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THE NONNEGATIVE P0-MATRIX COMPLETION PROBLEM∗
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Abstract. In this paper the nonnegative P0-matrix completion problem is considered. It is
shown that a pattern for 4 × 4 matrices that includes all diagonal positions has nonnegative P0-
completion if and only if its digraph is complete when it has a 4-cycle. It is also shown that any
positionally symmetric pattern that includes all diagonal positions and whose graph is an n-cycle
has nonnegative P0-completion if and only if n �= 4.
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1. Introduction. A partial matrix is a rectangular array of numbers in which
some entries are specified while others are free to be chosen. A completion of a partial
matrix is a specific choice of values for the unspecified entries. Let N = {1, . . . , n}. A
pattern for n×n matrices is a subset of N×N . A partial matrix specifies a pattern if its
specified entries lie exactly in those positions listed in the pattern. For a particular
class Π of matrices, we say a pattern has Π-completion if every partial Π-matrix
specifying the pattern can be completed to a Π-matrix. The Π-matrix completion
problem for patterns is to determine which patterns have Π-completion. For example,
the positive definite completion problem asks, “Which patterns have the property
that any partial positive definite matrix specifying the pattern can be completed to a
positive definite matrix?” The answer to this question is given in [4] through the use of
graph theoretic methods. Matrix completion problems arise in applications whenever
a full set of data is not available, but it is known that the full matrix of data must
have certain properties. Such applications include seismic reconstruction problems
and data transmission, coding, and image enhancement problems in electrical and
computer engineering.

A positionally symmetric pattern is a pattern with the property that (i, j) is in the
pattern if and only if (j, i) is also in the pattern. An asymmetric pattern is a pattern
with the property that if (i, j) is in the pattern, then (j, i) is not in the pattern.

For α a subset of N , the principal submatrix obtained from A by deleting all
rows and columns not in α is denoted by A(α). The principal subpattern Q(α) is
obtained from the pattern Q by deleting all positions whose first or second coordinate
is not in α. A principal minor is the determinant of a principal submatrix. A real
n×n matrix is called a P0-matrix if all of its principal minors are nonnegative. A P0-
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matrix is called a P0,1-matrix if all diagonal entries are nonzero. A partial P0-matrix
(P0,1-matrix) is a partial matrix in which all fully specified principal submatrices are
P0-matrices (P0,1-matrices). A nonnegative P0-matrix (nonnegative P0,1-matrix) is
a P0-matrix (P0,1-matrix) whose entries are nonnegative. A partial nonnegative P0-
matrix (partial nonnegative P0,1-matrix) is a partial P0-matrix (P0,1-matrix) whose
specified entries are nonnegative.

The following properties of nonnegative P0-matrices will be used: A nonnegative
block triangular matrix, all of whose diagonal blocks are nonnegative P0-matrices, is a
nonnegative P0-matrix. If A is a nonnegative P0-matrix and D is a positive diagonal
matrix, then DA and D−1AD are both nonnegative P0-matrices. If A is a nonnegative
P0-matrix and Pπ is a permutation matrix, then P−1

π APπ is a nonnegative P0-matrix.
In many situations we need to permute the entries of a partial matrix. We do

this by defining a permutation of a pattern: If Q is a pattern for n× n matrices and
π is a permutation of N , then π(Q) = {(π(i), π(j)) : (i, j) ∈ Q}. For a partial matrix
A specifying Q, define the partial matrix π(A) specifying π(Q) by π(A)π(i)π(j) = Aij

for (i, j) ∈ Q. Note that for a fully specified matrix A, π(A) = P−1
π APπ with

Pπ = [eπ(1), . . . , eπ(n)]T . In completion problems we permute the entries of a given
partial matrix A to obtain π(A), complete π(A) to π̂(A), and use π−1(π̂(A)) to
complete A.

Throughout the paper we will denote the entries of a partial matrix as follows:
di denotes a specified diagonal entry, aij a specified off-diagonal entry, and xij an
unspecified entry, 1 ≤ i, j ≤ n. In addition, cij may be used to denote the value
assigned to the unspecified entry xij during the process of completing a partial matrix.

The next result is known [6]. We include the proof here, because the explicit
values chosen in this proof will be used in subsequent proofs.

Lemma 1.1. A pattern for 3× 3 matrices that includes all diagonal positions has
nonnegative P0-completion.

Proof. Let

A =


 d1 a12 x13

a21 d2 a23

a31 a32 d3




be a partial nonnegative P0-matrix and let Q be the pattern A specifies. We will
look at two cases: 1) If a12a21 = 0, a23a32 = 0 or a12a23a31 ≥ d1d2d3, set x13 = 0
to complete A. 2) If a12 > 0, a21 > 0, a23 > 0, a32 > 0, and a12a23a31 < d1d2d3,
set x13 = a12a23

d2
to complete A. In both cases, this completes A to a nonnegative

P0-matrix. Thus, the pattern Q that A specifies has nonnegative P0-completion.
This implies that any pattern R for a 3×3 matrix with one unspecified off-diagonal

entry has nonnegative P0-completion, since any partial matrix specifying R can be
transformed via a permutation matrix in order to specify the above pattern Q. Also,
any matrix with more than one unspecified off-diagonal entry can be completed by
first setting all except one unspecified off-diagonal entry to zero and then completing
the resulting matrix as shown above.

