rN−1v(r)|u′(r)|p−2u′(r)

)′
= rN−1w(r) f (r, u(r)), r ∈ (R1, R2),

lim
r→R1

u(r) = lim
r→R2

u(r) = 0 ,
(7.2)
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where f : (R1, R2)×R→ R is as in Section 3. The problem (7.2) corresponds to (1.1) with the
following change of notation:

t = r, a = R1, b = R2, ρ(t) = rN−1v(r), σ(t) = rN−1w(r) .

We say that a radially symmetric function u = u(|x|), x ∈ AR2
R1

, is a weak solution of prob-
lem (7.1) if the function u = u(r), r ∈ (R1, R2), is a weak solution of problem (7.2) in the
sense mentioned at the beginning of Section 3. Similarly, using corresponding notions from
Section 3, we can define radially symmetric sub- and supersolutions to (7.1).

Natural spaces to study the radially symmetric solutions to problem (7.1) are Sobolev and
Lebesgue spaces X and Y of all radially symmetric functions with norms depending on v and
w, respectively. More precisely, let v1−p′ , w1−p′ , v, w ∈ L1

loc(AR2
R1
). Then X and Y are uniformly

convex Banach spaces and C∞
0 (AR2

R1
) is dense in both X and Y. A radial function u ∈ Y if and

only if u = u(r) is a measurable function in (R1, R2) satisfying

‖u‖Y =

(∫ R2

R1

rN−1w(r)|u(r)|pdr
) 1

p

< ∞ .

Similarly, a radial function u ∈ X if and only if u = u(r) is absolutely continuous on every
compact subinterval of (R1, R2), lim

r→R1
u(r) = lim

r→R2
u(r) = 0 and

‖u‖X =

(∫ R2

R1

rN−1v(r)|u′(r)|pdr
) 1

p

< ∞ .

Obvious change of the notation in (2.1)–(2.4) leads to the following sufficient conditions for
continuous and compact embeddings X ↪→ Y and X ↪→↪→ Y, respectively.

Proposition 7.1.

(A) Let either

sup
R1<r<R2

(∫ R2

r
τN−1w(τ)dτ

)(∫ r

R1

τ
1−N
p−1 v1−p′(τ)dτ

)p−1

< ∞

or

sup
R1<r<R2

(∫ r

R1

τN−1w(τ)dτ

)(∫ R2

r
τ

1−N
p−1 v1−p′(τ)dτ

)p−1

< ∞

hold. Then X ↪→ Y.

(B) Let either

lim
r→R1,R2

(∫ R2

r
τN−1w(τ)dτ

)(∫ r

R1

τ
1−N
p−1 v1−p′(τ)dτ

)p−1

= 0 (7.3)

or

lim
r→R1,R2

(∫ r

R1

τN−1w(τ)dτ

)(∫ R2

r
τ

1−N
p−1 v1−p′(τ)dτ

)p−1

= 0 (7.4)

hold. Then X ↪→↪→ Y.

As a consequence of this compact embedding, the following result follows from Theo-
rem 3.1.
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Corollary 7.2. Let u ∈ X and u ∈ X be subsolution and supersolution of (7.2), respectively, and u ≤
u in (R1, R2). Let f : (R1, R2)×R→ R be as in Section 3. Then there exist a minimal weak solution
umin ∈ X and a maximal weak solution umax ∈ X of (7.2) which satisfy u ≤ umin ≤ umax ≤ u in
(R1, R2).

Next, let us consider the eigenvalue problem−
(
rN−1v(r)|u′(r)|p−2u′(r)

)′
= λrN−1w(r)|u(r)|p−2u(r), r ∈ (R1, R2),

lim
r→R1

u(r) = lim
r→R2

u(r) = 0 .
(7.5)

Under the assumption (7.3) or (7.4) the principal eigenvalue of (7.5),

λ1 := inf
u 6=0
u∈X

∫ R2
R1

rN−1v(r)|u′(r)|pdr∫ R2
R1

rN−1w(r)|u(r)|pdr
> 0

is achieved at a unique ϕ1 ∈ X, ϕ1 > 0 in (R1, R2) and ‖ϕ1‖Y = 1. Asymptotic estimates
of ϕ1 for r → R1 and r → R2 follow from Theorem 4.3 and Theorem 4.4. Indeed, Let R1 <

