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Abstract. We consider a class of fractional logarithmic Schrödinger equation in
bounded domains. First, by means of the constraint variational method, quantitative
deformation lemma and some new inequalities, the positive ground state solutions and
ground state sign-changing solutions are obtained. These inequalities are derived from
the special properties of fractional logarithmic equations and are critical for us to obtain
our main results. Moreover, we show that the energy of any sign-changing solution is
strictly larger than twice the ground state energy. Finally, we obtain that the equation
has infinitely many nontrivial solutions. Our result complements the existing ones to
fractional Schrödinger problems when the nonlinearity is sign-changing and satisfies
neither the monotonicity condition nor Ambrosetti–Rabinowitz condition.
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1 Introduction

In this paper, we consider the following fractional Schrödinger equation with logarithmic
nonlinearity: {

(−∆)αu + V(x)u = |u|p−2u ln u2, x ∈ Ω,

u = 0, x ∈ RN \Ω,
(1.1)

where α ∈ (0, 1), N > 2α and 2 < p < 2∗α := 2N
N−2α , (−∆)α denotes the fractional Laplacian

operator, Ω is a bounded domain with smooth boundary in RN and V : Ω 7→ R satisfy

(V1) V ∈ C(Ω, R).
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(V2) inf σ((−∆)α +V(x))> 0, where σ((−∆)α+V) is the spectrum of the operator (−∆)α +V.

The general form of problem (1.1) can be given by

(−∆)αu + V(x)u = f (x, u), in RN , (1.2)

which arises in the study of standing waves to the time-dependent Schrödinger equation

i
∂ψ

∂t
= (−∆)αψ + M(x)ψ− F(x, ψ), (1.3)

where ψ : RN × (0,+∞) 7→ R. This equation is of particular interest in fractional quantum
mechanics for the study of particles on stochastic field modelled by Lévy processes. A path in-
tegral over the Lévy flights paths and a fractional Schrödinger equation of fractional quantum
mechanics are formulated by Laskin [16] from the idea of Feynman and Hibbs path integrals.
We call ψ a standing waves solution if it possesses the form ψ(x, t) = eiωtu(x). Then ψ is a
standing waves solution for (1.3) if and only if u solves (1.2) with V(x) = M(x)−ω. Our goal
is to study the case for logarithmic nonlinearity F(x, ψ) = |ψ|p−2ψ log |ψ|2. Here, the fractional
Laplacian operator (−∆)α can be characterized as the singular integral (see, for example [11])

(−∆)αu(x) = C(N, α)P. V.
∫

RN

u(x)− u(y)
|x− y|N+2α

dy, (1.4)

for all x ∈ RN , where C(N, α) is a normalization constant and P.V. stands for the principal
value. When u has sufficient regularity, the fractional Laplacian has a pointwise expression
(see [11, Lemma 3.2])

(−∆)αu(x) = −1
2

C(N, α)
∫

RN

u(x + y) + u(x− y)− 2u(x)
|y|N+2α

dy, ∀x ∈ RN .

Equation (1.1) and (1.2) admit applications related to quantum mechanics, phase transi-
tions and minimal surfaces etc. (see [11] and the references therein). There are much attention
by various scholars, especially on existence of ground state solution, multiple solutions, semi-
classical states and the concentration behavior of positive solutions, see for example [3,9,20,24],
and the references therein. When α = 1, Chen et al. [5] proved the existence of ground state
sign-changing solutions of problem (1.2) with f (x, u) = Q(x)|u|p−2u ln u2. When p = 2, Pietro
d’Avenia et al. [9] obtained the existence of infinitely many weak solutions of problem (1.1).
If α = 1 and p = 2, then the problem (1.1) reduces to the classical logarithmic Schrödinger
equation

− ∆u + V(x)u = u ln u2. (1.5)

More recently, many scholars focused on the problem (1.5), such as the existence of ground
state solution, multiple solutions, semiclassical states and the concentration behavior of posi-
tive solutions, see for example [1, 2, 8, 18, 25], and the references therein.

