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Abstract. We show that Sturm’s classical separation theorem on the interlacing of the
zeros of linearly independent solutions of real second order two-term ordinary differ-
ential equations necessarily fails in the presence of a turning point in the principal part
of the equation. Related results are discussed.
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1 Introduction

In the sequel we will always assume, unless otherwise stated that

1
p

, q ∈ L(I), [a, b] ⊂ I (1.1)

where I is a closed and bounded interval and the functions p, q : I → R. In this paper there are
generally no sign restrictions on the principal part of (1.2), i.e., the values, p(x), are generally
unrestricted as to their sign and p(x) may even be infinite on sets of positive measure. As
usual the symbol ‖ ∗ ‖1 will denote the L(I) norm.

It is well known [5] that the conditions (1.1) imply the existence and uniqueness of
Carathéodory solutions of initial value problems associated with (1.2),

− (p(x)y′)′ + q(x) y = 0, x ∈ [a, b], (1.2)

that is, solutions y such that both y and py′ are absolutely continuous on [a, b] and satisfy

y(a) = ya, py′(a) = ya′ , (1.3)

for given ya, ya′ . The study of problems with an indefinite leading term (a.k.a. an indefinite
principal part) are few and far between. For example, the failure of Sturm’s oscillation theorem
in such indefinite cases was observed in [2, p. 381] where, in the presence of an indefinite
weight function, it may occur that the spectrum is, in fact, the whole complex plane and the
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eigenfunctions behave in a totally non-Sturmian fashion. The example in question consists in
choosing p(x) = q(x) = sgn x for x ∈ [−1, 1], y(−1) = y(1) = 0. Then the two solutions
y1(x) = sin P(x) and y2(x) = cos P(x) where P(x) = |x| − 1 have non interlacing zeros.
Indeed, y2(x) 6= 0 on [−1, 1] while y1(x) vanishes at both ends there. This special case is
contained in Theorem 2.2 below.

Recall that, in its simplest most classical form, Sturm’s Separation Theorem states that
given any non-trivial solution y of (1.2) having consecutive zeros at a, b, a < b, where [a, b] ⊂ I
then every other linearly independent solution of (1.2) must vanish only once in (a, b). An
equation (1.2) is said to have the Sturm Separation Property (abbr. SSP) on [a, b] if Sturm’s
Separation Theorem holds for the given equation on the given interval.

The framework described above normally assumes that the principal part, p, appearing in
(1.2) is a.e. finite on [a, b]. However, still greater generality can be obtained by allowing p(x)
to be identically infinite on subintervals. In this case one needs to rewrite (1.2) as a vector
system in two dimensions, e.g.,

u′ =
v
p

, v′ = q u. (1.4)

This now defines a problem of Atkinson-type (see [1, Chapter 8], [3, p. 558] for more details).
The advantage of using this formulation is that it can be used to study three-term recurrence
relations as well, see [1], [8]. We summarize this approach briefly: we divide [a, b] into a finite
union of subintervals

[a, bo], [bo, a1], [a1, b1], [b1, a2], [a2, b2], . . . , [bm−1, am], [am, b]. (1.5)

on each of which alternately p(x) = ∞ or q(x) = 0 (but p(x) is not infinite when q(x) = 0).
Direct integration of (1.4) then shows that yn = u(an) satisfies the three-term recurrence rela-
tion

cn yn+1 + cn−1 yn−1 − dn yn = 0, (1.6)

where

c−1
n =

∫ an+1

bn

ds
p(s)

, dn = cn + cn+1 +
∫ bn

an

q(s) ds,

or, equivalently, a second order difference equation

−4(cn−14yn−1) +

(∫ bn

an

q(s) ds
)

yn = 0, (1.7)

where, as usual, 4 represents the forward difference operator 4yn = yn+1 − yn.
Recall that by a zero of a solution of (1.6) is meant the zero of that absolutely continuous

polygonal curve with vertices at (n, yn). (This interpretation arises directly by integrating
(1.4).) Thus, zeros of solutions of (1.6) are said to interlace if the corresponding polygonal
curves have interlacing zeros.

The failure of Sturm’s Separation Theorem (or SSP) in the case of recurrence relations
(or difference equations) is old but chronicled by both Bôcher [4] and Moulton, [9], and not
independently of one another. (Moulton [9] actually cites Bôcher in reference to the question.)
Bôcher [4] goes on to give, as an example, two independent solutions of the Fibonacci sequence
recurrence relation,

yn+1 = yn + yn−1, y−1 = 0, y0 = 1; y−1 = −10, y0 = 6,

with no interlacing features whereas Moulton [9] went on to show (at Bôcher’s prodding) that
(1.6) has the SSP provided cn cn−1 > 0 for all n. To the best of our knowledge, a converse of
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Sturm’s Separation Theorem has not been addressed. In [8, p. 209] we showed, by means of
an example, that the SSP may fail in the case where Moulton’s condition cn cn−1 > 0 fails.

