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Abstract. In this paper the sharpness of an upper bound, due to Merris, on the independence
number of a graph is investigated. Graphs that attain this bound are called Merris graphs. Some
families of Merris graphs are found, including Kneser graphs K(v, 2) and non-singular regular bipar-
tite graphs. For example, the Petersen graph and the Clebsch graph turn out to be Merris graphs.
Some sufficient conditions for non-Merrisness are studied in the paper. In particular it is shown that
the only Merris graphs among the joins are the stars. It is also proved that every graph is isomorphic
to an induced subgraph of a Merris graph and conjectured that almost all graphs are not Merris
graphs.
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1. Introduction. Let G be a finite simple graph. The Laplacian matrix L(G)
(which we often write as simply L) is defined as the difference D(G) − A(G), where
A(G) is the adjacency matrix of G and D(G) is the diagonal matrix of the vertex
degrees of G. It is not hard to show that L is a singular M-matrix and that it is
positive semidefinite. The eigenvalues of L will be denoted by 0 = λ1 ≤ λ2 ≤ . . . ≤ λn.
It is easy to show that λ2 = 0 if and only if G is not connected.

Suppose that G is a d-regular graph. Then L(G) = dI − A(G) and we have the
following well-known fact:

Proposition 1.1. If G is a d-regular graph, then λ is an eigenvalue of L(G) if
and only if d− λ is an eigenvalue of A(G) This simple observation will be useful in
the proofs of Theorems 3.5, 4.2 and 5.2.

We now fix some notation and terminology (for undefined graph-theoretic and
matrix-theoretic terms we refer the reader to [3] and [10], respectively).

A set S of vertices in a graph G is called independent if no two vertices in S
are connected by an edge. The maximum cardinality of such a set is called the
independence number of G and denoted α(G).

We denote by ∆(G) and δ(G) (or simply ∆ and δ) the maximum and minimum
degrees of a vertex in G, respectively. The degree of a vertex v is denoted by d(v).
For any vertex v and a subset T ⊆ V we denote by e(v, T ) the set of edges between
v and a vertex in T .

The vertex connectivity of G is denoted by ν(G). The matching number and the
vertex-covering number of G are denoted by µ(G) and τ(G), respectively.

The disjoint union of two graphs G1,G2 will be denoted by G1∪G2 and their join
by G1 ∨G2. Their Cartesian product will be denoted by G1�G2 (following [11]).
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For any subset I ⊆ R we let mG(I) stand for the number of the eigenvalues of
L(G) that fall inside I (counting multiplicities).

A graph G is called Laplacian integral if all eigenvalues of L(G) are integers. A
k-regular graph is called singular or non-singular according to whether k is or is not
an eigenvalue of L(G).

In [14] Merris has obtained the following result:
Theorem 1.2. Let G be a graph on n vertices. Then,

mG([δ, n]) ≥ α(G),(1.1)

mG([0,∆]) ≥ α(G).(1.2)

We remark that for regular graphs Theorem 1.2 is equivalent to a result of
Cvetković about the eigenvalues of the adjacency matrix [4].

In this paper we shall consider the sharpness of inequality (1.1). We shall denote
the quantity mG([δ, n]) byM(G) and call it the Merris index of G. Graphs satisfying
M(G) = α(G) will be called Merris graphs.

To get started, we obtain the following result:
Proposition 1.3. Let G be a disconnected Merris graph. Then every connected

component of G is a Merris graph.
Proof. Let G1 be one of the components of G and let G2 be the subgraph of G

induced by the vertices that do not belong to G1. The spectrum of G is the union of
the spectra of G1 and G2 and also: δ(G) = min{δ(G1), δ(G2)}. From the foregoing
two observations we conclude that: M(G) ≥M(G1) +M(G2) ≥ α(G1) + α(G2).

On the other hand, α(G) = α(G1) +α(G2). Recalling that M(G) = α(G) we see
that M(G1) = α(G1) and M(G2) = α(G2). The result now follows by induction on
the number of connected components.

However, the converse of Proposition 1.3 is not true, since the addition of an
isolated vertex to a Merris graph yields a graph that is not Merris.

