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STRUCTURED CONDITIONING OF MATRIX FUNCTIONS∗
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Abstract. The existing theory of conditioning for matrix functions f(X):Cn×n → Cn×n does
not cater for structure in the matrix X. An extension of this theory is presented in which when X has
structure, all perturbations of X are required to have the same structure. Two classes of structured
matrices are considered, those comprising the Jordan algebra J and the Lie algebra L associated
with a nondegenerate bilinear or sesquilinear form on Rn or Cn. Examples of such classes are
the symmetric, skew-symmetric, Hamiltonian and skew-Hamiltonian matrices. Structured condition
numbers are defined for these two classes. Under certain conditions on the underlying scalar product,
explicit representations are given for the structured condition numbers. Comparisons between the
unstructured and structured condition numbers are then made. When the underlying scalar product
is a sesquilinear form, it is shown that there is no difference between the values of the two condition
numbers for (i) all functions of X ∈ J, and (ii) odd and even functions of X ∈ L. When the underlying
scalar product is a bilinear form then equality is not guaranteed in all these cases. Where equality
is not guaranteed, bounds are obtained for the ratio of the unstructured and structured condition
numbers.
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ear forms, Structured Matrices, Jordan algebra, Symmetric matrices, Lie algebra, Skew-symmetric
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1. Introduction. A theory of conditioning for matrix functions was developed
by Kenney and Laub [6]. Condition numbers of f(X) are obtained in terms of the
norm of the Fréchet derivative of the function at X . In this work a function f(X) of a
matrix X ∈ Cn×n has the usual meaning, which can be defined in terms of a Cauchy
integral formula, a Hermite interpolating polynomial, or the Jordan canonical form.
It is assumed throughout that f is defined on the spectrum of X . A large body of
theory on matrix functions exists, with a comprehensive treatment available in [5].

In this work we extend the ideas of Kenney and Laub to structured matrices.
That is, when X has structure then all perturbations of X are required to have
the same structure. Enforcing structure on the perturbations enables the theory to
respect the underlying physical problem. The structured matrices considered in this
work arise in the context of nondegenerate bilinear or sesquilinear forms on Rn or Cn.
This allows a wide variety of structured matrices to be considered. Examples of such
classes of structured matrices are the symmetric, skew-symmetric, Hamiltonian and
skew-Hamiltonian matrices.

In section 2 we review the original theory of conditioning of matrix functions [6]
and discuss the unstructured condition number, K(f,X). In section 3 we briefly
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review definitions and some relevant properties of bilinear forms, 〈x, y〉 = xTMy and
sesquilinear forms 〈x, y〉 = x∗My . We introduce some important classes of structured
matrices associated with a bilinear or sesquilinear form. For two of these classes,
the Jordan and Lie algebras, denoted by J and L respectively, we define structured
condition numbers, KJ(f,X) and KL(f,X). Then, assuming thatM ∈ Rn×n satisfies
M = ±MT and MTM = I, we give an explicit representation for these condition
numbers. If the underlying scalar product is a bilinear form, then the structured
condition numbers are equal to the 2-norm of a matrix. We then present an algorithm,
based on the power method, for approximating these structured condition numbers.
Numerical examples are given to show that after a few cycles of our algorithm, reliable
estimates can be obtained.

In section 4, using the explicit representation of KJ(f,X), we compare the un-
structured and the structured condition number when X ∈ J. We first consider the
case where J is the Jordan algebra associated with a bilinear form. Experimental and
theoretical evidence is used to show that KJ(f,X) and K(f,X) are often equal to
each other. However, examples can be found where the unstructured condition num-
ber is larger than the structured condition number. A bound for K(f,X)/KJ(f,X)
is then given which is linear in n. We then investigate the class of real symmetric
matrices, which is the Jordan algebra associated with the bilinear form 〈x, y〉 = xT y.
We show that K(f,X) = KJ(f,X) for all symmetric X . We also show that when J

is the Jordan algebra associated with a sesquilinear form, K(f,X) = KJ(f,X) for all
X ∈ J.

In section 5, using the explicit representation of KL(f,X), we compare the un-
structured and the structured condition number when X ∈ L. We first consider the
case where L is the Lie algebra associated with a bilinear form. For general f , we have
been unable to show anything about the relationship between the two condition num-
bers. However, progress can be made if we restrict f to odd or even functions. For odd
f , we show that the ratio between the unstructured and the structured condition num-
ber is unbounded. However, for even f , we are able to show that K(f,X) = KL(f,X)
for all X ∈ L. We then investigate the class of real skew-symmetric matrices, which
is the Lie algebra associated with the bilinear form 〈x, y〉 = xT y. For the exponential,
cosine and sine functions we show that K(f,X) = KL(f,X) for all skew-symmetric
X . We then consider the case where L is the Lie algebra associated with a sesquilinear
form. We show that K(f,X) = KL(f,X) for odd and even functions f at all X ∈ L.

Finally, in section 6 we give our conclusions and some suggestions for future work.
Table 6.1 gives a summary of the main results of this paper.

2. Conditioning of Matrix Functions. Using the theory developed by Ken-
ney and Laub [6] we start by considering the effect of general perturbations of X at
f . The function f is Fréchet differentiable at X if and only if there exists a bounded
linear operator L( · , X):Cn×n → Cn×n such that for all Z ∈ Cn×n where ‖Z‖ = 1,

lim
δ→0

∥∥∥∥f(X + δZ) − f(X)
δ

− L(Z,X)
∥∥∥∥ = 0.(2.1)
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The operator L is known as the Fréchet derivative of f at X . The unstructured
condition number of the matrix function is then defined using the Fréchet derivative:

K(f,X) = ‖L( · , X)‖F = max
Z �=0

‖L(Z,X)‖F

‖Z‖F
.(2.2)

Just as in [6], the Frobenius norm has been used because of its nice properties with
respect to the Kronecker matrix product. The condition number defined in (2.2)
relates the absolute errors of f at X . An alternative condition number is described
in [1] that relates the relative errors of f at X :

k(f,X) =
‖L( · , X)‖F ‖X‖F

‖f(X)‖F
.