R̃1 ≤ R̃2 < R2 be such that ϕ′1(R̃1) = ϕ′1(R̃2) = 0 and ϕ′1(r) > 0 in (R1, R̃1) and ϕ′1(r) < 0 in
(R̃2, R2). The existence of R̃1 and R̃2 are explained in Remark 4.2. Then due to Theorem 4.3
and Theorem 4.4, we have:

Corollary 7.3. Let c > 0, ε ∈ (0, p− 1) be such that for all r ∈ (R1, R̃1)(∫ R2

r
τN−1w(τ)dτ

)(∫ r

R1

τ
1−N
p−1 v1−p′(τ)dτ

)ε

≤ c

and

lim
r→R2

(∫ R2

r
τN−1w(τ)dτ

)(∫ r

R1

τ
1−N
p−1 v1−p′(τ)dτ

)p−1

= 0 .

Then there exist R1 ∈ (R1, R̃1), c1, c2, c̃2 > 0 such that for all r ∈ (R1, R1) we have

c1

∫ r

R1

τ
1−N
p−1 v1−p′(τ)dτ ≤ ϕ1(r) ≤ c2

∫ r

R1

τ
1−N
p−1 v1−p′(τ)dτ

and
c1r

1−N
p−1 v1−p′(r) ≤ ϕ′1(r) ≤ c̃2r

1−N
p−1 v1−p′(r) .

Let d > 0, ε ∈ (0, p− 1) be such that for all r ∈ (R̃2, R2)(∫ r

R1

τN−1w(τ)dτ

)(∫ R2

r
τ

1−N
p−1 v1−p′(τ)dτ

)ε

≤ d

and

lim
r→R1

(∫ r

R1

τN−1w(τ)dτ

)(∫ R2

r
τ

1−N
p−1 v1−p′(τ)dτ

)p−1

= 0 .

Then there exist R2 ∈ (R̃2, R2), d1, d2, d̃2 > 0 such that for all r ∈ (R2, R2) we have

d1

∫ R2

r
τ

1−N
p−1 v1−p′(τ)dτ ≤ ϕ1(r) ≤ d2

∫ R2

r
τ

1−N
p−1 v1−p′(τ)dτ

and
d1r

1−N
p−1 v1−p′(r) ≤ −ϕ′1(r) ≤ d̃2r

1−N
p−1 v1−p′(r) .



18 M. Chhetri, P. Drábek and R. Shivaji

Next, we consider the case R1 = 1, R2 = +∞, i.e., AR2
R1

= Bc
1 is exterior of unit ball centered

at the origin. Let us consider continuous radial weights v and w defined on (1,+∞) as follows:

v(r) =


(r− 1)α1 , r ∈ (1, 2),

1, r ∈ [2, 10],( 10
r

)α∞ , r ∈ (10,+∞);

w(r) =


(r− 1)β1 , r ∈ (1, 2),

1, r ∈ [2, 10],( 10
r

)β∞ , r ∈ (10,+∞) .

(7.6)

Similarly to Section 6, we can now reformulate the sufficient conditions in Proposition 7.1. We
also express conditions stated in Corollary 7.3 in terms of α1, α∞, β1 and β∞. Clearly, now also
the dimension N ≥ 2 will be involved in these conditions. Indeed, condition (7.3) holds if and
only if

α1 < min {β1 + p, p− 1} and β∞ > max {α∞ + p, N} (7.7)

and condition (7.4) holds if and only if

β1 > max {α1 − p,−1} and α∞ < min {β∞ − p, N − p} . (7.8)

In particular, the compact embedding X ↪→↪→ Y holds if either (7.7) or (7.8) holds. Since v
and w are continuous, ϕ1(r) is regular in the sense of (3.2) from Section 3.

Next, we formulate asymptotic behavior of ϕ1, see Corollary 7.3, in the language of powers
α1, α∞, β1 and β∞.

Corollary 7.4. If (7.7) holds, then there exist R1 > 1, c1, c̃1, c2, c̃2 > 0 such that for all r ∈ (1, R1) we
have

c1(r− 1)1− α1
p−1 ≤ ϕ1(r) ≤ c2(r− 1)1− α1

p−1

and

c̃1(r− 1)−
α1

p−1 ≤ ϕ′1(r) ≤ c̃2(r− 1)−
α1

p−1 .