One of our results (Theorem 7.5) has an immediate analogue for (1.2) but in
general it appears that the behaviour of mG([δ, n]) and mG([0,∆]) may be quite
different and thus mG([0,∆]) is likely to require a separate study.

The organization of the paper is as follows: in Section 2 we collect in one place
for the readers’ convenience some of the known results that we use; in Section 3 we
consider some simple families of graphs and see which of them are Merris graphs.
In Section 4 we show that all non-singular regular bipartite graphs are Merris and
conclude that incidence graphs of symmetric designs are Merris.

In Section 5 we show that the Kneser graphs K(v, 2) are Merris graphs. This
implies that the Petersen graph is a Merris graph. In Section 6 we list some Merris
graphs which are at the moment considered “sporadic”.

Subsequently, in Section 7 we find some sufficient conditions for strict inequality
to hold in (1.1) and obtain a structure theorem for Merris graphs (although an explicit
classification is not achieved). Then in Section 8 we show that the only joins of graphs
that are Merris graphs are the stars. Finally, in Section 9 we prove that every graph
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is isomorphic to an induced subgraph of a Merris graph. On the other hand, we
conjecture that almost all graphs are not Merris graphs.

2. Some known results used in this paper. First we recall the following
result of Fiedler [6]:

Theorem 2.1. For any graph G 	= Kn holds λ2(G) ≤ ν(G).
Since always ν(G) ≤ δ(G) we have that:
Corollary 2.2. For any graph G 	= Kn holds λ2(G) ≤ δ(G).
We use the following form of the interlacing inequality for Laplacian matrices [9]:
Theorem 2.3. Let G̃ be a graph on n vertices. Suppose G is a spanning subgraph

of G̃ obtained by removing an edge. Then the (n − 1) largest eigenvalues of L(G)
interlace the eigenvalues of L(G̃).

We also make use of the following computation of the Laplacian eigenvalues of a
join of graphs; see [15]:

Theorem 2.4. Let G = G1 ∨ G2 be a graph on n vertices, with G1 and G2

having n1 and n2 vertices, respectively. Suppose that the eigenvalues of L(G1) are
0, µ1, . . . , µn1 and that the eigenvalues of L(G2) are 0, λ1, . . . , λn2 . Then the eigen-
values of L(G) are 0, µ1 + n2, . . . , µn1 + n2, λ1 + n1, . . . , λn2 + n1, n.

The next fact is well-known. We prove it for the sake of completeness.
Proposition 2.5. For any graph G holds 2µ(G) ≥ τ(G).
Proof. Let M be a maximum matching in G. We claim that A =

⋃
e∈M e is a

vertex-covering of G. Indeed, if there were some edge f not covered by A, thenM ∪f
would have been a matching, contradicting the maximality of M .

The following classic theorem is due to Gallai [7]:
Theorem 2.6. For any graph G on n vertices holds α(G) + τ(G) = n.
We will need a recent result of Ming and Wang [16, Theorem 4]:
Theorem 2.7. Let G be a connected graph on n vertices so that n > 2µ(G).

Then mG((2, n]) ≥ µ(G).
As an immediate consequence of a well-known majorization theorem of Schur [18]

(cf. [10, p.193]) we have that:
Lemma 2.8. Let G be a graph on n vertices. Then λn(G) ≥ ∆(G).
We also use the following result of Teranishi [19]:
Theorem 2.9. Let G be a connected Laplacian integral graph on p vertices, for

some prime p. Then G is the join of two Laplacian integral graphs.

3. Some simple families of graphs. We begin by noting that stars yield
equality in both bounds of Theorem 1.2:

Proposition 3.1. Let G = K1,n−1. Then equality holds in (1.1) and (1.2).
Proof. The Laplacian eigenvalues of G in this case are: 0, n, 1, . . . , 1. On the

other hand: δ(G) = 1,∆(G) = n− 1, α(G) = n− 1.
However, it turns out that equality doesn’t have to hold simultaneously in (1.1)

and (1.2). This can be illustrated by the following proposition:
Proposition 3.2. Let G = Kn. Then equality holds in (1.2) but not in (1.1).
Now we consider paths, bearing in mind that δ(Pn) = 1 and α(Pn) = 
n

2 �. First
we state a result that has been obtained by some explicit computations (in MATLAB):
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Proposition 3.3. (1) For 1 ≤ n ≤ 5 or n = 7, M(Pn) = α(Pn).
(2) For n = 6 or 8 ≤ n ≤ 15, M(Pn) > α(Pn).