These two condition numbers are closely related:

k(f,X) = K(f,X)
‖X‖F

‖f(X)‖F
.(2.3)

The focus of this paper shall be on the “absolute” condition number,K(f,X). Results
for the “relative” condition number, k(f,X), can then be obtained using (2.3). We
shall assume throughout that f(X) can be expressed as a power series,

f(X) =
∞∑

m=0

αmX
m,(2.4)

where αm ∈ R and the equivalent scalar power series f(x) =
∑∞

m=0 αmx
m is abso-

lutely convergent for all |x| < r where ‖X‖2 < r. This assumption encompasses a
wide range of functions, including functions such as the exponential, trigonometric
and hyperbolic functions, whose Taylor series have an infinite radius of convergence.
We shall also assume that δ > 0, ‖Z‖2 ≤ 1 and ‖X‖2 + δ < r, so that f(X + δZ) is
well defined in terms of the power series in (2.4). Then

f(X + δZ) = f(X) + δ

∞∑
m=1

αm

m−1∑
k=0

XkZXm−1−k +O(δ2).(2.5)

Using (2.5) together with (2.1), an explicit representation can be given for the Fréchet
derivative:

L(Z,X) =
∞∑

m=1

αm

m−1∑
k=0

XkZXm−1−k.

Applying the vec operator (which forms a vector by stacking the columns of a matrix)
to L(Z,X) and using the relation vec(AXB) = (BT ⊗A)vec(X), we obtain

vec(L(Z,X)) = D(X)vec(Z),
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where D(X) is the Kronecker form of the Fréchet derivative:

D(X) =
∞∑

m=1

αm

m−1∑
k=0

(XT )m−1−k ⊗Xk.(2.6)

As ‖X‖F = ‖vec(X)‖2 for all X , we have

K(f,X) = max
Z �=0

‖D(X)vec(Z)‖2

‖vec(Z)‖2
= ‖D(X)‖2.(2.7)

We shall now consider the effect on the condition number when structure is imposed
on X and the perturbed matrix X + δZ.

3. Structured Matrices and Condition Numbers. In [8], Mackey, Mackey
and Tisseur define classes of structured matrices that arise in the context of nonde-
generate bilinear and sesquilinear forms. We shall briefly review the definitions and
properties of such forms.

Consider a map (x, y) → 〈x, y〉 from Kn × Kn to K, where K denotes the field R

or C. If the map is linear in both arguments x and y, that is,

〈α1x1 + α2x2, y〉 = α1〈x1, y〉+ α2〈x2, y〉,
〈x, β1y1 + β2y2〉 = β1〈x, y1〉 + β2〈x, y2〉,

then this map is called a bilinear form. If K = C and the map 〈x, y〉 is conjugate
linear in the first argument and linear in the second, that is,

〈α1x1 + α2x2, y〉 = α∗
1〈x1, y〉+ α∗

2〈x2, y〉,
〈x, β1y1 + β2y2〉 = β1〈x, y1〉 + β2〈x, y2〉,

then this map is called a sesquilinear form.
For each bilinear form on Kn, there exists a unique M ∈ Kn×n such that 〈x, y〉 =

xTMy, ∀x, y ∈ Kn. Similarly, for each sesquilinear form on Cn, there exists a unique
M ∈ Cn×n such that 〈x, y〉 = x∗My, ∀x, y ∈ Cn. A bilinear or sesquilinear form is
nondegenerate if

〈x, y〉 = 0, ∀y ⇒ x = 0,
〈x, y〉 = 0, ∀x⇒ y = 0.

It can be shown that a bilinear or sesquilinear form is nondegenerate if and only if
M is nonsingular. We shall use the term scalar product to refer to a nondegenerate
bilinear or sesquilinear form on Kn.

A bilinear form is said to be symmetric if 〈x, y〉 = 〈y, x〉 and skew-symmetric if
〈x, y〉 = −〈y, x〉 for all x, y ∈ Kn. It can easily be shown that the matrix M associ-
ated with these forms are symmetric and skew-symmetric respectively. Similarly, a
sesquilinear form is Hermitian if 〈x, y〉 = 〈y, x〉∗ or skew-Hermitian if 〈x, y〉 = −〈y, x〉∗
for all x, y ∈ Cn. The matrices associated with these forms are Hermitian and skew-
Hermitian respectively. Symmetric, skew-symmetric, Hermitian and skew-Hermitian
forms will be the main focus of this paper.
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Table 3.1
Sampling of structured matrices where J =

[
−In

In
]
, Σp,q =

[
Ip

−Iq

]
and R =antidiag(1, . . . , 1).

Space Bilinear Automorphism Gp. Jordan Algebra Lie Algebra
Form 〈x, y〉 {G : GT MG = M} {S : ST M = MS} {K : KT M = −MK}

R
n xT y Real orthogonals Real Real

symmetric O(n, R) Symmetrics Skew-symmetrics

C
n xT y Complex orthogonals Complex Complex

symmetric O(n, C) symmetrics skew-symmetrics

R
2n xT Jy Real symplectics Skew- Hamiltonians

skew-symm. Sp(2n, R) Hamiltonians

C
2n xT Jy Complex symplectics J-skew- J-symmetric

skew-symm. Sp(2n, C) symmetric

R
n xT Ry Real perplectics Persymmetrics Perskew-

symmetric P(n) symmetrics

R
n xTΣp,qy Pseudo-orthogonals Pseudo Pseudo

symmetric O(p, q) symmetrics skew-symmetrics

Space Sesquilinear Automorphism Gp. Jordan Algebra Lie Algebra
Form 〈x, y〉 {G : G∗MG = M} {S : S∗M = MS} {K : K∗M = −MK}

C
n x∗y Unitaries Hermitian Skew-Hermitian

Hermitian U(n)

C
n x∗Σp,qy Pseudo-unitaries Pseudo Pseudo

Hermitian U(p, q) Hermitian skew-Hermitian

C
2n x∗Jy Conjugate symplectics J-skew-Hermitian J-Hermitian

skew-Herm. Sp∗(2n, C)

Three important classes of structured matrices are associated with each scalar
product.

1. The matrices G which preserve the value of the scalar product, that is,

〈Gx,Gy〉 = 〈x, y〉 ∀x, y ∈ K
n.

The set G, known as the automorphism group of the scalar product, is thus
defined as

G
def= {G ∈ K

n×n:GTMG =M} for a bilinear form,

G
def= {G ∈ C

n×n:G∗MG =M} for a sesquilinear form.

2. The matrices S that are self-adjoint with respect to the scalar product, that
is,

〈Sx, y〉 = 〈x, Sy〉 ∀x, y ∈ K
n.
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The set J, known as the Jordan algebra related to the scalar product, is thus
defined as

J
def= {S ∈ K

n×n:STM = MS} for a bilinear form,

J
def= {S ∈ C

n×n:S∗M = MS} for a sesquilinear form.

3. The matrices K that are skew-adjoint with respect to the scalar product,
that is,

〈Kx, y〉 = −〈x,Ky〉 ∀x, y ∈ K
n.