A digraph G = (VG, EG) is a finite set VG of positive integers, whose members are
called vertices, and a set EG of ordered pairs (v, u) of distinct vertices, called arcs.
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In the arc (v, u), v is the tail and u is the head. The indegree d−(u) of vertex u is
the number of arcs with head u. The outdegree d+(v) of vertex v is the number of
arcs with tail v. The order of G is the number of vertices of G. A subdigraph of the
digraph G = (VG, EG) is a digraph H = (VH , EH), where VH is a subset of VG and
EH is a subset of EG (note that (v, u) ∈ EH requires v, u ∈ VH , since H is a digraph).
If W is a subset of VG, the subdigraph induced by W , < W >, is the digraph (W,EW )
with EW the set of all arcs of G between the vertices in W . A subdigraph induced
by a subset of vertices is also called an induced subdigraph.

For a pattern Q for n×n matrices that contains all diagonal positions, the digraph
of Q (pattern-digraph) is the digraph having vertex set N and, as arcs, the ordered
pairs (i, j) ∈ Q where i �= j. A partial matrix that specifies a pattern is also referred
to as specifying the digraph of the pattern. Note that the use of a permutation on
a pattern or partial matrix corresponds to renumbering the vertices of the pattern-
digraph that the matrix specifies. Since nonnegative P0-matrices are closed under
permutation similarity, we are free to renumber digraph vertices as convenient.

When all diagonal entries in a matrix are nonzero or all diagonal positions are
present in a pattern, digraphs can be used to study matrices (nonzero digraphs) and
patterns (pattern-digraphs). When diagonal positions are omitted or diagonal entries
of a matrix can be zero, it is sometimes necessary to use mardigraphs (cf. [6]) or
digraphs that include loops (L-digraphs, defined below, cf. [8, Definition 6.2.11] and
[1, p. 53]). In this paper we study only patterns that include all diagonal positions,
so we use pattern-digraphs, but we will use L-digraphs to study matrices, since it
is necessary to distinguish between zero and nonzero diagonal entries, both of which
occur. Note that the term “digraph” is sometimes used to describe what is here called
an L-digraph. We use our teminology because we need to distinguish L-digraphs from
what we call digraphs.

An L-digraph is a digraph that is allowed to have loops, i.e., arcs (v, v). The
terms indegree, outdegree, order, sub-L-digraph, and induced sub-L-digraph are defined
analogously to the corresponding terms for digraphs. For an L-digraph G, let Sub(G)
denote the set of all sub-L-digraphs of G. The L-digraph G = (VG, EG) is isomorphic
to the L-digraph H = (VH , EH) if there is a one-to-one map φ from VG onto VH and
(v, w) ∈ EG if and only if (φ(v), φ(w)) ∈ EH .

Let A be a (fully specified) n × n matrix. The nonzero-L-digraph of A is the L-
digraph having vertex set N and, as arcs, the ordered pairs (i, j) where aij �= 0. If G
is the nonzero-L-digraph of A, then the nonzero-L-digraph of the principal submatrix
A(α) is isomorphic to < α >. We may abuse the notation and refer to < α > as the
nonzero-L-digraph of A(α).

We use the term (L-)digraph to mean digraph or L-digraph. A path (respectively,
semipath) in the (L-)digraph G = (VG, EG) is a sequence of vertices v1, v2, . . . , vk−1, vk

in VG such that for i = 1, . . . , k − 1, the arc (vi, vi+1) ∈ EG (respectively, (vi, vi+1) ∈
EG or (vi+1, vi) ∈ EG) and all vertices are distinct except possibly v1 = vk. Clearly,
a path is a semipath, although the converse is false. The length of the (semi)path
v1, v2, . . . , vk−1, vk is k − 1. A cycle is a path in which v1 = vk. A cycle is even or
odd according as its length is even or odd. A digraph whose vertex set consists of the
n vertices v1, . . . vn, and whose arc set consists of exactly the arcs in the two cycles
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v1, v2, . . . , vn, v1 and vn, vn−1, . . . , v1, vn is a symmetric n-cycle. Two distinct vertices
v and w are connected if there is a semipath v = v1, v2, · · · , vk = w. Any vertex
v is connected to itself, whether or not the loop (v, v) is in EG. The relationship
of being connected is an equivalence relation on vertices of G. A sub-(L-)digraph
induced by an equivalence class defined by this relation is called a component of G.
The (L-)digraph G is connected if it has only one component, i.e., if any two vertices
of G are connected. An (L-)digraph is strongly connected if for any two vertices v and
w there is a path from v to w.