If (7.8) holds, then there exist R2 > 1, d1, d̃1, d2, d̃2 > 0 such that for all r ∈ (R2,+∞) we have

d1r1+ α∞+1−N
p−1 ≤ ϕ1(r) ≤ d2r1+ α∞+1−N

p−1

and

d̃1r
α∞+1−N

p−1 ≤ −ϕ′1(r) ≤ d̃2r
α∞+1−N

p−1 .

While the asymptotics near 1 corresponds to the asymptotics in the first part of Corol-
lary 6.2, the asymptotics near +∞ is affected by an additional term “rN−1”.

Similarly, we can study the asymptotic properties of the weak solution e(r) to the following
auxiliary problem−

(
rN−1v(r)|u′(r)|p−2u′(r)

)′
= rN−1w(r), r ∈ (R1, R2),

lim
r→R1

u(r) = lim
r→R2

u(r) = 0 .
(7.9)

In fact, we can formulate an analogue of Theorem 5.2 and Theorem 5.3.

Corollary 7.5. Let rN−1w(r) ∈ L1(R1, R2). Given ε ∈ (0, p− 1) arbitrary, there exist Re
1 ∈ (R1, R2),

c1, c2, c̃2 > 0 such that for all r ∈ (R1, Re
1) we have

c1

∫ r

R1

τ
1−N
p−1 v1−p′(τ)dτ ≤ e(r) ≤ c2

(∫ r

R1

τ
1−N
p−1 v1−p′(τ)dτ

)1− ε
p−1
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and

c1r
1−N
p−1 v1−p′(r) ≤ e′(r) ≤ c̃2

d
dr

(∫ r

R1

τ
1−N
p−1 v1−p′(τ)dτ

)1− ε
p−1

.

Similarly, given ε ∈ (0, p− 1) arbitrary, there exist Re
2 ∈ (R1, R2), d1, d2, d̃2 > 0 such that for all

r ∈ (Re
2, R2) we have

d1

∫ R2

r
τ

1−N
p−1 v1−p′(τ)dτ ≤ e(r) ≤ d2

(∫ R2

r
τ

1−N
p−1 v1−p′(τ)dτ

)1− ε
p−1

and

d1r
1−N
p−1 v1−p′(r) ≤ −e′(r) ≤ d̃2

d
dr

(∫ R2

r
τ

1−N
p−1 v1−p′(τ)dτ

)1− ε
p−1

.

If v and w are given by (7.6) then w ∈ L1(Bc
1) requires β1 > −1 and β∞ > N. In particular,

(7.7) reduces to
α1 < p− 1 and β∞ > max{α∞ + p, N} (7.10)

and (7.8) reduces to
β1 > max{α1 − p,−1} and α∞ < N − p . (7.11)

Note that (4.3) holds for arbitrary ε ∈ (0, p − 1) in this special case. Then the asymptotic
estimates for e and e′ read as follows.

Corollary 7.6. Given ε ∈ (0, p− 1) arbitrary, there exist Re
1 > 1, c1, c̃1, c2, c̃2 > 0 such that for all

r ∈ (1, Re
1) we have

c1(r− 1)1− α1
p−1 ≤ e(r) ≤ c2(r− 1)

(
1− α1

p−1

)(
1− ε

p−1

)
and

c̃1(r− 1)−
α1

p−1 ≤ e′(r) ≤ c̃2(r− 1)
(

1− α1
p−1

)(
1− ε

p−1

)
−1 .

Similarly, given ε ∈ (0, p − 1) arbitrary, there exist Re
2 > 1, d1, d̃1, d2, d̃2 > 0 such that for all

r ∈ (Re
2,+∞) we have

d1r1+ α∞+1−N
p−1 ≤ e(r) ≤ d2r

(
1+ α∞+1−N

p−1

)(
1− ε

p−1

)
(7.12)

and

d̃1r
α∞+1−N

p−1 ≤ −e′(r) ≤ d̃2r
(

1+ α∞+1−N
p−1

)(
1− ε

p−1

)
−1 .