The set L, known as the Lie algebra related to the scalar product, is thus
defined as

L
def= {K ∈ K

n×n:KTM = −MK} for a bilinear form,

L
def= {K ∈ C

n×n:K∗M = −MK} for a sesquilinear form.

While G is a multiplicative group, it is not a linear subspace. However, J and L

do form linear subspaces. This means that if X and the perturbed matrix X + δZ
belong to J (or L), then the perturbation matrix Z must also belong to J (or L).
Because of this linear property, the rest of this paper focuses only on matrices in J

and L. Table 3.1 shows some examples of well-known structured matrices associated
with a scalar product.

The structured condition numbers are defined in a similar manner to the unstruc-
tured condition number given in (2.2), except the perturbation matrix Z is restricted
to either J or L. Therefore, we define

KJ(f,X) = max
Z �=0,Z∈J

‖L(Z,X)‖F

‖Z‖F
,

KL(f,X) = max
Z �=0,Z∈L

‖L(Z,X)‖F

‖Z‖F
,

where L(Z,X) is defined in (2.1). Notice that no structure has been assumed on the
matrix X . Imposing a similar structure on X will be considered in sections 4 and 5.
We can also define “relative” structured condition numbers

kJ(f,X) = KJ(f,X)
‖X‖F

‖f(X)‖F
,

kL(f,X) = KL(f,X)
‖X‖F

‖f(X)‖F
.

Notice that

k(f,X)
kJ(f,X)

=
K(f,X)
KJ(f,X)

and
k(f,X)
kL(f,X)

=
K(f,X)
KL(f,X)

.

In sections 4 and 5 we shall consider the ratios K(f,X)
KJ(f,X) and K(f,X)

KL(f,X) . Identical results
can then be shown to hold for the ratios of the “relative” condition numbers.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 11, pp. 132-161, June 2004

http://math.technion.ac.il/iic/ela



ELA

138 P.I. Davies

We shall now consider the structured condition numbers when the underlying
scalar product is a bilinear form in section 3.1, and when the scalar product is a
sesquilinear form in section 3.2.

3.1. Bilinear forms. In this section we shall assume that J and L denote a
Jordan algebra and a Lie algebra associated with a nondegenerate bilinear form on
Kn. For S ∈ J, it can be shown that vec(S) satisfies(

(MT ⊗ I)P − I ⊗M)
vec(S) = 0,(3.1)

where P is the vec-permutation matrix that satisfies Pvec(X) = vec(XT ) for all
X ∈ Cn×n. From (3.1) we see that vec(S) is contained in the null space of (MT ⊗
I)P − I ⊗M . Therefore the structured condition number of f at X can be expressed
as

KJ(f,X) = max
Z �=0,Z∈J

‖D(X)vec(Z)‖2

‖vec(Z)‖2
= ‖D(X)B‖2,(3.2)

where the columns of B form an orthonormal basis for the null space of (MT ⊗ I)P −
I ⊗M . For K ∈ L, vec(K) satisfies(

(MT ⊗ I)P + I ⊗M)
vec(K) = 0,

and the structured condition number of f at X can be given as

KL(f,X) = max
Z �=0,Z∈L

‖D(X)vec(Z)‖2

‖vec(Z)‖2
= ‖D(X)B‖2,

where the columns of B form an orthonormal basis for the null space of (MT ⊗ I)P +
I ⊗M . If M has certain properties, then more can be said about the null space of
(MT ⊗ I)P ± I ⊗M .

Lemma 3.1. Let M ∈ Rn×n be nonsingular and M = δMT where δ = ±1. Define

SJ(M) = (MT ⊗ I)P − I ⊗M,(3.3)
SL(M) = (MT ⊗ I)P + I ⊗M,(3.4)

where P is the vec-permutation matrix. Then

rank(SJ(M)) = n(n− δ)/2,
rank(SL(M)) = n(n+ δ)/2.

Furthermore, if MTM = I, then the nonzero singular values of SJ(M) and SL(M)
are equal to 2.

Proof. Using the fact that P (A⊗B) = (B ⊗A)P for all A,B ∈ Cn×n [2] we can
write

SJ(M) = (δP − I)(I ⊗M).
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The vec-permutation matrix P is symmetric and has eigenvalues 1 and −1 with mul-
tiplicities 1

2n(n+ 1) and 1
2n(n− 1), respectively [2]. Since the matrix I ⊗M has full

rank when M is nonsingular,

rank(SJ(M)) = rank(δP − I) = n(n− δ)/2.
A similar argument shows that rank(SL(M)) = rank(δP + I) = 1

2n(n+ δ).
When MTM = I the matrix I ⊗M is orthogonal. Therefore, the matrix δP − I

and SJ(M) have the same singular values. A similar argument shows that δP + I and
SL(M) have the same singular values.

Lemma 3.2. Let M ∈ Rn×n be nonsingular and M = ±MT . Then

null(SJ(M)) = range(PSL(M)T ),
null(SL(M)) = range(PSJ(M)T ),

where P is the vec-permutation matrix and SJ(M), SL(M) are defined in (3.3) and
(3.4).

Proof. As a consequence of Lemma 3.1

dim(null(SJ(M))) = dim(range(PSL(M)T )),
dim(null(SL(M))) = dim(range(PSJ(M)T )),

and hence all we need to show is that SJ(M)PSL(M)T = 0. Now

SJ(M)PSL(M)T = (MT ⊗ I)P (M ⊗ I)− (I ⊗M)P (I ⊗MT ) +
MT ⊗MT −M ⊗M.

As M = ±MT the third and fourth terms cancel. Further rearranging yields

SJ(M)PSL(M)T = P (M ⊗MT )− P (M ⊗MT ) = 0.

Theorem 3.3. Let X ∈ Cn×n and the scalar function f(x) =
∑∞

m=0 αmx
m

be absolutely convergent for all |x| < r where ‖X‖2 < r. Also, let J and L denote
a Jordan algebra and a Lie algebra associated with a nondegenerate bilinear form
〈x, y〉 = xTMy, where M ∈ Rn×n satisfies MTM = I and M = δMT where δ = ±1.
Then

KJ(f,X) =
1
2
‖D(X)PSL(M)T ‖2,(3.5)

KL(f,X) =
1
2
‖D(X)PSJ(M)T ‖2.(3.6)

Proof. First, we consider Z ∈ J. We have shown that vec(Z) ∈ null(SJ(M)) and
by Lemma 3.2 that vec(Z) ∈ range(PSL(M)T ). As MTM = I, Lemma 3.1 shows
that there exist orthogonal matrices U and V such that

PSL(M)T = U

[
2I

0

]
V T .
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Let r = rank(PSL(M)T ) = 1
2n(n+ δ) and partition

U =
( r n2−r

U1 U2

)
.