In 2014, Chang et al. [4] proved the existence of a nodal solution of (1.2) with V(x) = 0 in
bounded domain. They assume that the nonlinearity f (x, t) satisfies the following Ambrosetti–
Rabinowitz condition and monotonicity condition:

(AR) There exists µ ∈ (2, 2∗α) such that

0 < µF(x, t) ≤ t f (x, t)

for a.e. x ∈ Ω and all t 6= 0, where F(x, t) =
∫ t

0 f (x, τ)dτ.
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(NC) t 7→ f (x, t)/|t| is strictly increasing on (−∞, 0) ∪ (0,+∞) for every x ∈ Ω.

F. G. Rodrigo, et al. [13] considered the existence of sign-changing solution for (1.2) with
V(x) = 0 and f (x, u) = λg(x, u)+ |u|2∗α u, where g(x, u) satisfies the conditions (AR) and (NC).
When f (x, u) satisfies a monotonicity condition, Deng et al. [10] dealt with the least energy
sign-changing solutions for fractional elliptic equations (1.2) in bounded domain. Ji [15] con-
cerned with the existence of the least energy sign-changing solutions for a class of fractional
Schrödinger–Poisson system when f (x, t) satisfies the following monotonicity condition:

(F) t 7→ f (x, t)/t3 is strictly increasing on (−∞, 0) ∪ (0,+∞) for every x ∈ R3.

For more discussions on the existence of sign-changing solutions, we refer the readers to other
references, such as [6, 7, 14, 22, 23] and so on.

However, the logarithmic nonlinearity f (x, u) = |u|p−2u ln u2 is sign-changing and satisfies
neither the condition (AR) nor monotonicity condition (NC). In addition, the nonlocal operator
brings some new difficulties, such as∫

RN
|(−∆)

α
2 u(x)|2dx 6=

∫
RN
|(−∆)

α
2 u+(x)|2dx +

∫
RN
|(−∆)

α
2 u−(x)|2dx,

where
u+(x) := max{u(x), 0} and u−(x) := min{u(x), 0}.

But, most methods for local problem heavily rely on the decompositions∫
RN
|∇u(x)|2dx =

∫
RN
|∇u+(x)|2dx +

∫
RN
|∇u−(x)|2dx.

Thus, these classic methods do not work for equation (1.1). Therefore, combining constraint
variational method, quantitative deformation lemma, non-Nehari manifold method and some
new energy inequalities, we will establish the existence of positive ground state solutions
and ground state sign-changing solutions for (1.1). Finally, we analysis that the existence of
infinitely many nontrivial solutions. To the best of our knowledge, there seem no results
concerned with sign-changing solutions for fractional problem (1.1).

Before stating our main results, we introduce some useful results of fractional Sobolev
spaces. For 0 < α < 1, the fractional Sobolev space is defined as

Hα
0 (Ω) := {u ∈ L2(Ω) : [u]α < ∞, u = 0 a.e. in RN \Ω},

where the Gagliardo seminorm [u]α is given by

[u]α =
∫∫

R2N

|u(x)− u(y)|2
|x− y|N+2α

dx dy.

It is well known that Hα
0 (Ω) is a Hilbert space endowed with the standard inner product

〈u, v〉 =
∫∫

R2N

(u(x)− u(y))(v(x)− v(y))
|x− y|N+2α

dx dy +
∫

Ω
u(x)v(x)dx,

and the correspondent induced norm

‖u‖Hα
0 (Ω) =

√
〈u, u〉. (1.6)
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In light of the Propositions 3.4 and 3.6 in [11], we have

‖(−∆)
α
2 u‖2

2 =
1
2

C(n, α)
∫∫

R2N

|u(x)− u(y)|2
|x− y|N+2α

dx dy,

where û stands for the Fourier transform of u, ξ ∈ RN and C(n, α) =
(∫

RN
1−cos ξ1
|ξ|n+2α dx

)−1
. As

a consequence, the norms on Hα(Ω) defined below

u 7→
(∫

Ω
u(x)2 dx +

∫
RN
|(−∆)