Now we are in a position to handle longer paths.
Theorem 3.4. For n ≥ 16, M(Pn) > α(Pn).
Proof. We use induction on n. Note that the graph G = P�n

2 �∪P�n
2 � is a spanning

subgraph of Pn, obtained by deleting one edge. Also, we make the simple observations
that:

α(G) = α(P� n
2 �) + α(P� n

2 �),(3.1)

α(G) + 1 ≥ α(Pn),(3.2)

mG([1, n]) = mP� n
2 �([1, n]) +mP� n

2 �([1, n]).(3.3)

Now either by the induction assumption or by Proposition 3.3(2) (depending on
the value of n) we have that:

mP� n
2 �([1, n]) ≥ α(P� n

2 �) + 1,(3.4)

mP� n
2 �([1, n]) ≥ α(P� n

2 �) + 1.(3.5)

We apply the interlacing inequality (in the form stated in Theorem 2.3) to obtain:

mPn([1, n]) ≥ mG([1, n]).(3.6)

Finally we collate the equations and inequalities established so far ((3.1)-(3.6)):

mPn([1, n]) ≥ mG([1, n]) = mP� n
2 �([1, n]) +mP� n

2 �([1, n])

≥ α(P�n
2 �) + 1 + α(P� n

2 �) + 1 = α(G) + 2 ≥ α(Pn) + 1.

We can also determine which cycles are Merris graphs:
Theorem 3.5. M(Cn) = α(Cn) if and only if n is congruent to 1 or 2 modulo 4.
Proof. The independence numbers of Cn is �n

2 . Since cycles are 2-regular, their
Laplacian eigenvalues may be recovered from those of the adjacency matrix that are
given in [1, p. 17], using Proposition 1.1. The verification of the assertion is now
straightforward.

A similar result holds for hypercubes (we omit the proof, which consists of little
more than an appeal to the formulas for the Laplacian eigenvalues of Qm that can be
found in, say, [17]):

Theorem 3.6. M(Qm) = α(Qm) if and only if m is odd.
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4. Non-singular regular bipartite graphs. Let us introduce a large class of
Merris graphs:

Theorem 4.1. Let G be a non-singular k-regular bipartite graph on n vertices.
Then G is a Merris graph.

Proof. Since G is regular and bipartite, both partitions of G must be of equal
cardinality. Therefore, α(G) = n

2 . By Theorem 1.2 we have that both mG([δ, n]) and
mG([0,∆]) are greater than or equal to n

2 .
On the other hand, since k is not a Laplacian eigenvalue of G, mG([δ, n]) +

mG([0,∆]) = n. We conclude, then, that mG([δ, n]) = mG([0,∆]) = n
2

A complete description of the class of non-singular regular bipartite graphs is
unknown. However, we can point out an important subclass thereof:

Theorem 4.2. Let G be the incidence graph of a symmetric 2− (v, k, λ) design.
Then G is a Merris graph.

Proof. The k-regularity and bipartiteness of G follow directly from its being the
incidence graph of a symmetric design. It remains to point out that Koolen and
Moulton have observed in [12] that the adjacency eigenvalues of such a graph are:
k,−k,√k − λ,−√

k − λ (with appropriate multiplicities). Therefore, by Proposition
1.1, k is not a Laplacian eigenvalue of G. Thus, G is non-singular and we are done
by Theorem 4.1.

5. The Kneser graphs K(v, 2). The results of Sections 3 and 4 might have
suggested that Merris graphs necessarily have large independence numbers. However,
in this section we are going to meet an infinite family of graphs whose independence
number is O(

√
n), where n is, as usually, the number of vertices.

We recall that the Kneser graph K(v, r) has
(
v
r

)
vertices corresponding to the

r-subsets of some set of cardinality v and two vertices are connected by an edge if
and only if they represent disjoint sets. The independence number of a Kneser graph
is given by the following well-known theorem of Erdős, Ko and Rado [5]:

Theorem 5.1. If v > 2r, then α(K(v, r)) =
(

v−1
r−1

)
.