Then we can see that range(PSL(M)T ) = range(U1) and UT
1 U1 = I. Therefore the

structured condition number of f at X is

KJ(f,X) = max
Z �=0,Z∈J.

‖D(X)vec(Z)‖2

‖vec(Z)‖2
= ‖D(X)U1‖2.

Define

B =
( r n2−r

U1 0
)
= U

[
I

0

]
.

Then

KJ(f,X) = ‖D(X)B‖2 =
1
2
‖D(X)PSL(M)TV ‖2,

=
1
2
‖D(X)PSL(M)T ‖2.

A similar argument can be used to give the result for KL(f,X).

In Theorem 3.3 we have assumed thatM = ±MT andMTM = I. This may seem
a restrictive condition. However, a wide variety of structured matrices are associated
with bilinear forms that satisfy these conditions, including all those in Table 3.1.

By showing that SJ(M)SL(M)T = 0 when M = ±MT and MTM = I, we can
show, using an almost identical proof of Lemma 3.2, that

null(SJ(M)) = range(SL(M)T ),
null(SL(M)) = range(SJ(M)T ).

Hence, using an almost identical proof of Theorem 3.3, we can show

KJ(f,X) =
1
2
‖D(X)SL(M)T ‖2,

KL(f,X) =
1
2
‖D(X)SJ(M)T ‖2.

We shall be using the forms (3.5) and (3.6) given in Theorem 3.3 as these involve less
algebraic manipulation later.

3.1.1. Condition estimation. Kenney and Laub [6] presented a method for
estimating the condition number K(f,X) by using the power method. The power
method can be used to approximate ‖A‖2 for a matrix A ∈ Cm×n. This method
starts with a vector z ∈ Cn and iterates the following cycle:
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for i = 1, 2, . . .
z = z/‖z‖2, then compute w = Az.
w = w/‖w‖2, then compute z = ATw.

end
‖A‖2 ≈ ‖z‖2

As long as the starting vector is not orthogonal to the singular subspace corresponding
to the largest singular value of A, ‖z‖2 converges to ‖A‖2. The power method can then
be used to approximate ‖D(X)‖2. As forming D(X) can be prohibitively expensive,
it is difficult to compute D(X)z0, where z0 = vec(Z0) for some Z0 ∈ Cn×n. Therefore
we can use the “finite difference” relation

unvec(D(X)vec(Z0)) =
1
δ

(f(X + δZ0) − f(X)) +O(δ)(3.7)

where ‖Z0‖F = 1. An approximation to D(X)vec(Z0) can be formed using a suffi-
ciently small δ. Starting with ‖Z0‖F = 1, the two steps of the power method can
then be approximated by

W =
1
δ

(f(X + δZ0)− f(X)) ,

Z1 =
1
δ

(
f(XT + δW0) − f(XT )

)
,

where W0 = W/‖W‖F . Then ‖Z1‖F ≈ ‖D(X)‖2. More accurate estimates can be
obtained by repeating the cycle with Z0 = Z1/‖Z1‖F .

Now we consider how to estimate our structured condition number KJ(f,X) by
using the power method to estimate 1

2‖D(X)PSL(M)T ‖2. Starting with Z0 where
‖Z0‖F = 1, let y = vec(Y ) = 1

2PSL(M)T vec(Z0). Then

Y =
1
2

(
Z0M

T + ZT
0 M

)
.(3.8)

Let w = vec(W ) = D(X)y. Then we can approximate W using

W ≈ 1
δ
(f(X + δY ) − f(X)) .

The next stage is to scale w such that

w0 = vec(W0) = vec(W/‖W‖F ) = w/‖w‖2.

The final step is to compute z1 = vec(Z1) = 1
2 (D(X)PSL(M)T )Tw0. Rearranging we

get z1 = 1
2SL(M)Pu where u = vec(U) = D(X)Tw0. Therefore we can approximate

U using

U ≈ 1
δ

(
f(XT + δW0) − f(XT )

)
.

We can then form z1 by

Z1 =
1
2

(
UM +MUT

)
.(3.9)
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Fig. 3.1. Accuracy of estimates for structured condition numbers. (top) Mea-
sures Kest

J
(f, X)/KJ(f, X) for the 10000 examples in Experiment 4.2. (bottom) Measures

Kest
L

(f, X)/KL(f, X) for the 10000 examples in Experiment 5.1.

Then ‖Z1‖F ≈ 1
2‖D(X)PSL(M)T ‖2. More accurate estimates can be obtained by

repeating the cycle with Z0 = Z1/‖Z1‖F . To estimate KL(f,X), we have exactly the
same procedure, except with the + sign in (3.8) and (3.9) changed to a − sign.

Algorithm 3.4 (Estimation of structured condition numbers). Given X ∈
Kn×n and the scalar function f(x) =

∑∞
m=0 αmx

m for which the series is absolutely
convergent for all |x| < r where ‖X‖2 < r, this algorithm computes an approximation
to the condition number KJ(f,X) or KL(f,X).

If we are computing KJ(f,X) then k = 0. Otherwise k = 1.
Let δ = 100u‖X‖F where u is the unit roundoff.
Compute f(X).
Choose random nonzero Z ∈ Kn×n.
for i = 1, 2, . . .

if ‖Z‖F �= 0, Z = Z/‖Z‖F , end
Y = 1

2 (ZM
T + (−1)kZTM).

W = 1
δ (f(X + δY ) − f(X)).

if ‖W‖F �= 0, W = W/‖W‖F , end
U = 1

δ (f(X
T + δW ) − f(X)T ).

Z = 1
2 (UM + (−1)kMUT ).

end
Kest

J
(f,X) or Kest

L
(f,X) = ‖Z‖F .
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In order to test whether Algorithm 3.4 produces reliable estimates to our struc-
tured condition numbers we used random polynomials of random matrices in J or L,
where J and L are the Jordan and Lie algebras relating to a bilinear form 〈x, y〉 =
xTMy, where M is a random symmetric orthogonal matrix. See Experiment 4.2,
in section 4, and Experiment 5.1, in section 5, for more details on how this random
data was produced. We used three cycles in Algorithm 3.4 to compute our esti-
mates, Kest

J
(f,X) and Kest

L
(f,X). Figure 3.1 plots the ratios Kest

J
(f,X)/KJ(f,X)

and Kest
L

(f,X)/KL(f,X) for the 10000 examples in each experiment. We see from
Figure 3.1 that Algorithm 3.4 can overestimate the true condition number. This can
be explained by the fact that approximations are used in some steps of the algorithm,
for example (3.7). Also massive cancellation can occur in the computation of (3.7).
However, in virtually all examples, the estimates are within a factor of 2 of the cor-
rect value. As we are often only interested in the order of magnitude of the condition
number, these results are acceptable.