Remark 7.7. Let us emphasize the importance of asymptotic estimates presented above. We
will utilize them later for constructing an ordered pair of sub- and supersolution for problem
(7.1). Since modifications of ϕ1 and e will serve as a subsolution and a supersolution, respec-
tively, the estimates above will allow to compare the resulting subsolution and a supersolution
near the finite boundary and near infinity.

Remark 7.8. We compare our results for (7.9) with R2 = +∞ and corresponding results of
Bidaut-Véron and Pohozaev [4, Prop. 2.6, (ii)]. Let N > p. Consider v and w as given in
(7.6) with α1 = α∞ = β1 = 0 and β∞ > N. Then the left inequality in (7.12) coincides with
the lower estimate from [4], the first inequality in (2.34). Let N ≤ p. The second inequality
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in (2.34) from [4] implies that any possible nonnegative weak solution of equation in (7.9)
cannot decay to zero as r → +∞, i.e., (7.9) does not have a weak solution. On the other hand,
choosing now α1 = β1 = 0, α∞ < N − p, β∞ > N, problem (7.9) has a positive weak solution
satisfying decay asymptotic estimates presented above. This says that a sufficiently singular
diffusion coefficient v(r) could guarantee the existence of a weak solution having prescribed
decay at infinity.

8 Examples

We will discuss some examples to demonstrate our general existence result from Theorem 3.1
and the use of asymptotics obtained for the eigenfunction ϕ1 and the auxiliary function e
in Section 4 and Section 5, respectively. For simplicity, we consider f (t, s) = f (s), where
f : [0,+∞)→ R is C1 and satisfies the following additional assumptions:

(H3) there exists a constant K > 0 such that lims→0
f (s)
sp−1 = K;

(H4) there exists r0 > 0 such that f (s)(r0 − s) > 0 for all s > 0, s 6= r0.

We observe that since f is C1, (H3)–(H4) imply that f satisfies (H1)–(H2).
We consider the following one dimensional quasilinear problem−

(
ρ(t)|u′(t)|p−2u′(t)

)′
= λσ(t) f (u(t)), t ∈ (1,+∞),

lim
t→1+

u(t) = lim
t→+∞

u(t) = 0
(8.1)

where λ > 0 is a parameter.
Then we prove the following result.

Theorem 8.1. Let the weight functions ρ and σ be as in (6.1) with α1 , β1 , α∞ , β∞ satisfying (6.4)
and (6.5). Let p > 1 and (H3)–(H4) hold. Then for any λ > λ1

K , there exist a minimal weak solution
umin and a maximal weak solution umax of (8.1). Moreover, given ε ∈ (0, p− 1), there exist constants
C > 1, C1, C2 > 0 such that for all t ∈ (1, C) we have

C1(t− 1)1− α1
p−1 ≤ umin(t) ≤ umax(t) ≤ C2(t− 1)

(
1− α1

p−1

)(
1− ε

p−1

)
.

Similarly, given ε ∈ (0, p− 1), there exist constants D > 1, D1, D2 > 0 such that for all t ∈ (D,+∞)

we have
D1t1+ α∞

p−1 ≤ umin(t) ≤ umax(t) ≤ D2t
(

1+ α∞
p−1

)(
1− ε

p−1

)
.

Proof. In order to apply Theorem 3.1, we construct a suitable pair of well ordered sub- and
supersolution of (8.1). We will first construct a positive supersolution of (8.1) with the help

of the auxiliary function e > 0, weak solution of (5.1). Let u := (λA0)
1

p−1 e, where A0 :=
sups≥0 f (s) > 0. Then

−
(
ρ(t)|u′(t)|p−2u′(t)

)′
= λA0σ(t) ≥ λσ(t) f (u) .

Now we construct a positive subsolution of (8.1) using the eigenfunction ϕ1 > 0 corresponding
to the principal eigenvalue λ1 of (4.1). Note that continuity, and decay properties, (4.5) and
(4.9), of the eigenfunction ϕ1 imply that ‖ϕ1‖∞ < +∞. First, we consider a function

G(s) := λ1sp−1 − λ f (s) for s ≥ 0 .
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Using hypothesis (H3), we see that G(s) = λ1sp−1 − λKsp−1 − o(sp−1) . Let λ > λ1
K be fixed.