For the proof of the following result we shall use the concept of strongly regular
graph. A k-regular graph on n vertices is said to be strongly regular with parameters
(n, k, λ, µ) if any two adjacent vertices have λ common neighbours and any two non-
adjacent vertices have µ common neighbours. (This definition is due to Bose [2].)
Strongly regular graphs have been studied quite extensively (for instance, see [8,
Chapter 10]).

Now we can state and prove the following result.
Theorem 5.2. For every v ≥ 5, K(v, 2) is a Merris graph.
Proof. The graph K(v, 2) is a strongly regular graph with parameters

(
(
v
2

)
,
(
v−2
2

)
,
(
v−4
2

)
,
(
v−3
2

)
). Therefore, we can compute the eigenvalues of its adjacency

matrix by the standard formulas (see [8, Section 10.2]) for strongly regular graphs:(
v−2
2

)
with multiplicity 1, 1 with multiplicity v(v−3)

2 and 3− v with multiplicity v− 1.
SinceK(v, 2) is regular we infer from Proposition 1.1 that its Merris index is equal

to the number of non-positive eigenvalues of the adjacency matrix. In the previous
paragraph, we have seen that this number is v − 1. Finally, by Theorem 5.1 we have
that M(K(v, 2)) = α(K(v, 2)) = v − 1.
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Since the Petersen graph is isomorphic to K(5, 2) we have that:
Corollary 5.3. The Petersen graph is a Merris graph.

6. Some sporadic Merris graphs. In this section we list some interesting
Merris graphs that we are unable to classify at the moment:

(1) The Clebsch graph. This is the unique strongly regular graph with parameters
(16, 5, 0, 2); see [8, Theorem 10.6.4]. Its Merris index is 5.

(2) The prisms C7�P2 and C8�P2 with Merris indices 6 and 8, respectively.
(3) The graph obtained from the 5-cycle by adding a new vertex that is adjacent

to two consecutive vertices on the cycle. It has Merris index 3.
Some other strongly regular graphs and prisms are Merris but we do not have a

way of determining Merrisness from a parameter set for them as yet.

7. Some sufficient conditions for non-Merrisness. We begin with the fol-
lowing result:

Theorem 7.1. Let G be a connected Laplacian integral graph on n ≥ 3 vertices
with δ(G) = 1, but not a star. Then, M(G) > α(G).

Proof. The result if trivial if G = Kn. Therefore, we may assume that G 	= Kn.
By Corollary 2.2 and the assumptions on G we have λ2(G) = 1 and thus mG([δ, n]) =
n− 1. On the other hand, since G is not a star we have α(G) ≤ n− 2.

It turns out that in general the hypothesis δ(G) = 1 in the theorem may neither
be omitted nor be weakened to ν(G) = 1. However, as we shall see in Section 8, if n
is prime, then the hypothesis δ(G) = 1 is unnecessary.

Theorem 7.2. Let G be a connected graph on n vertices satisfying the following
conditions:
(i) δ(G) ≤ 2,
(ii) n > 3α(G),
(iii) n > 2µ(G).
Then, M(G) > α(G).

Proof. Using assumption (i) we have:

mG([δ, n]) ≥ mG([2, n]) ≥ mG((2, n]).

Now, by applying Theorem 2.7, Proposition 2.5 and Theorem 2.6 (in this order) we
have:

mG((2, n]) ≥ µ(G) ≥ τ(G)
2

=
n− α(G)

2
.

Therefore mG([δ, n]) ≥ n−α(G)
2 and it remains to apply assumption (ii) to finish the

proof.
We can weaken assumption (iii) in an obvious way to obtain a simpler result:
Corollary 7.3. Let G be a connected graph on n vertices satisfying the following

conditions:
(i) δ(G) ≤ 2,
(ii) n > 3α(G),
(iii) n is odd.
Then, M(G) > α(G).
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A family of non-Merris graphs satisfying the assumptions of Corollary 7.3 can be
obtained in the following way: take an r-clique for some even r ≥ 4 and connect it to
a triangle by a single edge.