An alternative to Algorithm 3.4 can be obtained by applying the power method
to 1

2D(X)SL(M)T and 1
2D(X)SJ(M)T . Consider KJ(f,X) and the first step y =

vec(Y ) = 1
2SL(M)Tvec(Z0). Then

Y =
1
2
(MZT

0 +MTZ0)

would replace the step (3.8). Then

W =
1
δ

(f(X + δY ) − f(X)) ,

U =
1
δ

(
f(XT + δW0) − f(XT )

)
,

where W0 =W/‖W‖F . We would also have to replace the final step (3.9) with

Z1 =
1
2
(UTM +MU).

To estimate KL(f,X) we would again change the + signs to − signs in the equa-
tions for Y and Z1. No appreciable difference can be seen in practice between this
alternative algorithm and Algorithm 3.4.

3.2. Sesquilinear forms. In this section we shall assume that J and L denote a
Jordan algebra and a Lie algebra associated with a nondegenerate sesquilinear form.
For S ∈ J, it can be shown that vec(S) satisfies

(MT ⊗ I)vec(S∗) − (I ⊗M)vec(S) = 0.

Provided M ∈ Rn×n then it can be shown that vec(Real(S)) ∈ null(SJ(M)) and
vec(Imag(S)) ∈ null(SL(M)). Using Theorem 3.2 we can show that

vec(S) = PSL(M)Tx+ iPSJ(M)T y,(3.10)

for some x, y ∈ Rn2
. Similarly, for K ∈ L, vec(K) satisfies

vec(K) = PSJ(M)Tx+ iPSL(M)T y,
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for some x, y ∈ Rn2
.

Theorem 3.5. Let X ∈ Cn×n and the scalar function f(x) =
∑∞

m=0 αmx
m be

absolutely convergent for all |x| < r where ‖X‖2 < r. Also, let J and L denote a
Jordan algebra and a Lie algebra associated with a nondegenerate sesquilinear form
〈x, y〉 = x∗My, where M ∈ Rn×n satisfies MTM = I and M = δMT where δ = ±1.
Then

KJ(f,X) = max
v∈Cn2

‖D(X)(M ⊗ I)(v + δP v̄)‖2

‖(v + δP v̄)‖2
,(3.11)

KL(f,X) = max
v∈Cn2

‖D(X)(M ⊗ I)(v − δP v̄)‖2

‖(v − δP v̄)‖2
.(3.12)

Proof. First we consider Z ∈ J. As M = δMT where δ = ±1 we can show,
using (3.10), that

vec(Z) = (M ⊗ I)(v + δP v̄)

for some v ∈ Cn2
. Substituting this into (3.2) and using the fact that M ⊗ I is

orthogonal when M is orthogonal gives the result in (3.11). Using a similar argument
we can show that for Z ∈ L,

vec(Z) = (M ⊗ I)(v − δP v̄)

for some v ∈ Cn2
and hence obtain the result in (3.12).

4. Jordan Algebra. In this section we shall compare the unstructured condi-
tion number of f , K(f,X), with the structured condition number of f , KJ(f,X),
for X ∈ J. We shall first consider the case where the underlying scalar product is a
bilinear form. Then in section 4.2 we shall consider the case where the underlying
scalar product is a sesquilinear form.

4.1. Bilinear forms. We shall first assume that J denotes the Jordan algebra
relating to a nondegenerate bilinear form 〈x, y〉 = xTMy where M ∈ Rn×n satisfies
M = δMT , δ = ±1 and MTM = I. Recall that (3.5) shows that the structured
condition number of f is equal to the 2-norm of the matrix 1

2D(X)PSL(M)T . As pre-
or post-multiplication by an orthogonal matrix does not affect the singular values, we
shall consider the matrix 1

2 (I ⊗M)D(X)PSL(M)T . It can be shown that

1
2
(I ⊗M)D(X)PSL(M)T =

1
2
H(X)(In2 + δP ),(4.1)

where

H(X) = (I ⊗M)D(X)(M ⊗ I).(4.2)

It is clear that the singular values of H(X) are the same as those of D(X). There-
fore, to compare the unstructured condition number, K(f,X), with the structured
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condition number, KJ(f,X), we shall compare the singular values of H(X) and
1
2H(X)(In2 + δP ).

When X ∈ J, the matrix H(X) is highly structured. We can rearrange H(X) to
get:

H(X) = (I ⊗M)
∞∑

m=1

αm

m−1∑
k=0

(
(XT )m−1−k ⊗Xk

)
(M ⊗ I)

= (M ⊗M)
∞∑

m=1

αm

m−1∑
k=0

Xm−1−k ⊗Xk.(4.3)

From (4.3) it is easy to see that:
• H(X) = H(X)T .
• H(X) commutes with P , that is PH(X) = H(X)P .
• H(X) = ([H(X)]ij) is a block n× n matrix where each block satisfies

[H(X)]ij = δ[H(X)]Tij ∈ K
n×n.

The following result about matrices that commute with unitary matrices allows us to
compare the singular values of H(X) and 1

2H(X)(In2 + δP ).
Lemma 4.1. Let A,B ∈ Cn×n, where B is a Hermitian unitary matrix, satisfy

AB = ±BA.

Let B have eigenvalues 1 with multiplicity p and −1 with multiplicity n − p. Then
1
2A(I + B) has p singular values in common with A and n − p zero singular values.
Also 1

2A(I − B) has the other n − p singular values in common with A plus p zero
singular values.

Proof. We can write the singular value decomposition of A as A = UΣV ∗ where
Σ is partitioned in block diagonal form such that Σ = diag(σjI) where σ1 > · · · > σk

are the k distinct singular values of A. If AB = ±BA, then (UΣV ∗)B = ±B(UΣV ∗)
and

Σ = ±(U∗BU)Σ(V ∗BV )∗.(4.4)

As B is unitary, this is just a singular value decomposition of a diagonal matrix.
Therefore U∗BU and V ∗BV must be block diagonal matrices and conformably par-
titioned with Σ [5, Theorem 3.1.1′]. Using this, we can see that

1
2
A(I +B) =

1
2
U (Σ(I + V ∗BV )) V ∗

= Udiag
(σj

2
(I + Ej)

)
V ∗

where E = V ∗BV = diag(Ej). As B is Hermitian, the block diagonal matrix
diag

(σj

2 (I + Ej)
)

is also Hermitian. Therefore the singular values of 1
2A(I + B) are

equal to the absolute values of the eigenvalues of diag
(σj

2 (I + Ej)
)
. We recall that B
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has eigenvalues ±1 and hence so do the diagonal blocks Ej . Let Ej have eigenvalues 1
with multiplicity pj and −1 with multiplicity nj . Then the diagonal block σj

2 (I+Ej)
has σj as an eigenvalue with multiplicity pj and 0 as an eigenvalue with multiplicity
nj . As

∑k
j=1 pj = p, 1

2A(I + B) has p singular values in common with A. A similar
argument shows that

1
2
A(I −B) = Udiag

(σj

2
(I −Ej)

)
V ∗

and therefore 1
2A(I −B) has the other n− p singular values of A that are “missing”

from 1
2A(I +B) .