An (L-)digraph that contains all possible arcs between its vertices is called com-
plete. A complete sub(-L-)digraph is called a clique. A cut-vertex is a vertex that if
removed along with all incidental arcs, causes a component of the (L-)digraph to be
separated into more than one component. If a connected (L-)digraph does not contain
any cut-vertices, the (L-)digraph is nonseparable. A block is a maximal nonseparable
sub(-L-)digraph, and a (L-)digraph where all blocks are cliques is called block-clique.

Let Sn denote the group of permutations of N . Let Gπ denote the L-digraph of
the permutation matrix Pπ for some π ∈ Sn; Gπ is called a permutation L-digraph
(cf. [1, p. 291]).

The following two lemmas are obvious.
Lemma 1.2. Let A be an n×n matrix and let G be its nonzero-L-digraph. Then

DetA =
∑

π∈Sn:Gπ∈Sub(G)

(sgn π)a1π(1) · · · anπ(n),

where the sum over the empty set is zero.
Lemma 1.3. An L-digraph H is a permutation L-digraph if and only if VH = N

and each component of H is a single cycle.
Corollary 1.4. A nonnegative matrix whose nonzero L-digraph contains no

even cycles is a P0-matrix.
Proof. For every π ∈ Sn such that Gπ is a sub-L-digraph of G, Gπ is composed of

disjoint cycles, which by hypothesis must all be of odd length. Thus π is the product
of odd cycles and so sgn π = 1. Thus DetA is the sum of positive terms, or zero
if there are no permutation L-digraphs in G. Since any cycle in an induced sub-L-
digraph of G is also a cycle of G, every induced sub-L-digraph < α > inherits the
property of containing no even cycles, and hence DetA(α) is nonnegative.

References [3, 6, 7] contain some results on nonnegative P - and nonnegative P0-
matrix completion problems. Of particular interest is Lemma 3.5 in [3]: Any partial
positive P -matrix, the graph of whose specified entries is an n-cycle can be completed
to a positive P -matrix. (For this result all diagonal entries are assumed specified,
and “n-cycle” means what we call here a “symmetric n-cycle” because all patterns
discussed in [3] are positionally symmetric.) In [6, Theorem 8.4], it is noted that the
same method of proof applies to partial nonnegative P0,1-matrices. In contrast, it is
shown in [2] that the analogous statement for P0-matrices is true if and only if n �= 4.
That is, a pattern for n×n matrices that includes all diagonal positions whose pattern-
digraph is a symmetric n-cycle has P0-completion if and only if n �= 4. Note that the
cases n = 2 and 3 are trivial, since the pattern includes all positions. The interesting
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cases are n = 4 (no completion) and n ≥ 5 (completion). In Section 3 it is shown that
the same situation holds for the nonnegative P0-matrix completion problem, that
is, a pattern for n × n matrices that includes all diagonal positions whose pattern
digraph is a symmetric n-cycle has nonnegative P0-completion if and only if n �= 4.
Section 2 contains a classification of patterns for 4×4 matrices that include all diagonal
positions as either having nonnegative P0-completion or not having nonnegative P0-
completion, as [2] provided the analogous classification for P0-completion. However,
this classification has a more elegant description (cf. Theorem 2.6). In [2], it was
established that asymmetric patterns have P0-completion. This is not the case for
nonnegative P0-completion, as Lemma 2.1 makes clear.

2. Classification of Patterns for 4 × 4 Matrices. In this section we will
classify all patterns for 4 × 4 matrices as either having nonnegative P0-completion,
or not. The patterns discussed here are assumed to include all diagonal positions.
The digraphs are numbered following [5]; q is the number of edges, n is the diagram
number. The classification is broken up into a series of lemmas.

Lemma 2.1. If the digraph of a pattern Q contains a 4-cycle Γ and the subdigraph
induced by Γ is not a clique, then Q does not have nonnegative P0-completion.

Proof. Without loss of generality, assume that Γ is 1, 2, 3, 4, 1. Let A be a partial
nonnegative P0-matrix specifying Q, with a12 = 1, a23 = 1, a34 = 1, a41 = 1,
and all other specified entries equal to zero. Then every fully specified principal
submatrix of A is triangular, so A is a partial nonnegative P0-matrix. Suppose that
Â is a nonnegative P0-matrix that completes A, and let âij denote the ij-entry of
Â, whether specified in A or chosen for Â. Since all of the diagonal entries of Â
are zero, DetÂ({i, j}) = −âij âji. But âij ≥ 0, âji ≥ 0, and DetÂ({i, j}) ≥ 0.
Therefore, â21 = 0, â32 = 0, â43 = 0, and â14 = 0. In addition, â13â31 = 0. Then
DetÂ = −1+ â13â31â24â42 = −1, a contradiction. Thus, A cannot be completed to a
nonnegative P0-matrix. Therefore, < Γ > does not have nonnegative P0-completion,
so by [6, Lemma 3.1], neither does the pattern Q.