We can now obtain a structure theorem for Merris graphs (although it does not
give us an explicit classification):

Theorem 7.4. Let G be a Merris graph. Then for every connected component
C of G at least one of the following conditions must hold:
(a) δ(C) ≥ 3,
(b) C has at most 3α(C) vertices,
(c) C has a perfect matching.

Proof. Apply Proposition 1.3 and Theorem 7.2.
The proof of the next result is essentially a variation on the proof of Theorem 1.2

by Merris.
Theorem 7.5. Let G be a graph on n vertices. Suppose that there exist a

maximum independent set S ⊆ V and a vertex v ∈ V \S that satisfy the following
conditions:
(i) d(v) − |e(v, S)| ≥ δ(G),
(ii) For any s ∈ S, if s is adjacent to v then d(s) > δ(G).
Then, M(G) > α(G).

Proof. We denote by B the principal submatrix of L(G) that is indexed by the
rows and columns corresponding to S ∪ {v}. Now we consider the Geršgorin disks of
B. From assumptions (i) and (ii) we see that the leftmost (necessarily real) points of
all the Geršgorin disks of B are not less in magnitude than δ(G). So, by Geršgorin’s
theorem (see [10, Theorem 6.1.1]) the eigenvalues of B are all greater than or equal
to δ(G). Therefore, by the Cauchy interlacing theorem (see [10, Theorem 4.3.15]) we
see that L(G) has at least α(G) + 1 eigenvalues greater than or equal to δ(G). This
proves our claim.

It is not hard to see that an analogue of Theorem 7.5 holds for (2). The proof is
the same, mutatis mutandis.

Theorem 7.6. Let G be a graph on n vertices. Suppose that there exist a
maximum independent set S ⊆ V and a vertex v ∈ V \S that satisfy the following
conditions:
(i) d(v) + |e(v, S)| ≤ ∆(G),
(ii) For any s ∈ S, if s is adjacent to v then d(s) < ∆(G).
Then, mG([0,∆]) > α(G).

A family of non-Merris graphs satisfying the assumptions of Theorem 7.5 can be
obtained in the following way: take an s-cycle for some even s ≥ 4 and join three
consecutive vertices to some new vertex v.

8. Joins of graphs. We recall that a graphG is said to be the join of two graphs
G1 and G2 if V (G) is the disjoint union of V (G1) and V (G2) and all possible edges
between V (G1) and V (G2) are present in G. In this section we shall show that a join
is a Merris graph if and only if it is a star (which is the join K1,n−1 = K1∨(n−1)K1).

Let us assume that G = G1 ∨ G2 and that G1 and G2 have n1 and n2 vertices,
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respectively. We make the following straightforward observations:

α(G) = max{α(G1), α(G2)},(8.1)

δ(G) = min{δ(G1) + n2, δ(G2) + n1}.(8.2)

Theorem 8.1. Let G = G1 ∨G2 be a graph on n ≥ 3 vertices.
Then M(G) = α(G) if and only if G = K1,n−1.

Proof. We assume, without loss of generality, that α(G1) ≥ α(G2) and therefore
α(G) = α(G1). We will have to examine now a number of cases.

First we deal with the case when δ(G1) ≥ 1. Suppose that the non-zero eigen-
values of G1 are: λk, . . . , λn1 . Then it follows from Theorem 2.4 that among the
eigenvalues of G we will find the following numbers: λk + n2, . . . , λn1 + n2, n. So we
can write:

mG([δ(G1) + n2, n]) ≥ mG1([δ(G1), n1]) + 1.(8.3)

(We use the assumption that δ(G1) ≥ 1 in stating (8.3)).
Therefore, by (8.2), (8.3), Theorem 1.2 and our assumption that α(G) = α(G1),

respectively:

mG([δ(G), n]) ≥ mG([δ(G1) + n2, n]) ≥ mG1([δ(G1), n1]) + 1

≥ α(G1) + 1 = α(G) + 1.