α
2 u(x)|2dx

) 1
2

u 7→
(∫

Ω
u(x)2 dx +

∫∫
RN

|u(x)− u(y)|2
|x− y|N+2α

dx dy
) 1

2

are equivalent. To find solutions of (1.1), we will use a variational approach. Hence, we will
associate a suitable functional to our problem. More precisely, the energy functional associated
with problem (1.1) is given by Ψ : H 7→ R defined as follows

Ψ(u) :=
1
2

∫
RN

(
|(−∆)

α
2 u|2 + V(x)u2

)
dx +

2
p2

∫
Ω
|u|p dx− 1

p

∫
Ω
|u|p ln u2 dx. (1.7)

We define the suitable subspace of Hα
0 (Ω),

H :=
{

u ∈ Hα
0 (Ω) :

∫
Ω

V(x)u2 < +∞
}

.

In view of assumptions (V1) and (V2), it is not hard to check that H is a Hilbert space endowed
with the inner product

〈u, v〉H =
∫

RN
(−∆)

α
2 u(−∆)

α
2 v dx +

∫
Ω

V(x)uv dx,

and the induced norm ‖u‖2 = 〈u, u〉H, which is equivalent to ‖u‖Hα
0 (Ω).

The basic property of Sobolev space H that we need is summarized in the following
lemma.

Lemma 1.1 ([11]). The embedding H ↪→ Lp(Ω) is compact for p ∈ (2, 2∗α).

Note that

lim
t→0

tp−1 ln t2

t
= 0 and lim

t→∞

tp−1 ln t2

tq−1 = 0,

where q ∈ (p, 2∗α), thus, for any ε > 0, there exists Cε > 0 such that

|t|p−1| ln t2| ≤ ε|t|+ Cε|t|q−1, ∀x ∈ Ω, t ∈ R \ {0}. (1.8)

By (1.8) and a standard argument, it is easy to check that Ψ ∈ C1(H, R) and

〈Ψ′(u), v〉 =
∫

RN
(−∆)

α
2 u(−∆)

α
2 v dx +

∫
Ω

V(x)uv dx−
∫

Ω
|u|p−2uv ln u2 dx, (1.9)

for any u, v ∈ H.
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Definition 1.2. We say that u ∈ H is a weak solution of (1.1), if u a critical point of the
functional Ψ, that is∫

RN
(−∆)

α
2 u(−∆)

α
2 v dx +

∫
Ω

V(x)uv dx =
∫

Ω
|u|p−2uv ln u2 dx,

for all v ∈ H. Moreover, if u ∈ H is a solution of (1.1) and u± 6= 0, then u is called a
sign-changing solution.

Definition 1.3. The u ∈ H is called a classical solution of (1.1), if (−∆)αu can be written as
(1.4) and equation (1.1) is satisfied pointwise in Ω.

Remark 1.4. Since (u+, u−)α :=
∫

RN (−∆)
α
2 u+(−∆)

α
2 u− dx > 0 for u± 6= 0, it follows from a

simple computation that

Ψ(u) = Ψ(u+) + Ψ(u−) + (u+, u−)α > Ψ(u+) + Ψ(u−), (1.10)

and
〈Ψ′(u), u±〉 = 〈Ψ′(u±), u±〉+ (u+, u−)α > 〈Ψ′(u±), u±〉. (1.11)

Let
c := inf

u∈N
Ψ(u) and m := inf

u∈M
Ψ(u)

where
N := {u ∈ H \ {0}|〈Ψ′(u), u〉 = 0},

and
M := {u ∈ H, u± 6= 0 | 〈Ψ′(u), u+〉 = 〈Ψ′(u), u−〉 = 0}.

The main result of this work can now be stated as follows.

Theorem 1.5. Assume that (V1) and (V2) hold. Then problem (1.1) possesses one positive ground
state solution ū ∈ N such that Ψ(ū) = c := infN Ψ(u).

Theorem 1.6. Assume that (V1) and (V2) hold. Then problem (1.1) has a ground state sign-changing
solution ũ ∈ M such that Ψ(ũ) = m := infM. Moreover, m > 2c.