Lemma 2.2. The patterns for the digraphs listed below have nonnegative P0-
completion.

q = 0
q = 1
q = 2 n = 1 − 5
q = 3 n = 1 − 13
q = 4 n = 1 − 15, 17− 27
q = 5 n = 1 − 6, 8 − 31, 33, 34, 36− 38
q = 6 n = 1 − 3, 5, 6, 8− 21, 23 − 27, 29, 32, 35, 36, 38− 41, 43, 44, 46− 48
q = 7 n = 1, 3 − 6, 9, 11, 14, 16, 19, 22, 24, 26, 28, 29, 31, 34, 36, 37
q = 8 n = 1, 10, 12, 18, 21, 27
q = 9 n = 8, 11
q = 12

Proof. For each of these digraphs, the pattern of every nonseparable strongly
connected induced subdigraph has nonnegative P0-completion, thus by [6, Theorem
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5.8] the patterns of these digraphs have nonnegative P0-completion.
Lemma 2.3. The patterns for the digraphs listed below have nonnegative P0-

completion.

q = 5 n = 35
q = 6 n = 28, 30, 31
q = 7 n = 7

Proof. Let A be a partial nonnegative P0-matrix specifying any of the patterns
of the above digraphs. Then set all unspecified entries of the partial matrix A to
zero. It is straightforward to verify by computation that this completion results in a
nonnegative P0-matrix.

Lemma 2.4. The patterns for the digraphs q = 8, n = 14; q = 8, n = 15; q = 7,
n = 15; q = 7, n = 17; q = 7, n = 21; and q = 7, n = 23 all have nonnegative
P0-completion.

q = 7, n = 15q = 8, n = 14 q = 8, n = 15

q = 7, n = 17 q = 7, n = 21 q = 7, n = 23

Fig. 2.1. Digraphs having P0-completion.

Proof. Let

A =




d1 a12 x13 a14

a21 d2 a23 a24

x31 a32 d3 a34

x41 a42 x43 d4




be a partial nonnegative P0-matrix specifying the pattern of the digraph q = 8, n = 14
with the vertices labeled as in Figure 2.1.

We will consider two cases: 1) a12a21 = 0 or a23a32 = 0 or a24a42 = 0, and 2)
a12, a21, a23, a32, a24, and a42 are all nonzero. Notice that the submatrices A({1, 2}),
A({2, 3}), and A({2, 4}) are fully specified, and thus their determinants are given to
be nonnegative in all cases.

Case 1: a12a21 = 0 or a23a32 = 0 or a24a42 = 0. We prove the case a12a21 = 0;
the other two cases are similar. Consider the two subcases: i) a12 = 0 and ii) a21 = 0.
For both subcases set x31 = 0, x41 = 0, and x13 = 0. Next, complete the submatrix
A({2, 3, 4}) to a nonnegative P0-matrix by using Lemma 1.1. This will determine x43,
and we will say x43 = c43. Thus A is completed to Â.
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Table 2.1

Principal
Submatrix Determinant

Â({1, 2}) d1d2

Â({2, 3}) d2d3 − a23a32

Â({2, 4}) d2d4 − a24a42

Â({3, 4}) d3d4 − a34c43
Â({2, 3, 4}) d2d3d4 + a23a34a42 + a24a32c43 − a34c43d2 − a24a42d3 − a23a32d4

Â({1, 3}) d1d3

Â({1, 4}) d1d4

Â({1, 2, 3}) d1d2d3 − a23a32d1

Â({1, 2, 4}) d1d2d4 + a14a21a42 − a24a42d1

Â({1, 3, 4}) d1d3d4 − a34c43d1

Â d1d2d3d4−a14a21a32c43+a23a34a42d1+a24a32c43d1−a34c43d1d2+
a14a21a42d3 − a24a42d1d3 − a23a32d1d4

For subcase i), the principal minors of Â are shown in Table 2.1.
The first three principal minors are known to be nonnegative because A is a partial
nonnegative P0-matrix. DetÂ({3, 4}) and DetÂ({2, 3, 4}) are nonnegative due to the
selection of c43. DetÂ({1, 2, 3}) = d1 ·DetÂ({2, 3}) ≥ 0, DetÂ({1, 2, 4}) = a14a21a42+
d1 · DetÂ({2, 4}) ≥ 0, and DetÂ({1, 3, 4}) = d1 · DetÂ({3, 4}) ≥ 0.
Recall that the completion of A({2, 3, 4}) sets c43 to be either 0 or a23a42

d2
.