Using Lemma 4.1 we can see that 1
2H(X)(In2 +δP ) has 1

2n(n+δ) singular values
in common with H(X). The natural question arises: which singular values of H(X)
does 1

2H(X)(In2 + δP ) share and do they have the same largest singular value? To
gain insight into this question we performed the following experiment 10000 times.

Experiment 4.2. Using normally distributed random variables with mean 0 and
variance 1, generate

• Random Householder matrix M such that My = ‖y‖2e1 where y is a random
vector in R3.

• Random polynomial f(x) = a6x
6 + · · ·+a1x+a0 where the coefficients ai are

randomly distributed.
• Random X ∈ J. This is formed using random A ∈ R3×3 and forming X =
AMT +ATM .

Using this data, H(X) is formed, from which the condition numbers K(f,X)
and KJ(f,X) are computed. In all 10000 examples we found K(f,X) = KJ(f,X).
This seemed to suggest that equality may hold for all f , M where M = ±MT and
MTM = I, and X ∈ J. However, examples where K(f,X) > KJ(f,X) can be found.
For example, take

• Householder matrix M such that My = ‖y‖2e1 where

y = [−0.4442 −0.5578 −0.2641 ]T .

• A polynomial

f(x) = −0.2879x6 + 1.2611x5 + 2.3149x4 − 0.2079x3 + 2.1715x2 + 0.6125x.

• X = AMT +ATM ∈ J where

A =

−2.0820 −0.1532 1.4778
−0.1035 0.1206 −0.7404
1.0344 1.1157 −0.9895

 .
In this example, K(f,X) = 10.5813 while KJ(f,X) = 8.7644. This example was
generated using direct search methods in MATLAB to try to maximize the ratio
K(f,X)/KJ(f,X) . The ratio in this example is just over 1.2073, which suggests that
this ratio may remain small. A bound for this ratio, based on the properties of H(X),
is given in section 4.1.2.
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Examples where K(f,X) > KJ(f,X) seem very rare and hard to characterize.
However, for the class of real symmetric matrices, which is the Jordan algebra relating
to the bilinear form 〈x, y〉 = xT y, we show in section 4.1.3 that K(f,X) = KJ(f,X)
for all symmetric X .

4.1.1.. What about the other singular values of H(X)? To see what hap-
pened to the singular values ofH(X) that are not singular values of 1

2H(X)(In2 +δP ),
consider the condition number of f at X , where X ∈ J, subject to perturbations from
the Lie algebra:

KL(f,X) =
1
2
‖(I ⊗M)D(X)PSJ(M)T ‖2.

It is easily seen that

1
2
(I ⊗M)D(X)PSJ(M)T =

1
2
H(X)(In2 − δP ),

where H(X) is defined in (4.2). Using Lemma 4.1 we can see that 1
2H(X)(In2 − δP )

has the other 1
2n(n−δ) singular values ofH(X) that are “missing” from 1

2H(X)(In2 +
δP ). This also shows that when X ∈ J,

K(f,X) = max{KJ(f,X),KL(f,X)}.

4.1.2. Bounding K(f,X)/KJ(f,X). In order to bound the ratio of the un-
structured and structured condition numbers, where X ∈ J, we shall consider the
set

H = {H ∈ K
n2×n2

:H = (Hij) with Hij = δHT
ij ∈ K

n×n and PH = HP},(4.5)

where δ = ±1 and P is the vec-permutation matrix. All possible H(X), formed from
a function f at X ∈ J, belong to H. Therefore

max
X∈J

K(f,X)
KJ(f,X)

≤ max
G∈H

2‖G‖2

‖G(In2 + δP )‖2
.

The interesting case is where ‖H(X)‖2 >
1
2‖H(X)(In2 + δP )‖2. We have shown that

when this happens ‖H(X)‖2 = 1
2‖H(X)(In2 − δP )‖2. Therefore we can equivalently

consider

max
G∈H

‖G(In2 − δP )‖2

‖G(In2 + δP )‖2
.

In order to exploit the properties of the matrices in H it is convenient to introduce a
4-point coordinate system to identify elements of G ∈ H:

(a, b, c, d) = Gn(a−1)+b,n(c−1)+d, 1 ≤ a, b, c, d ≤ n.
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Therefore (a, b, c, d) refers to the element of G in the bth row of the ath block row and
the dth column of the cth block column. We can now interpret the two properties of
H:

(a, b, c, d) = δ(a, d, c, b) (regarding Gij = δGT
ij),(4.6)

(a, b, c, d) = (b, a, d, c) (regarding GP = PG).(4.7)

Using an alternate application of (4.6) and (4.7) we can show that

(a, b, c, d) = δ(a, d, c, b) =
δ(d, a, b, c) = (d, c, b, a) =
(c, d, a, b) = δ(c, b, a, d) =
δ(b, c, d, a) = (b, a, d, c).

(4.8)

It can be seen from (4.8) that (a, b, c, d) = (c, d, a, b) and therefore G is symmetric.
Also noticeable is the fact that the left hand side of (4.8) are all the cyclic permutations
of (a, b, c, d) while the right hand side of (4.8) are all the cyclic permutations of the
reverse ordering (d, c, b, a). Other permutations of a, b, c and d give different elements
of G:

(a, b, d, c) = δ(a, c, d, b) =
δ(c, a, b, d) = (c, d, b, a) =
(d, c, a, b) = δ(d, b, a, c) =
δ(b, d, c, a) = (b, a, c, d),

(4.9)

and

(a, c, b, d) = δ(a, d, b, c) =
δ(d, a, c, b) = (d, b, c, a) =
(b, d, a, c) = δ(b, c, a, d) =
δ(c, b, d, a) = (c, a, d, b).