This failure suggests that p(x) must change its sign in the continuous case and that inter-
vals in which violations to SSP occur must be neighborhoods of a “turning point” of p. The
existence of such a point is necessitated by the fact that otherwise p(x) would be (a.e.) of one
sign in [a, b] and so SSP must hold there by Sturmian arguments.

Below we present a converse to SSP as a consequence of more general results dealing with
(1.4). Said result will then apply to both differential and difference equations.

Specifically, we will prove (Theorem 2.2) that whenever the leading term p(x) has a turning
point in (a, b) then SSP must fail. This is equivalent to showing that if the SSP holds then
p(x) cannot have a turning point inside (a, b) and thus p(x) is a.e. of one sign. This is the
actual converse of Sturm’s Separation Theorem. We illustrate this result by means of explicit
examples.

We also present (Theorem 2.10) an effective necessary condition for the existence of a
solution vanishing at the end-points of an interval in the case of sign-indefinite p and q.
Examples are provided illustrating the various theorems. Other results of independent interest
are also presented thus demonstrating the complexities of qualitative behavior of solutions in
the case of indefinite leading terms.

We conclude by a conjecture which gives an upper and lower bound to the difference in
the number of zeros in [a, b] between two independent solutions in the case of an arbitrary
but finite number of turning points in p(x).

2 Main results

We recall that if p is continuous or piecewise continuous on [a, b] then a turning point is a
point c ∈ (a, b) around which p(x) changes its sign. If p is merely measurable then c is defined
by requiring that, in some interval containing c in its interior, we have (x − c)p(x) > 0 a.e.
(or (x − c)p(x) < 0 a.e.) This somewhat restrictive definition implies that the set of turning
points of p cannot be everywhere dense in (a, b). Indeed, this definition implies that turning
points must be separated from one another.

In the sequel we always assume that solutions of (1.4) or (2.1) below are deemed non-
trivial. In addition, we take it that 1/p(x) may vanish a.e. on sets of positive measure, but not
vanish a.e. on [a, b], and that p(x) is unrestricted as to its sign there.

Lemma 2.1. For i = 1, 2, let u1, u2 be solutions of

u′i =
vi

p
, v′i = q ui, (2.1)

where p, q satisfy (1.1). Then
u2(x)v1(x)− u1(x)v2(x) = C, (2.2)

where C is a constant.

We will assume that, without loss of generality, C = 1. The main result shows that SSP
fails whenever p has a turning point and thus the a.e. positivity (or negativity) of p(x) is a
necessary condition for the validity of SSP as well as sufficient, as is well known.

Theorem 2.2. Let p(x) have a unique turning point at x = c, a < c < b and let ui, i = 1, 2 be
linearly independent solutions of (2.1) such that u1(a) = u1(b) = 0, u1(x) 6= 0 in (a, b). Then either
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u2(x) 6= 0 on [a, b], or u2(x) is of constant sign except only at x = c where u2(c) = 0, or finally
u2(x) has exactly two zeros in (a, b). In every case it follows that SSP fails on [a, b].

Remark 2.3. The previous theorem is independent of the sign of q(x) and assumes only that a
solution exists vanishing at two points around a given turning point. This is the general case
as otherwise the existence of two consecutive zeros in a turning-point-free set would lead to
SSP there by classical Sturm theory since p(x) is a.e. of one sign.

The result also includes an analog for the difference equation (1.7) above. Basically, if the
cn change sign once, then the solutions, viewed as polygonal curves, have the property stated
in the theorem.

The next example illustrates the result in the continuous case.

Example 2.4. Let I = [0, π], and consider the differential equation

u′ = cos(x) v, v′ = − cos(x) u.

with a unique turning point at c = π/2. Then the general solution is

y(x) = c1 sin(sin x) + c2 cos(sin(x)),

where c1, c2 are constants. First, note that solution u1(x) = sin(sin x) satisfies the conditions
of Theorem 2.2. We now exhibit solutions of the type guaranteed by said theorem.

• The solution u2(x) = cos(sin x) has no zeros in [0, π].

• The solution u2(x) = − cos 1 sin(sin x)+ sin 1 cos(sin(x)) ≥ 0 on [0, π] and it has exactly
one zero at the turning point x = π/2 bouncing positively there.

• The solution u2(x) = cos(sin x)− sin(sin x) has exactly two zeros, in conformity with
said theorem.

• Every solution of this equation has at most two zeros.

The latter result is most readily proved by contradiction. Assuming three such zeros xi,
i = 1, 2, 3, xi ∈ [0, π], we can easily deduce that the three quantities tan(sin(xi)) have a
common value (i.e., independent of i) and this is impossible on [0, π]. As a result, SSP fails
for this equation.