If c43 = 0, then a24a42 = 0, a23a32 = 0, or a23a34a42 ≥ d2d3d4, and DetÂ =
d1d2d3d4 + a23a34a42d1 + a14a21a42d3 − a24a42d1d3 − a23a32d1d4. If a24a42 = 0,
then DetÂ = a23a34a42d1 + a14a21a42d3 + d1d4 · DetÂ({2, 3}) ≥ 0. If a23a32 = 0,
then DetÂ = a23a34a42d1 + a14a21a42d3 + d1d3 · DetÂ({2, 4}) ≥ 0. If a23a34a42 ≥
d2d3d4, then DetÂ ≥ d1d2d3d4 +d1d2d3d4 +a14a21a42d3 −a24a42d1d3 −a23a32d1d4 =
a14a21a42d3 + d1d3 · DetÂ({2, 4}) + d1d4 · DetÂ({2, 3}) ≥ 0.
If c43 = a23a42

d2
, then

DetÂ = d1d2d3d4 − a14a21a23a32a42
d2

+ a23a24a32a42d1
d2

+a14a21a42d3 − a24a42d1d3 − a23a32d1d4

= (d2d3−a23a32)(a14a21a42+d1d2d4−a24a42d1)
d2

= DetA({2,3})·(a14a21a42+d1·DetA({2,4}))
d2

≥ 0.

For subcase ii), Â is a nonnegative block upper triangular matrix with diagonal blocks
[d1] and A({2, 3, 4}) , which are nonnegative P0-matrices. Therefore, Â is a nonneg-
ative P0-matrix.

Case 2: a12 > 0, a21 > 0, a23 > 0, a32 > 0, a24 > 0, and a42 > 0. These
assumptions imply that d1 > 0, d2 > 0, d3 > 0, and d4 > 0. By left multiplication
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of A by a positive diagonal matrix, we may assume without loss of generality that
d1 = d2 = d3 = d4 = 1. By use of a diagonal similarity we may also assume without
loss of generality that a21 = a32 = a42 = 1. Thus,

A =




1 a12 x13 a14

1 1 a23 a24

x31 1 1 a34

x41 1 x43 1


 .

The submatrices in Table 2.2 are fully specified and thus their determinants are
nonnegative. We will look at three subcases:
i) a14 ≥ 1 and a34 ≥ 1, ii) a14 < 1, and iii) a34 < 1.

Table 2.2

Principal
Submatrix Determinant
A({1, 2}) 1 − a12

A({2, 3}) 1 − a23

A({2, 4}) 1 − a24

For subcase i), set x31 = 0, x41 = 0, x43 = 0 and x13 = a23. The principal minors of
Â are shown in Table 2.3.

Table 2.3

Principal
Submatrix Determinant

Â({1, 3}) 1
Â({1, 4}) 1
Â({3, 4}) 1
Â({1, 2, 3}) 1 − a12

Â({1, 2, 4}) 1 − a12 + a14 − a24

Â({1, 3, 4}) 1
Â({2, 3, 4}) 1 − a23 − a24 + a23a34

Â 1 − a12 + a14 − a24

DetÂ({1, 2, 3}) = 1 − a12 = DetÂ({1, 2}) ≥ 0. Since a14 ≥ 1, DetÂ({1, 2, 4}) ≥
1−a12+1−a24 = DetÂ({1, 2})+DetÂ({2, 4}) ≥ 0. DetÂ({2, 3, 4}) = DetA({2, 4})+
a23(a34 − 1) ≥ 0, since a34 ≥ 1. And

DetÂ = DetÂ({1, 2, 4}) ≥ 0.

For subcase ii), specify the unspecified entries in the following order. First, set x41 = 1
and x31 = 1. Then, complete the submatrix A({2, 3, 4}) to a nonnegative P0-matrix
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by using Lemma 1.1. This will determine x43, which we will call c43. Next, complete
A({1, 3, 4}) to a nonnegative P0-matrix by Lemma 1.1, and say x13 = c13. The
resulting matrix is

Â =




1 a12 c13 a14

1 1 a23 a24

1 1 1 a34

1 1 c43 1


 .

The principal minors of Â are shown in Table 2.4.

Table 2.4

Principal
Submatrix Determinant

Â({3, 4}) 1 − a34c43
Â({2, 3, 4}) 1 − a23 − a24 + a23a34 + a24c43 − a34c43
Â({1, 3}) 1 − c13
Â({1, 3, 4}) 1 − a14 − c13 + a34c13 + a14c43 − a34c43
Â({1, 4}) 1 − a14

Â({1, 2, 3}) 1 − a12 − a23 + a12a23

Â({1, 2, 4}) 1 − a12 − a24 + a12a24

Â 1−a12−a23+a12a23−a24+a12a24 +a23a34−a12a23a34 +a24c43−
a12a24c43 − a34c43 + a12a34c43

By the choice of c43, DetÂ({3, 4}) and DetÂ({2, 3, 4}) are nonnegative. And by the
choice of c13, DetÂ({1, 3}) and DetÂ({1, 3, 4}) are nonnegative. Since a14 < 1,
DetÂ({1, 4}) ≥ 0. Also, DetÂ({1, 2, 3}) = DetÂ({1, 2}) · DetÂ({2, 3}) ≥ 0 and
DetÂ({1, 2, 4}) = DetÂ({1, 2}) · DetÂ({2, 4}) ≥ 0. Lastly,

DetÂ = DetÂ({1, 2}) · DetÂ({2, 3, 4}) ≥ 0.