(4.10)

All 4! permutations of a, b, c and d are accounted for. When a, b, c and d are all
distinct integers then we have three sets of eight elements where all elements in the
same set have the same value (up to signs). However, when a, b, c and d are not all
distinct integers then all the elements will be repeated the same number of times in
the lists (4.8), (4.9) and (4.10). Also, the integers a, b, c and d won’t refer to three
unique values of G. For example, when a = b, a, b, c and d refer to just two unique
values of G. This is seen from the fact that list (4.8) is identical to the list (4.9) and
the list (4.10) only refers to four unique elements of G.

Lemma 4.3. Let H be as defined in (4.5). Then

max
G∈H

‖G(In2 − δP )‖2

‖G(In2 + δP )‖2
≤

√
3n(n+ δ)

2
,

where δ = ±1 and P is the vec-permutation matrix.
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Proof. We can first show that

max
G∈H

‖G(In2 − δP )‖2

‖G(In2 + δP )‖2
≤ max

G∈H

√
rank(G(In2 + δP ))

‖G(In2 − δP )‖F

‖G(In2 + δP )‖F

≤
√
n(n+ δ)

2
max
G∈H

‖G(In2 − δP )‖F

‖G(In2 + δP )‖F
.

Now we have to bound maxG∈H
‖G(In2−δP )‖F

‖G(In2+δP )‖F
. Define the ordered set

S = {{a, b, c, d}: 1 ≤ a ≤ b ≤ c ≤ d ≤ n}

and

T{a,b,c,d} = {{p, q, r, s}: All distinct permutations of {a, b, c, d} ∈ S}.

As (GP )n(a−1)+b,n(c−1)+d = (a, b, d, c),

‖G(In2 − δP )‖2
F

‖G(In2 + δP )‖2
F

=

∑
{a,b,c,d}∈S

f(a, b, c, d)∑
{a,b,c,d}∈S

g(a, b, c, d)

where

f(a, b, c, d) =
∑

{p,q,r,s}∈T{a,b,c,d}

((p, q, r, s) − δ(p, q, s, r))2,

g(a, b, c, d) =
∑

{p,q,r,s}∈T{a,b,c,d}

((p, q, r, s) + δ(p, q, s, r))2.

It can easily be shown that

max
G∈H

‖G(In2 − δP )‖2
F

‖G(In2 + δP )‖2
F

≤ max
{a,b,c,d}∈S

(
max

f(a, b, c, d)
g(a, b, c, d)

)
.

Now we have to bound max f(a,b,c,d)
g(a,b,c,d) for all possible {a, b, c, d} ∈ S.

All a, b, c and d different. Let x = (a, b, c, d), y = (a, c, d, b) and z = (a, d, b, c).
Then we can show that for all {a, b, c, d} ∈ S,

f(a, b, c, d)
g(a, b, c, d)

=
8

(
(x− y)2 + (y − z)2 + (z − x)2)

8 ((x+ y)2 + (y + z)2 + (z + x)2)
.(4.11)

Rearranging yields

f(a, b, c, d)
g(a, b, c, d)

=
3(x2 + y2 + z2) − (x+ y + z)2

(x2 + y2 + z2) + (x + y + z)2

and therefore max f(a,b,c,d)
g(a,b,c,d) = 3 which is obtained at x+ y + z = 0.
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Two integers equal, two different. Let x = (a, a, c, d), y = (a, c, d, a), and z =
(a, d, a, c). For δ = 1, it is easy to see from (4.8) and (4.9) that x = y. Then,

f(a, a, c, d) = 8(x− z)2,
g(a, a, c, d) = 8(x+ z)2 + 16x2.

Notice that f(a,a,c,d)
g(a,a,c,d) is a special case of (4.11) where x = y and therefore has a

maximum of 3 at 2x+ z = 0. For δ = −1,

f(a, a, c, d) = 24x2,

g(a, a, c, d) = 8x2.

This is also a special case of (4.11) where x = −y and z = 0 (z = (d, a, c, a) which is
on the diagonal of a block) and f(a,a,c,d)

g(a,a,c,d) is always the maximum 3.
Two integers equal twice. Let x = (a, a, d, d), y = (a, d, d, a), and z = (a, d, a, d).

For δ = 1, x = y and

f(a, a, d, d) = 4(x− z)2,
g(a, a, d, d) = 4(x+ z)2 + 8x2.

Therefore max f(a,a,d,d)
g(a,a,d,d) = 3 at 2x+ z = 0. For δ = −1, x = −y, z = 0 and

f(a, a, d, d) = 12x2,

g(a, a, d, d) = 4x2,

and f(a,a,d,d)
g(a,a,d,d) = 3.
More than two integers equal. Let x = (a, a, a, d), y = (a, a, d, a), and z =

(a, d, a, a). For δ = 1, it can be shown that x = y = z. This means, all permu-
tations of (a, a, a, d) are equal. Hence f(a, a, a, d) = 0 and max f(a,a,a,d)

g(a,a,a,d) = 0 for all
x, y and z. For δ = −1, we have x = y = z = 0 and therefore f(a, a, a, d) = 0.

Therefore max{a,b,c,d}∈S(max f(a,b,c,d)
g(a,b,c,d) ) = 3 and the result follows immediately

from this.

Theorem 4.4. Let X ∈ J, where J denotes the Jordan algebra relating to a
nondegenerate bilinear form 〈x, y〉 = xTMy, where M ∈ Rn×n satisfies MTM = I
and M = δMT for δ = ±1. Let the scalar function

f(x) =
∞∑

m=0

αmx
m

be absolutely convergent for all |x| < r where ‖X‖2 < r. Then

K(f,X)
KJ(f,X)

≤
√

3n(n+ δ)
2

.

Proof. This result comes easily from Lemma 4.3.
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4.1.3. Real symmetric case (M = I). It is known that restricting perturba-
tions to symmetric linear systems or eigenvalue problems to be symmetric makes little
difference to the backward error or the condition of the problem [3], [4]. The same
can be shown for the condition of matrix functions. We shall start with the following
lemma, which is essentially the same as a result given in [6, Lemma 2.1], but written
as a matrix factorization.

Lemma 4.5. Let X ∈ Rn×n be diagonalizable and have the eigendecomposition
X = QDQ−1 where D = diag(λk). Then the Kronecker form of the Fréchet derivative
of f(X) is also diagonalizable and has the eigendecomposition D(X) = VΦV −1 where
V = Q−T ⊗Q, Φ = diag(φk) and

φn(i−1)+j =

{
f(λi)−f(λj)

λi−λj
λi �= λj ,

f ′(λj) λi = λj .