Then there exists sλ > 0 such that for any s ∈ (0, sλ), we have G(s) < 0. For m ≤ sλ

‖ϕ1‖∞
, we

show that u := mϕ1 is a subsolution of (8.1). Indeed, it follows from the discussion above and
the fact that σ(t) > 0 in (1,+∞)

−
(
ρ(t)|u′(t)|p−2u′(t)

)′
= λ1σ(t)mp−1ϕ

p−1
1 ≤ λσ(t) f (mϕ1) = λσ(t) f (u) .

Now using the decay estimates in Corollary 6.2 of the eigenfunction ϕ1 and Corollary 6.3 of
the auxiliary function e at the end points of the interval (1,+∞), we can adjust the constant
m ≈ 0 so that u ≤ u in (1,+∞). Then by Theorem 3.1, there exist a minimal weak solution
umin and a maximal weak solution umax of (8.1) such that

0 < u ≤ umin ≤ umax ≤ u in (1,+∞) ,

and enjoy the regularity properties (3.2). This completes the proof.

Remark 8.2. We observe that the rates of decay of positive weak solutions obtained in Theo-
rem 8.1 are independent of the nonlinearity f .

Next, we consider radially symmetric positive solutions of the following PDE in dimension
N > 1{

−div
(
v(|x|)|∇u(|x|)|p−2∇u(|x|)

)
= λw(|x|) f (u(|x|)), x ∈ A+∞

1 ⊂ RN ,

u(x) = 0, x ∈ ∂A+∞
1 ,

(8.2)

where λ > 0 is a parameter, f is as above, and A+∞
1 = Bc

1 is the exterior of a unit ball. We
obtain the counterpart of Theorem 8.1 below.

Theorem 8.3. Let the weight functions v and w be as in (7.6) with α1 , β1 , α∞ , β∞ satisfying (7.10)
and (7.11). Let p > 1 and (H3)–(H4) hold. Then for any λ > λ1

K , there exist a minimal weak solution
umin and a maximal weak solution umax of (8.2). Moreover, given ε ∈ (0, p− 1), there exist constants
C > 1, C1, C2 > 0 such that for all |x| ∈ (1, C) we have

C1 (|x| − 1)1− α1
p−1 ≤ umin(|x|) ≤ umax(|x|) ≤ C2 (|x| − 1)

(
1− α1

p−1

)(
1− ε

p−1

)
. (8.3)

Similarly, given ε ∈ (0, p − 1), there exist constants D > 1, D1, D2 > 0 such that for all |x| ∈
(D,+∞) we have

D1|x|1+
α∞+1−N

p−1 ≤ umin(|x|) ≤ umax(|x|) ≤ D2|x|
(

1+ α∞+1−N
p−1

)(
1− ε

p−1

)
.

Proof. Substituting r = |x|, (8.2) transforms to−
(
rN−1v(r)|u′(r)|p−2u′(r)

)′
= λrN−1w(r) f (u(r)), r ∈ (1,+∞),

lim
r→1+

u(r) = lim
r→+∞

u(r) = 0 .
(8.4)

Observe that (8.4) is a special case of (8.1) with ρ(t) = tN−1v(t) and σ(t) = tN−1w(t) for
t ∈ (1,+∞). Then the proof follows by repeating the constructions in the proof of Theorem 8.1.
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Remark 8.4. We observe again that the rates of decay of positive weak solutions obtained
in Theorem 8.3 are independent of the nonlinearity f . However, the decay rate at infinity
depends on the dimension N > 1.

Remark 8.5. Notice that it follows from (7.10) that α1 < p− 1. If α1 ∈ (0, p− 1) then 1− α1
p−1 <

1 and hence the left inequality in (8.3) yields that ∂u
∂~n = +∞ on ∂B1, where ~n denotes the outer

unit normal vector of ∂B1. On the other hand, if α1 < 0 then we can choose ε ∈ (0, p − 1)
so that (1− α1

p−1 )(1−
ε

p−1 ) > 1 and then the right inequality in (8.3) yields that ∂u
∂~n = 0 on

∂B1. Therefore, if α1 ∈ (−∞, 0) ∪ (0, p − 1), any weak solution u of (8.2) violates the Hopf
maximum principle on ∂B1, cf. [15, Thm. 5].
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