So far we have shown that M(G) > α(G), provided δ(G1) ≥ 1.
Now we assume δ(G1) = 0. If α(G1) < n1 then the same arguments as in the

previous case show that M(G) > α(G). Therefore we can assume that α(G1) = n1.
Now if n2 ≥ 2 we refine the foregoing argument in which we have counted α(G1) =

α(G) eigenvalues of G that are not less than δ(G). We note that if µ is the largest
eigenvalue of G2, then by Theorem 2.4, µ+n1 is an eigenvalue of G. But using Lemma
2.8 we have: µ+ n1 ≥ ∆(G2) + n1 ≥ δ(G2) + n1 ≥ δ(G). Therefore, we can increase
our count by one and obtain once again that M(G) > α(G).

The only possible case remaining now is that when α(G1) = n1 and n2 = 1. In
other words, when G = K1,n−1. By Proposition 3.1, in this case indeedM(G) = α(G).
This completes the proof of the theorem.

Corollary 8.2. Let G be a graph on n ≥ 2 vertices with ∆(G) = n− 1, but not
a star. Then, M(G) > α(G).

Proof. Since ∆(G) = n− 1 we can write G = H ∨K1 for some graph H on n− 1
vertices and now the previous theorem applies.

The wheel graphs satisfy the assumptions of Corollary 8.2 and therefore are not
Merris graphs.

Corollary 8.3. Let G be a connected Laplacian integral graph on p vertices,
for some prime p, but not a star. Then, M(G) > α(G).

Proof. Apply Theorems 2.9 and 8.1.
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9. Embedding and asymptotics. Given a graphG it is natural to ask whether
it is isomorphic to an induced subgraph of some Merris graph H (in which case we
say that G can be embedded in H). The answer to this question turns out to be
always positive. Moreover, we are going to give a simple explicit construction of H .

Namely, H will be the corona of G, which is the graph resulting from the addition
of a new pendant vertex at every original vertex of G. We remark parenthetically
that coronas have been previously studied in relation to domination in graphs; see [3,
p. 305].

Theorem 9.1. Let G be some graph on n vertices and let H be its corona. Then
H is a Merris graph.

Proof. First, we observe that H has 2n vertices and that α(H) = n. Let us write
down the Laplacian matrix of H :

L(H) =
[

L(G) + I −I
−I I

]

Suppose that v is an eigenvector of L(G) that corresponds to the eigenvalue λ. We
shall be looking for eigenvectors of L(H) that have the following form:

w =
[

v

γv

]

Let us compute:

L(H)w =
[

(λ+ 1− γ)v
(γ − 1)v

]
= (λ+ 1− γ)

[
v

γ−1
λ+1−γ v

]

We now see that for w to be an eigenvector of L(H) it is necessary and sufficient that

γ =
γ − 1

λ+ 1− γ
holds. This is a quadratic equation in γ that has two real solutions:

γ1,2 =
λ±√

λ2 + 4
2

Therefore,

wi =
[

v
γiv

]
, i ∈ {1, 2}

are eigenvectors of L(H) corresponding to the eigenvalues λ + 1 − γi. We point out
that in this way we have obtained all the eigenvectors and eigenvalues of L(H). It
remains to find M(H).

Obviously, δ(H) = 1. On the other hand, for every eigenvalue λ of L(G) we see
that:

λ+ 1− γ1 = λ+ 1− λ+
√
λ2 + 4
2

< 1.
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Therefore, M(H) ≤ n. But we recall that α(H) = n and deduce that M(H) =
α(H) = n, thereby completing the proof.

Given some property P of graphs, the following assertion holds (its proof has
been suggested to us by Brendan McKay [13]):

Proposition 9.2. If almost all graphs have property P , then every graph is
isomorphic to an induced subgraph of a graph that has property P .

Proof. If G is a fixed graph, then by a well-known result (see [3, p. 379]), almost
every graph H has an induced subgraph isomorphic to G. By the assumption that
almost all graphs have property P we can choose H to have property P .

Had we known that almost all graphs are Merris graphs, we could have immedi-
ately deduced from Proposition 9.2 that every graph can be embedded in a Merris
graph. However, we believe that almost all graphs are not Merris graphs. We conclude
the paper with the formal statement of this conjecture:

Conjecture. Let Xn be the number of graphs on n vertices and let Mn be the
number of Merris graphs on n vertices. Then limn→∞ Mn

Xn
= 0.
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