Theorem 1.6 indicates that the energy of any sign-changing solution of (1.1) is strictly
larger than twice of the ground state energy. In terms of the results, Theorem 1.6 is a rela-
tively new result for fractional equations. In terms of processing technology, we adopt some
new technique inequalities derived by the variable transformation and the special concave
properties of energy functional.

Theorem 1.7. Suppose that (V1) and (V2) hold. Then problem (1.1) possesses infinitely many non-
trivial solutions.

The remaining of the paper is organized as follows: In Section 2, we present some prelim-
inary results and we set up the variational framework to our problem. In Section 3 and 4, we
prove our main result. Throughout this paper, the symbol S denote unit sphere, the C, C1,
C2, . . . represent several different positive constants.
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2 Some preliminary results

In this section, we give some preliminary lemmas which are crucial for proving our results.
For a fixed function u ∈ H with u± 6= 0. We define a continuous function J : [0, ∞) ×

[0, ∞) 7→ R by

J(s, t) := Ψ
(

s
1
p u+ + t

1
p u−

)
=

1
2
‖s

1
p u+ + t

1
p u−‖2 +

2
p2

∫
Ω
|s

1
p u+ + t

1
p u−|p dx

− 1
p

∫
Ω
|s

1
p u+ + t

1
p u−|p ln

(
s

1
p u+ + t

1
p u−

)2
dx.

(2.1)

The following lemma is derived from the special properties of fractional logarithmic equa-
tions, which is critical to our results.

Lemma 2.1. The J(s, t) defined in (2.1) is strictly concave in (0,+∞)2 and thus there exists a unique
global maximum point in (0,+∞)2.

Proof. It follows from (2.1) that

∂J
∂s

(s, t) =
1
p

s
2
p−1‖u+‖2 +

1
p

s
1
p−1t

1
p (u+, u−)α −

1
p

∫
Ω
|u+|p ln(u+)2 dx

− 1
p

∫
Ω
|u+|p ln(s

2
p )dx,

(2.2)

∂J
∂t
(s, t) =

1
p

t
2
p−1‖u−‖2 +

1
p

t
1
p−1s

1
p (u+, u−)α −

1
p

∫
Ω
|u−|p ln(u−)2 dx

− 1
p

∫
Ω
|u−|p ln(t

2
p )dx,

(2.3)

∂2 J
∂s2 (s, t) =

2− p
p2 s

2
p−2‖u+‖2 +

1− p
p2 s

1
p−2t

1
p (u+, u−)α −

2
p2s

∫
Ω
|u+|p dx, (2.4)

∂2 J
∂t2 (s, t) =

2− p
p2 t

2
p−2‖u−‖2 +

1− p
p2 t

1
p−2s

1
p (u+, u−)α −

2
p2t

∫
Ω
|u−|p dx (2.5)

and

∂2 J
∂s∂t

(s, t) =
∂2G
∂t∂s

(s, t) =
1
p2 s

1
p−1t

1
p−1(u+, u−)α. (2.6)

Therefore, the Hessian matrix D2 J(s, t) is

D2 J(s, t) =

(
∂2 J
∂s2

∂2 J
∂s∂t

∂2 J
∂t∂s

∂2 J
∂t2

)
(s, t)

=
2− p

p2

(
s

2
p−2‖u+‖2 + s

1
p−2t

1
p (u+, u−)α 0

0 t
2
p−2‖u−‖2 + t

1
p−2s

1
p (u+, u−)α

)

+
1
p2 (u

+, u−)α

(
−s

1
p−2t

1
p s

1
p−1t

1
p−1

s
1
p−1t

1
p−1 −t

1
p−2s

1
p

)

+
2
p2

(
− 1

s

∫
Ω |u

−|p dx 0
0 − 1

t

∫
Ω |u

−|p dx

)
=: J1(s, t) + J2(s, t) + J3(s, t).

(2.7)
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Note that 2 < p < 2∗α and (u+, u−)α > 0, it is not difficult to verify that J1(s, t), J2(s, t) and
J3(s, t) are negative definite matrices for s, t > 0. Thus, D2 J(s, t) is a negative definite matrix.
Since J(0, 0) = 0 and

J(s, t)→ −∞ as |(s, t)| → +∞,

which shows that J(s, t) is strictly concave and there exists a unique global maximum point in
(0,+∞)2. We complete the proof.