Subcase iii) is similar to subcase ii). Therefore, the pattern for q = 8, n = 14 has
nonnegative P0-completion.

A partial nonnegative P0-matrix B specifying the pattern of the digraph q = 7,
n = 15 or q = 7, n = 21 with the vertices labelled as in Figure 2.1 can be extended
to a partial nonnegative P0-matrix specifying q = 8, n = 14 by setting the unspec-
ified entry x12 or x24, respectively, of B to zero. Then the resulting matrix can be
completed to a nonnegative P0-matrix as above. Also, notice that a matrix specifying
the pattern of q = 8, n = 15 is the transpose of a matrix specifying q = 8, n = 14.
Therefore, any partial nonnegative P0-matrix specifying q = 8, n = 15 can be com-
pleted to a nonnegative P0-matrix by taking its transpose, completing it as above, and
taking its transpose again. In addition, a partial nonnegative P0-matrix C specifying
q = 7, n = 17 or q = 7, n = 23 with the vertices labeled as in Figure 2.1 can be

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 10, pp. 46-59, March 2003

http://math.technion.ac.il/iic/ela



ELA

Nonnegative P0 Completion Problem 55

extended to a partial nonnegative P0-matrix specifying q = 8, n = 15 by setting the
unspecified entry x42 or x21, respectively, of C to zero. Then C can be completed to
a nonnegative P0-matrix as above. So the patterns for q = 7, n = 15; q = 7, n = 21;
q = 8, n = 15; q = 7, n = 17; and q = 7, n = 23 have nonnegative P0-completion.

Lemma 2.5. The pattern for the digraph q = 8, n = 6 (Figure 2.2) has nonneg-
ative P0-completion.

1 2

34

Fig. 2.2. The digraph q = 8, n = 6

The proof is omitted because it is similar to the proof of Lemma 2.4.
Theorem 2.6. A pattern for 4× 4 matrices, that includes all diagonal positions,

has nonnegative P0-completion if and only if its digraph is complete when it has a
4-cycle, that is, if and only if its digraph is not one of the following.

q = 4 n = 16
q = 5 n = 7, 32
q = 6 n = 4, 7, 22, 33, 34, 37, 42, 45
q = 7 n = 2, 8, 10, 12, 13, 18, 20, 25, 27, 30, 32, 33, 35, 38
q = 8 n = 2 − 5, 7 − 9, 11, 13, 16, 17, 19, 20, 22− 26
q = 9 n = 1 − 7, 9, 10, 12, 13
q = 10 n = 1 − 5
q = 11

Proof. Each of the listed digraphs contains a 4-cycle whose induced subdigraph is
not a clique. By Lemma 2.1, the patterns of these digraphs do not have nonnegative
P0-completion. Lemmas 2.2, 2.3, 2.4, and 2.5 demonstrate that the patterns for all
remaining digraphs have nonnegative P0-completion.

One question emerging from Theorem 2.6 is whether either the theorem or its
obvious generalization is true for larger digraphs. That is, whether

1. a pattern has nonnegative P0-completion if and only if its digraph has the
property that the induced subdigraph of any 4-cycle is a clique, or

2. a pattern has nonnegative P0-completion if and only if its digraph has the
property that the induced subdigraph of any even cycle is a clique.

Neither of these statements is true. Example 2.7 contains a counterexample to
item 1. That is, we give a partial nonnegative P0-matrix that cannot be completed
to a partial nonnegative P0-matrix and that specifies a digraph that does not contain
any 4-cycles. Furthermore, Theorem 3.2 in the next section shows that any par-
tial nonnegative P0-matrix that specifies a symmetric 6-cycle can be completed to a
nonnegative P0-matrix, and thus contradicts item 2.
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1 2

3

45

6

Fig. 2.3. Digraph not containing any 4-cycles and not having P0-completion.

Example 2.7. The partial nonnegative P0-matrix

A =




0 1 0.01 x14 0.01 x16

x21 0 1 0.01 x25 0.01
x31 x32 0 1 x35 x36

x41 x42 x43 0 1 x46

x51 x52 0.01 x54 0 1
1 x62 x63 x64 x65 0




specifies the digraph D, shown in Figure 2.3. Note that D does not contain any
4-cycles. But A cannot be completed to a nonnegative P0-matrix: Examination of
the 2 × 2 principal minors shows that if a completion Â of A is a nonnegative P0-
matrix x21, x32, x43, x54, x65, x16, x31, x51, x42, x62, and x35 must be zero. With these
choices, DetÂ({1, 3, 5, 6}) = −0.0001x36 and DetÂ({1, 2, 3, 4}) = −x41, so x36 and
x41 must be zero. Then, DetÂ({1, 2, 4, 6}) = −0.01x46 and DetÂ({3, 4, 5, 6}) = −x63,
so x46 = x63 = 0. With these choices, DetÂ = −0.9999−0.0001x52 , so it is impossible
for Â to be a nonnegative P0-matrix.