Next we consider the problem of finding necessary and sufficient conditions for the exis-
tence of two zeros of (1.4) on [a, b], i.e., in particular, we are asking for conditions under which
this equation not disconjugate. For the notion of disconjugacy we refer the reader to [3, 7].

Theorem 2.5. The equation (1.4) with q(x) = 0 a.e. on [a, b] has a non-trivial solution satisfying
u(a) = u(b) = 0 if and only if ∫ b

a

ds
p(s)

= 0, (2.3)

Corollary 2.6. Let cn satisfy
m−1

∑
n=0

c−1
n = 0. (2.4)

Then SSP fails for three-term recurrence relations of the form

cn yn+1 + cn−1 yn−1 − (cn + cn−1) yn = 0. (2.5)
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Example 2.7. Let cn−1 = (−1)n, n = 0, . . . , m, where m is even. Then (2.5) reduces to yn+1 =

yn−1. This has two linearly independent solutions defined by the initial conditions, y−1 = 0,
y0 = 1 and y−1 = 1, y0 = 2 the former of which has numerous zeros while the second has
none. We can see that SSP fails both by direct computation and by Corollary 2.6.

On the other hand, the same initial conditions y−1 = 0, y0 = 1 and y−1 = 1, y0 = 2 for
the slightly modified recurrence relation yn+1 = −yn−1 gives two solutions satisfying SSP by
Moulton’s theorem, [9].

The separation property for the zeros of the quasi-derivatives of solutions, i.e., terms of the
form (py′)(x), is next. Although the result is simply proved we have been unable to find a
reference to it and so present it here for the sake of completeness.

Proposition 2.8. For p, q as in (1.1), let p(x) be sign indefinite. In addition, let q(x) be a.e. of one
sign on [a, b] and let y be a non-trivial solution of (1.2) satisfying

(py′)(a) = 0 = (py′)(b). (2.6)

Then for any linearly independent solution y1 of (1.2) there is exactly one point c ∈ (a, b) such that
(py′1)(c) = 0.

Remark 2.9. This proposition seems to be the closest that one can get to a SSP-type result for
positive q. In other words, as we have seen earlier, the SSP fails even if q(x) > 0 on [a, b], and
p(x) is sign indefinite (i.e., has a turning point in (a, b)).

Next, we give a necessary condition for the existence of a solution vanishing at the end-
points of a typical interval, [a, b], and positive in its interior in the presence of an indefinite
principal part or leading term, p(x), in (1.4).

Theorem 2.10. Let ‖q‖1 > 0 and let (2.3) hold. Let u be a solution of (1.4) such that u(a) = u(b) = 0,
and u(x) > 0 for x ∈ (a, b). Then, writing,

P(x) :=
∫ x

a

ds
p(s)

, (2.7)

either P(x)q(x) = 0 a.e. on (a, b) or there is a set of positive measure on which P(x)q(x) > 0 a.e.
in (a, b) and a set of positive measure on which P(x)q(x) < 0 a.e. in (a, b) (i.e., Pq changes its “sign”
on (a, b).)

The next result is of independent interest, Example 2.4 being a special case.

Lemma 2.11. Let I = [a, b], λ > 0. The general solution of either

(py′)′ +
λ

p
y = 0, or u′ =

v
p

, v′ = −λ

p
u.

is given by
y(x) = u(x) = c1 cos

(√
λP(x)

)
+ c2 sin

(√
λP(x)

)
,

where
v(x) = −c1

√
λ sin

(√
λP(x)

)
+ c2
√

λ cos
(√

λP(x)
)

,

where c1, c2 are constants.

Remark 2.12. It is well known and easy to derive that in the case where the leading term p(x)
is a.e. positive (or negative) then the absolute value of the difference of the number of zeros
of two independent solutions is equal to 1, due to the interlacing property of such zeros. In
the case of an indefinite leading term we make the following conjecture.
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3 Conjecture

Let p(x) have at least one turning point in (a, b) and let y be a solution satisfying y(a) =

y(b) = 0 having n zeros in [a, b]. Then, given any integer k, 0 ≤ k ≤ n, there are examples
for which the absolute value of the difference of the number of zeros of two independent
solutions on [a, b] is equal to k.

This totally non-Sturmian behavior appears to be typical in cases where the principal part
changes sign.

4 Proofs

Proof of Lemma 2.1. The proof is by differentiation of the expression on the left of (2.2) making
use of (2.1). Note that all ui, vi, and so their products, are absolutely continuous on the interval
under consideration.

Proof of Theorem 2.2. There are only two logical possibilities. Either u2(x) 6= 0 in [a, b] or
u2(x) = 0 at x = x0 in (a, b]. Clearly u2(a) 6= 0 as its negation would violate (2.2). For the sake
of simplicity we may assume that u2(a) > 0 (or else we may replace u2 by −u2 in the ensuing
discussion along with other minor changes).