In view of Lemma 2.1, we have the following corollaries.

Corollary 2.2. Assume that u ∈ M, then

Ψ(u+ + u−) = max
s̃,̃t≥0

Ψ(s̃
1
p u+ + t̃

1
p u−) > Ψ(s

1
p u+ + t

1
p u−), (2.8)

for any s, t ≥ 0 and (s, t) 6= (1, 1).

Proof. Let J : [0, ∞) × [0, ∞) → R be defined in (2.1). Since u ∈ M, then 〈Ψ′(u), u+〉 =

〈Ψ′(u), u−〉 = 0. This, combined with (2.2) and (2.3), implies that

∂J
∂s

(1, 1) = 0 and
∂J
∂t
(1, 1) = 0.

Then, by the strict concavity of J in Lemma 2.1, (2.8) follows immediately, which is the desired
conclusion.

Since 〈Ψ′(u), u+〉 = p ∂J
∂s (1, 1) and 〈Ψ′(u), u−〉 = p ∂J

∂t (1, 1), the following corollary can be
directly derived from Lemma 2.1.

Corollary 2.3. If u ∈ H with u± 6= 0, there exists a unique pair (su, tu) ∈ R+ ×R+ such that

s
1
p
u u+ + t

1
p
u u− ∈ M.

Corollary 2.4. Assume that u ∈ N , then

Ψ(u) = max
t≥0

Ψ(t
1
p u) > Ψ(t̃

1
p u), (2.9)

for any t̃ ≥ 0 and t̃ 6= 1.

Proof. By setting s = t in (2.1), we can deduce similarly that

J̃(t) = Ψ(t
1
p u)

is strictly concave in (0,+∞) and has a unique global maximum point. This, together with
u ∈ N , implies the desired conclusion.

The following corollary directly follows from the Corollary 2.4 and [19, Proposition 8].

Corollary 2.5. For any u ∈ H \ {0}, there exists a unique t = t(u) > 0 such that tu ∈ N . Moreover,
the map π̂ : H \ {0} 7→ N is continuous for π̂(u) = t(u)u and π := π̂|S defines a homeomorphism
between the unit sphere S of H with N .

In view of Corollaries 2.2, 2.3, 2.4 and 2.5, we have the following results.
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Lemma 2.6. The following equalities hold true:

inf
N

Ψ(u) =: c = inf
u∈E,u 6=0

max
t≥0

Ψ(t
1
p u)

and
inf
M

Ψ(u) =: m = inf
u∈E,u± 6=0

max
s,t≥0

Ψ(s
1
p u+ + t

1
p u−).

Proof. We only prove the second equality because the other case is similar. On the one hand,
it follows from Corollary 2.2 that

inf
u∈E,u± 6=0

max
s,t≥0

Ψ(s
1
p u+ + t

1
p u−) ≤ inf

u∈M
max
s,t≥0

Ψ(s
1
p u+ + t

1
p u−) = inf

u∈M
Ψ(u) = m. (2.10)

On the other hand, for any u ∈ H with u± 6= 0, by Corollary 2.3, we have

max
s,t≥0

Ψ(s
1
p u+ + t

1
p u−) ≥ Ψ(s

1
p
u u+ + t

1
p
u u−) ≥ inf

v∈M
Ψ(v) = m. (2.11)

Thus, the conclution directly follows from (2.10) and (2.11).

Proposition 2.7. For any u ∈ M, there exists $ > 0 such that ‖u±‖q ≥ $.

Proof. Since u ⊂M, we have 〈Ψ′(u), u±〉 = 0, that is∫
RN

(−∆)
α
2 u(−∆)

α
2 u± dx +

∫
Ω

V(x)|u±|2 dx =
∫

Ω
|u±|p ln |u±|2 dx.