3. Symmetric n-cycle. If a positionally symmetric pattern has nonnegative
P0-completion, then each principal subpattern associated with a component of the
digraph either includes all diagonal positions or omits all diagonal positions [7]. Any
pattern that omits all diagonal positions has nonnegative P0-completion [6, Theorem
4.7]. Thus, to determine which positionally symmetric patterns have nonnegative
P0-completion, we need to discuss only patterns that include all diagonal positions.

In this section we prove that a pattern which includes all diagonal positions and
whose digraph is a symmetric n-cycle has nonnegative P0-completion if and only if
n �= 4.

Lemma 3.1. Let G be the digraph of the symmetric 5-cycle 1, 2, 3, 4, 5, 1. Any
partial nonnegative P0-matrix specifying G that has at least one diagonal entry equal
to zero can be completed to a nonnegative P0-matrix.

Proof. Let A be a partial nonnegative P0-matrix specifying G. By use of a per-
mutation similarity, we may assume that d1 is zero. By examination of DetA({1, 2})
and DetA({1, 5}), either a21 = 0 or a12 = 0, and either a51 = 0 or a15 = 0. There are
now two cases.
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Case 1: a15 = a12 = 0 or a21 = a51 = 0. The digraph of the pattern specified
by A({2, 3, 4, 5}) is block-clique (see Figure 3.1 with n = 5), so A({2, 3, 4, 5}) can be
completed to a nonnegative P0-matrix [3, Theorem 4.1]. Set the remaining unspecified
entries to zero. This completes A to a block-triangular matrix whose diagonal blocks
are nonnegative P0-matrices.

Case 2: a15 �= 0 and a21 �= 0, or a51 �= 0 and a12 �= 0. Without loss of generality
assume a15 �= 0 and a21 �= 0 and by use of a diagonal similarity, a15 = a21 = 1 (and
necessarily a51 = a12 = 0). Then A can be completed to a nonnegative P0-matrix by
setting

x24 =
{

d2d3d4
a43a32

if a43a32 �= 0
0 if a43a32 = 0

and x35 =
{

d3d4d5
a54a43

if a54a43 �= 0
0 if a54a43 = 0,

and all other unspecified entries equal to zero. The fact that this process yields a
P0-matrix can be verified by computing all the principal minors, most of which are
clearly nonnegative. Observe

DetA({2, 3, 4}) = d2d3d4 + x24a43a32 − d4a23a32 − d2a34a43.

If a43 = 0, DetA({2, 3, 4}) = d2d3d4 − d4a23a32 = d4 · DetA({2, 3}) ≥ 0. If a32 = 0,
DetA({2, 3, 4}) = d2d3d4 − d2a34a43 = d2 · DetA({3, 4}) ≥ 0. If a43a32 �= 0, then
DetA({2, 3, 4}) = 2d2d3d4 − d4a23a32 − d2a34a43 = DetA({3, 4}) + DetA({2, 3}) ≥ 0.
The computation of DetA({3, 4, 5}) is similar to that of DetA({2, 3, 4}).

DetA({2, 3, 4, 5}) = a23a32a45a54 − a45a54d2d3 − a34a43d2d5 − a23a32d4d5 +
d2d3d4d5 + a32a43d5x24 + a43a54d2x35.

If a43 = 0, we have d2d5a34a43 = 0, x24 = 0, x35 = 0, and DetA({2, 3, 4, 5}) =
DetA({2, 3}) · DetA({4, 5}). If a32 = 0 and a54 = 0, then d4d5a23a32 = 0 and
d2d3a45a54 = 0, x24 = 0, x35 = 0, and DetA({2, 3, 4, 5}) = d2d5 · DetA({3, 4}). If
a43 �= 0 and a32 �= 0, then x24 = d2d3d4

a43a32
and DetA({2, 3, 4, 5}) = a23a32a45a54 −

a45a54d2d3 − a34a43d2d5 − a23a32d4d5 + 2d2d3d4d5 + a43a54d2x35 = DetA({2, 3}) ·
DetA({4, 5}) + d2d5 · DetA({3, 4}) + a43a54d2x35 ≥ 0. The case a43 �= 0 and a54 �= 0
is similar to the case a43 �= 0 and a32 �= 0.

2 3 4 n—1 n5

Fig. 3.1. Block-clique

Theorem 3.2. A pattern that includes all diagonal positions and whose digraph
is a symmetric n-cycle has nonnegative P0-completion for n ≥ 5.