In addition, we may assume, without loss of generality, that this first zero is at, say x0 ∈
(a, c), that is, to the left of the turning point. A similar argument applies in the event that this
zero is in (c, b]. Thus, u2(x) ≥ 0 for x ∈ [a, x0).

Next, we show that, unless x0 = c (see below), u2(x) cannot “bounce” off x = x0 and
remain positive for some x > x0. To see this observe that (2.2) implies that v2(x0) < 0. The
continuity of v2 now implies the existence of a δ > 0 and a neighborhood J = (x0− δ, x0 + δ) ∈
(a, c) in which v2(x) < 0. It follows that, for x ∈ (x0, x0 + δ),

u2(x) =
∫ x

x0

v2(s)
p(s)

ds.

Since p(x) > 0 a.e. in J and v2(x) < 0 there as well, we see that u2(x) < 0 to the right of
x0 and thus u2 must cross the axis whenever it is zero. Summarizing, we have shown that
there exists a δ > 0 such that u2(x) > 0 on [a, x0) and u2(x) < 0 on (x0, x0 + δ). Now, since
p(x) > 0 a.e. in [a, c], by ordinary Sturm theory we get that it is impossible for u2(x) = 0
again in (x0 + δ, c]. This is because SSP applies on intervals in which p(x) is a.e. of one sign,
and so u2(x) can have at most one zero there. It follows that u2(c) < 0.

As before we know that (2.2) forces u2(b) 6= 0. We show that u2(b) > 0. Assume the
contrary, i.e., u2(b) < 0. Since p(x) < 0 a.e. on (c, b) we have from (2.2) that u2(b)v1(b) = 1
and so that v1(b) < 0. A continuity argument again implies the existence of a η > 0 such that
v1(x) < 0 for x ∈ (b− η, b). For such x,

u1(b)− u1(x) = −u1(x) =
∫ b

x

v1(s)
p(s)

ds.

However, p(x) < 0 a.e. in (b− η, b). Hence u1(x) < 0 in (b− η, b) and this contradicts the
fact that u1(x) > 0 on (a, b). Hence u2(b) ≥ 0. As before, the case u2(b) = 0 being excluded
by (2.2), we find that u2(b) > 0. Since u2 is continuous and u2(c) < 0 there must exist another
zero x1 ∈ (c, b). This zero must be unique by Sturm theory since p(x) is a.e. of one sign on
(c, b), i.e., SSP applies here.
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Finally, let us consider the case where x0 = c, that is, the first zero of u2 occurs at the
turning point itself. This case may occur and a bounce is possible here. The reason for this
is that previous argument fails on account that p(x) a.e. changes its sign on every interval of
the form (c− δ, c + δ), by definition. Since p(x) < 0 a.e. on (c, c + δ), and arguing as above,
we get that for all x ∈ (c, c + δ) and δ sufficiently small,

u2(x) =
∫ x

c

v2(s)
p(s)

ds > 0.

Thus, a bounce may occur there. Finally, u2(x) may not vanish again in (c, b) since p(x) is a.e.
of one sign and so can only have at most one zero in [c, b] by Sturm theory. This completes
the proof.

Prof of Corollary 2.6. This follows from the discussion leading to the recurrence relations.

Proof of Proposition 2.8. We use the so-called reciprocal transformation [3]: let z = py′ where y
satisfies (1.2). Then z satisfies the equation

−
(

1
q

z′
)′

+
1
p

z = 0,

and
z(a) = z(b) = 0.

Since q is a.e. of one sign, classical Sturmian results apply so that the previous equation has
the SSP on said interval. Thus, for any other linearly independent solution z1(x) there is a
unique c ∈ (a, b) such that z1(c) = 0. In particular, if we define a solution y1 via z1 = py′1,
then z1(c) = 0 for some c, and the result follows.

Proof of Theorem 2.10. Without loss of generality we can assume that u(a) = 0, v(a) = M where
M 6= 0 is arbitrary but fixed. Then

u(x) = M
∫ x

a

ds
p(s)

+
∫ x

a

1
p(s)

∫ s

a
q(t)u(t) dt ds

= M
∫ x

a

ds
p(s)

+ P(x)
∫ x

a
q(t)u(t) dt−

∫ x

a
P(t)q(t)u(t) dt.

Since u(b) = 0 and P(b) = 0, it follows that

∫ b

a
P(t)q(t)u(t) dt = 0,

and, since u(x) > 0 in (a, b), the result follows.

Proof of Lemma 2.11. This is a direct calculation and so the proof is omitted.

Note added in proof: For an extension of some of the main results of this paper to the case
of finitely many turning points, see [6].
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