Then, by (1.8), (u+, u−)α > 0 and the Sobolev inequality, we have

‖u±‖2 ≤
∫

Ω
|u±|p ln(u±)2 dx

≤ 1
2
‖u±‖2 + C1‖u±‖2‖u±‖q−2

q ,

for some C1 > 0 independent of u. Thus there exists a constant $ > 0 such that ‖u±‖q ≥ $.

Proposition 2.8. For any u ∈ N , there exists γ > 0 such that ‖u‖q ≥ γ.

Proof. By (1.8) and the Sobolev inequality, for any u ∈ N , we deduce that

‖u‖2 =
∫

Ω
|u|p ln u2 dx

≤ 1
2
‖u‖2 + C2‖u‖2‖u‖q−2

q .

for some C2 > 0 independent of u. Then there exists γ > 0 such that ‖u‖q ≥ γ.

Lemma 2.9. c > 0 and m > 0 can be achieved.

Proof. We only prove that m > 0 and is achieved since the other case is similar. Let {un} ∈ M
be such that Ψ(un)→ m. By (1.7) and (1.9), one has

m + o(1) = Ψ(un)−
1
p
〈Ψ′(un), un〉

=

(
1
2
− 1

p

)
‖un‖2 +

2
p2

∫
Ω
|un|p dx

≥
(

1
2
− 1

p

)
‖un‖2.
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This shows that {un} is bounded. Thus, passing to a subsequence, we may assume that
u±n ⇀ û± weakly in H and u±n → û± strongly in Ls(Ω) for 2 ≤ s < 2∗α. Since {un} ⊂ M, then
it follows from Proposition 2.7 that there exists a constant $ > 0 such that ‖u±n ‖q ≥ $. By the
compactness of the embedding H ↪→ Ls(Ω) for 2 ≤ s < 2∗α, we have

‖û±‖q = lim
n→∞
‖u±n ‖q ≥ $,

which shows û± 6= 0. By (1.8), (1.9), the Theorem A.2 in [21], the weak semicontinuity of
norm and the Lebesgue dominated convergence theorem, we have

‖û±‖2 +
∫

RN
(−∆)

α
2 û∓(−∆)

α
2 û± dx ≤ lim inf

n→∞

(
‖u±n ‖2 +

∫
RN

(−∆)
α
2 u∓n (−∆)

α
2 u±n dx

)
= lim inf

n→∞

∫
Ω
|u±n |p ln(u±n )

2 dx

=
∫

Ω
|û±|p ln(û±)2 dx,

(2.12)

which implies
〈Ψ′(û), û±〉 ≤ 0. (2.13)

According to Corollary 2.3, there exist ŝ, t̂ > 0 such that ŝ
1
p û+ + t̂

1
p û− ∈ M and

Ψ(ŝ
1
p û+ + t̂

1
p û−) ≥ m. (2.14)

By the concavity of Ĵ(s, t) := Ψ(s
1
p û+ + t

1
p û−) for s, t ≥ 0 and the Taylor expansion, for some

θ ∈ (0, 1), we have

Ĵ(ŝ, t̂) = Ĵ(1, 1) + Ĵ′s(1, 1)(ŝ− 1) + Ĵ′t(1, 1)(t̂− 1)

+
1
2!
((ŝ− 1), (t̂− 1))D2 Ĵ(1 + θ(ŝ− 1), 1 + θ(t̂− 1))((ŝ− 1), (t̂− 1))T

≤ Ĵ(1, 1) + Ĵ′s(1, 1)(ŝ− 1) + Ĵ′t(1, 1)(t̂− 1).

(2.15)

That is
Ψ(û) ≥ Ψ(ŝ

1
p û+ + t̂

1
p û−)− 1

p
(ŝ− 1)〈Ψ′(û), û+〉 − 1

p
(t̂− 1)〈Ψ′(û), û−〉. (2.16)