Proof. The proof is by induction on n. Let A be a partial nonnegative P0-
matrix specifying a 5-cycle. If all the diagonal entries are positive, then A is a partial
nonnegative P0,1-matrix and can be completed to a nonnegative P0,1-matrix by [6,
Theorem 8.4]. If at least one diagonal entry is zero, apply Lemma 3.1.

Assume true for n−1. Let A be an n×n partial nonnegative P0-matrix specifying
the pattern whose digraph is the symmetric n-cycle 1, 2, . . . , n, 1. By multiplication
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by a positive diagonal matrix we may assume that each diagonal entry of A is either
1 or 0. (Note that subscript numbering is modulo n.) We now consider two cases.

Case 1: There exists an index i such that di = di+1 = 1 and at least one of ai,i+1

and ai+1,i is nonzero. Renumber so that d1 = d2 = 1 and a12 �= 0. Then we can use
the completion of an appropriate (n− 1)× (n− 1) principal submatrix specifying an
(n−1)-cycle to complete A to a nonnegative P0-matrix as in [3, Lemma 3.5] (see also
[6, Theorem 8.4] and [2]). This case uses the induction hypothesis.

Case 2: The matrix does not satisfy the conditions of Case 1 and there exists
an index i such that di = di+1 = 1. Necessarily ai,i+1 = ai+1,i = 0. Renumber so
that d1 = d2 = 1 (and a12 = a21 = 0). At least one of an1 and a1n must be zero,
because: if dn = 0, then DetA({1, n}) = −an1a1n; if dn = 1, then an1 and a1n must
both be zero, since Case 1 does not apply. The digraph of the pattern specified by
A({2, . . . , n}) is block-clique (see Figure 3.1), so A({2, . . . , n}) can be completed to a
nonnegative P0-matrix. Set the remaining unspecified entries to zero, thus obtaining
a nonnegative block-triangular matrix Â with diagonal blocks, [d1] = [1] and the
completion of A({2, . . . , n}), both of which are P0-matrices. So Â is a nonnegative
P0-matrix.

Case 3: There does not exist an index i such that di = di+1 = 1. Then for each
i, DetA({i, i + 1}) = −ai,i+1ai+1,i, so ai,i+1 = 0 or ai+1,i = 0. There are now two
subcases.
Subcase i): Whenever n is odd, or if ak,k+1 = 0 for some k ≤ n and aj+1,j = 0, for
some j ≤ n, we can set all unspecified entries to zero to get Â. The nonzero L-digraph
of Â does not contain any 2-cycles, since for all i, ai,i+1 = 0 or ai+1,i = 0. If at least
one ak,k+1 = 0 and at least one aj+1,j = 0, there is no cycle of length greater than 1.
Thus in either case the nonzero L-digraph of Â does not contain any even cycle, and
so by Corollary 1.4, Â is a nonnegative P0-matrix.
Subcase ii): Let n be even and, for all i = 1, 2, . . . , n, ai,i+1 �= 0 or for all i =
1, . . . , n, ai+1,i �= 0. Without loss of generality ai,i+1 �= 0 for all i. Complete A to
Â by choosing x2n = a23 and xn−1,3 = an−1,n, and set all other unspecified entries
to zero. The nonzero L-digraph Ĝ of Â contains the n-cycle 1, 2, . . . , n, 1; the 3-
cycle 1, 2, n, 1; the (n− 3)-cycle 3, 4, . . . , n− 2, n− 1, 3 and possibly some loops (see
Figure 3.2). Thus there are exactly two permutation L-digraphs in Ĝ, one having arc
set the n-cycle and one having arc set the 3-cycle and the (n − 3)-cycle. The two
permutations have opposite signs and the products of the entries of Â corresponding
to these two permutation L-digraphs are equal, so DetA = 0 by Lemma 1.2. The
nonzero L-digraph of any principal submatrix which is not the whole matrix cannot
contain the n-cycle and thus has no even cycles. Therefore Â is a nonnegative P0-
matrix.

Corollary 3.3. A pattern that includes all diagonal positions and whose digraph
is a symmetric n-cycle has nonnegative P0-completion for n �= 4.

Proof. The cases n = 2 and n = 3 are trivial because the pattern includes all
positions. The case n = 4 was established in Theorem 2.6, and Theorem 3.2 covers
the case n ≥ 5.

The pattern that includes all diagonal positions and whose digraph is an n-cycle
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1

2 3

4

n—1

n

a

a

a

a
a

a

12

23

34

n—1,n

n—1,n

23

n1a

Fig. 3.2. Nonzero L-digraph of the completion for subcase ii)

has nonnegative P0-completion if and only if n �= 4, because each entry in the partial
matrix corresponding to the reverse of each arc in the cycle can be set to zero to
obtain a partial nonnegative P0-matrix specifying a symmetric n-cycle.
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