Therefore, it follows from (1.7), (1.9), (2.12), (2.13), (2.14), (2.16), Lemma 2.1, Corollary 2.2 and
the weak semicontinuity of norm that

m = lim
n→∞

(
Ψ(un)−

1
p
〈Ψ′(un), un〉

)
= lim

n→∞

(
(

1
2
− 1

p
)‖un‖2 +

2
p2

∫
Ω
|un|p dx

)
≥ (

1
2
− 1

p
)‖û‖2 +

2
p2

∫
Ω
|û|p dx

= Ψ(û)− 1
p
〈Ψ′(û), û〉

≥ Ψ(ŝ
1
p û+ + t̂

1
p û−)− ŝ

p
〈Ψ′(û), û+〉 − t̂

p
〈Ψ′(û), û−〉

≥ m,
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which implies that
〈Ψ′(û), û±〉 = 0 and Ψ(û) = m. (2.17)

Therefore, û ∈ M and Ψ(û) = m. Since û± 6= 0, then by (1.7), (1.9) and (2.17), we have

m = Ψ(û) =
1
2
‖û‖2 +

2
p2

∫
Ω
|û|p dx− 1

p

∫
Ω
|û|p ln û2 dx

≥ 1
2
‖û‖2 − 1

p

∫
Ω
|û|p ln û2 dx

=

(
1
2
− 1

p

)
‖û+‖2 +

1
p
〈Ψ′(û), û〉

≥
(

1
2
− 1

p

)
‖û+‖2 +

(
1
2
− 1

p

)
‖û−‖2 +

1
p
〈Ψ′(û), û+〉+ 1

p
〈Ψ′(û), û−〉

> 0.

That is m > 0. The proof is completed.

Lemma 2.10. The minimizers of infN Ψ(u) and infM Ψ(u) are critical points of Ψ.

Proof. We prove it by contradiction. Assume that ũ ∈ M, Ψ(ũ) = m and Ψ′(ũ) 6= 0. Then
there exists δ > 0, µ > 0 such that ‖Ψ′(v)‖ ≥ µ, for ‖v− ũ‖ ≤ 3δ. Let D = ( 1

2 , 3
2 )× ( 1

2 , 3
2 ). By

Lemma 2.1, we have

β := max
s,t∈∂D

Ψ
(

s
1
p ũ+ + t

1
p ũ−

)
< m. (2.18)

Applying the classical deformation [21, Lemma 2.3] with ε := min{(m − β)/3, µδ/8} and
S := Bδ(ũ), there exists a deformation η ∈ C([0, 1]× H, H) such that

(a) η(1, u) = u, if u 6∈ Ψ−1(m− 2ε, m + 2ε),

(b) η(1, Ψm+ε ∩ S) ⊂ Ψm−ε,

(c) Ψ(η(1, u)) ≤ u, ∀u ∈ H.

Corollary 2.2 implies that Ψ(s
1
p ũ+ + t

1
p ũ−) ≤ Ψ(ũ) = m, for s > 0, t > 0. Then it follows from

(b) that

Ψ
(

η
(

1, s
1
p ũ+ + t

1
p ũ−

))
≤ m− ε, (2.19)

for s > 0, t > 0 and |s− 1|2 + |t− 1|2 < δ2/‖ũ‖2. Furthermore, using Lemma 2.1 and (c), we
derive that

Ψ
(

η
(

1, s
1
p ũ+ + t

1
p ũ−

))
≤ Ψ

(
s

1
p ũ+ + t

1
p ũ−

)
< Ψ(ũ) = m, (2.20)

for s > 0, t > 0 and |s− 1|2 + |t− 1|2 ≥ δ2/‖ũ‖2. Thus, from (2.19) and (2.20), we obtain

max
s,t∈D

Ψ
(

η
(

1, s
1
p ũ+ + t

1
p ũ−

))
< m.

Define g(s, t) = s
1
p ũ+ + t

1
p ũ−. To complete the proof it suffices to prove that

η(1, g(D)) ∩M 6= ∅, (2.21)
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which implies maxs,t∈D Ψ(η(1, s
1
p ũ+ + t

1
p ũ−)) ≥ m and it contradicts (2.21). Let us define

κ(s, t) := η(1, g(s, t)) and

φ(s, t) :=
(

1
ps
〈Ψ′(κ(s, t)), (κ(s, t))+〉, 1

pt
〈Ψ′(κ(s, t)), (κ(s, t))−〉

)
.

Since κ(s, t)|∂D = g(s, t), we have

1
ps
〈Ψ′(g(s, t)), s

1
p u+〉 = J′s(s, t), on ∂D,

and
1
pt
〈Ψ′(g(s, t)), t

1
p u+〉 = J′t(s, t), on ∂D.

Therefore, by the homotopy invariance of Brouwer’s degree, we can deduce from (2.7) that

deg(φ, D, (0, 0)) = deg((J′s, J′t), D, (0, 0))

= sgn
(

det
(

J′s
J′t

)
(1, 1)

)
= 1,

which implies that φ(s, t) = 0 for some (s, t) ∈ D, that is κ(s, t) = η(1, g(s, t)) ∈ M, which is
a contradiction.

The proof of infN Ψ(u) is critical points of Ψ is similar to above argument and hence is
omitted here.

3 Proof of Theorems 1.5 and 1.6

We first prove Theorem 1.5. According to 2.9 and 2.10, there exists ū ∈ N such that Ψ(ū) = c
and Ψ′(ū) = 0. Now, we only need to prove that u is a positive solution of problem (1.1).
Indeed, replacing Ψ(u) with the functional

Ψ+(u) :=
1
2

∫
RN

(
|(−∆)

α
2 u|2 + V(x)u2

)
dx +

2
p2

∫
Ω
|(u+|p dx− 1

p

∫
Ω
|u+|p ln(u+)2 dx.

In this way we can get a solution u such that

(−∆)αu + V(x)u = |u+|p−2u+ ln(u+)2 in Ω. (3.1)

Testing equation (3.1) with u−, we obtain∫
RN

(−∆)
α
2 u(−∆)

α
2 u− dx +

∫
Ω

V(x)|u−|2 dx = 0. (3.2)

On the other hand,∫
RN

(−∆)
α
2 u(−∆)

α
2 u− dx =

∫
RN
|(−∆)

α
2 u−|2 dx +

∫
RN

(−∆)
α
2 u+(−∆)

α
2 u− dx

=
∫

RN
|(−∆)

α
2 u−|2 dx + (u+, u−)α ≥ 0.

(3.3)

Thus, it follows from (3.2) and (3.3), we have u− = 0 and u ≥ 0. Since |t|p−1| ln t2| ≤ |t|+
Cq|t|q−1, ∀x ∈ Ω, t ∈ R \ {0}, for q ∈ (2, 2∗α), by the regularity theorem [12, Lemma 3.4],
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we can obtain that u ∈ C0,µ for some µ ∈ (0, 1). Therefore, using the maximum principle
[17, Proposition 2.17], we obtain u ≡ 0 in Ω, a contradiction. Thus, u is a positive solution of
problem (1.1).

Finally, we prove Theorem 1.6. We conclude from Lemma 2.9 and Lemma 2.10 that prob-
lem (1.1) has a sign-changing solution ũ ∈ M such that Ψ(ũ) = m and Ψ′(ũ) = 0. It remains
to prove that Ψ(ũ) = m := infM Ψ(u) > 2c. Indeed, by (1.10), Corollary 2.2 and Lemma 2.6,
we have

m = Ψ(ũ) = max
s,t≥0

Ψ(s
1
p ũ+ + t

1
p ũ−)

> max
s≥0

Ψ(s
1
p ũ+) + max

t≥0
Ψ(t

1
p ũ−) ≥ 2c.

The proof is completed.

4 Infinitely many solutions

In the following, we analysis the existence of infinitely many nontrivial solutions for problem
(1.1).

Define ϕ̂ : H 7→ R and ϕ : S 7→ R by ϕ̂(u) = Ψ(π̂(u)) and ϕ := ϕ̂|S, respectively. Clearly,
ϕ̂ and ϕ are even since Ψ is even. It is not difficult to verify that ϕ is bounded from below in S
and ϕ satisfies the Palais–Smale condition on S. Hence, arguing as [19], the functional Ψ has
infinitely many critical points, which shows that (1.1) has infinitely many nontrivial solutions.
The Theorem 1.7 is proved.
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