Proof. Considering Φ = V −1D(X)V , we see that

Φ =
∞∑

m=1

αm

m−1∑
k=0

Dm−1−k ⊗Dk = diag(φk).

The kth diagonal element of Φ, where k = n(i− 1) + j for some unique 1 ≤ i, j ≤ n,
is then given by

φk =
∞∑

m=1

αm

m−1∑
k=0

λm−1−k
i λk

j .

If λi = λj , including the case where i = j, then
∑m−1

k=0 λ
m−1−k
i λk

j = mλm−1
i and

φk =
∞∑

m=1

αmmλ
m−1
i = f ′(λi).

If λi �= λj , then
∑m−1

k=0 λ
m−1−k
i λk

j =
λm

i −λm
j

λi−λj
and

φk =
∞∑

m=1

αm

λm
i − λm

j

λi − λj
=
f(λi) − f(λj)
λi − λj

.

We now consider a symmetric matrix X and the condition number of f at X , subject
to symmetric perturbations.

Theorem 4.6. Let X = XT ∈ Rn×n and the scalar function f(x) =
∑∞

m=0 αmx
m

be absolutely convergent for all |x| < r where ‖X‖2 < r. Then

K(f,X) = KJ(f,X).
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Proof. We have seen that K(f,X) = ‖D(X)‖2 and Theorem 3.3 shows that

KJ(f,X) = max
Z �=0,Zsymm.

‖L(Z,X)‖F

‖Z‖F
=

1
2
‖D(X)PSL(I)T ‖2.

Therefore, we shall compare the singular values of D(X) and 1
2D(X)PSL(I)T to show

our result. As M = I we can see that D(X) = H(X), where H(X) is defined in (4.2),
and from (4.1), 1

2D(X)PSL(I)T = 1
2H(X)(In2 + δP ) and therefore both matrices are

symmetric.
As X is symmetric, we can write its eigendecomposition X = QDQT where Q is

orthogonal and D = diag(λk). ¿From Lemma 4.5 we see that D(X) = V ΦV T where
V = Q ⊗Q is also orthogonal and Φ = diag(φk). It is easy to see that P commutes
with V , and therefore

1
2
D(X)PSL(I)T =

1
2
V (ΦP + Φ)V T .

As φn(i−1)+j = φn(j−1)+i, a similarity transformation can be applied to 1
2 (ΦP + Φ)

using a permutation matrix to get a block diagonal matrix consisting of
• n 1× 1 blocks [φn(i−1)+i] for 1 ≤ i ≤ n.
• 1

2n(n− 1) 2 × 2 blocks 1
2

[
φ
φ

φ
φ

]
where φ = φn(i−1)+j for 1 ≤ i < j ≤ n.

Hence the eigenvalues µk of 1
2 (ΦP + Φ) are

µn(i−1)+j =
{
φn(i−1)+j i ≤ j,

0 i > j.

The nonzero parts of the spectra ofD(X) and 1
2D(X)PSL(I)T are equal, if multiplic-

ities are ignored. As both matrices are symmetric, their singular values are equal to
the absolute values of their eigenvalues and so ‖D(X)‖2 =

1
2
‖D(X)PSL(I)

T ‖2.

Theorem 4.6 shows that the condition number of f at a symmetric matrix X is
unaffected if the perturbations are restricted to just symmetric perturbations.

4.2. Sesquilinear forms. We shall now assume that J denotes the Jordan al-
gebra relating to a nondegenerate sesquilinear form 〈x, y〉 = x∗My where M ∈ Rn×n

satisfies M = δMT , δ = ±1 and MTM = I. From (3.11) we can show that

KJ(f,X) = max
v∈Cn2

‖H(X)(v + δP v̄)‖2

‖v + δP v̄‖2
,

where H(X) is defined in (4.2). When X ∈ J, the matrix H(X) is highly structured
and it can be shown that

• H(X) is Hermitian.
• H(X)P = PH(X)T .

Using these properties of H(X) we can obtain the following result.
Lemma 4.7. Let H ∈ Rn2×n2

satisfy HP = PHT and H = µH∗ where µ = ±1.
Then

max
v∈Cn2

‖H(v + αP v̄)‖2

‖v + αP v̄‖2
= ‖H‖2
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where α ∈ C.
Proof. Consider an eigenpair (λ, y) of H . If H is Hermitian, its eigenvalues are

real. If H is skew-Hermitian, its eigenvalues are purely imaginary. Therefore

H(y + αP ȳ) = Hy + αPHT ȳ,

= λy + αP (µλ̄ȳ),
= λ(y + αP ȳ).

If y+αP ȳ = 0, then we can always replace y with βy where β ∈ C and Imag(β) �= 0.
Then y+αP ȳ is an eigenvector ofH corresponding to the eigenvalue λ. As H = ±H∗,
its singular values are equal to the absolute values of its eigenvalues. Therefore, using
the eigenvectors yk of H , we have

σk =
‖H(yk + αP ȳk)‖2

‖yk + αP ȳk‖2

for all singular values σk of H . The result follows immediately from this.

Theorem 4.8. Let X ∈ J, where J denotes the Jordan algebra relating to a
nondegenerate sesquilinear form 〈x, y〉 = x∗My, whereM ∈ Rn×n satisfiesMTM = I
and M = δMT for δ = ±1. Let the scalar function

f(x) =
∞∑

m=0

αmx
m

be absolutely convergent for all |x| < r where ‖X‖2 < r. Then

K(f,X) = KJ(f,X).

Proof. This result comes easily from Lemma 4.7 using α = δ.

We can also show that

KL(f,X) = max
v∈Cn2

‖H(X)(v − δP v̄)‖2

‖v − δP v̄‖2
.

Therefore using Lemma 4.7 with α = −δ we can also show that K(f,X) = KL(f,X)
under the same conditions on f , X and J that are used in Theorem 4.8.

5. Lie Algebra. In this section we shall compare the unstructured condition
number of f , K(f,X), with the structured condition number of f , KL(f,X), for
X ∈ L. We shall first consider the case where the underlying scalar product is a
bilinear form. Then in section 5.2 we shall consider the case where the underlying
scalar product is a sesquilinear form.
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5.1. Bilinear forms. We shall first assume that L denotes the Lie algebra re-
lating to a nondegenerate bilinear form 〈x, y〉 = xTMy where M ∈ Rn×n satisfies
M = δMT , δ = ±1 and MTM = I. To compare the unstructured condition number
K(f,X), with the structured condition number KL(f,X), we shall compare the sin-
gular values of D(X) and those of 1

2D(X)PSJ(M)T . Equivalently, we can compare
the singular values of H(X), defined in (4.2), and 1

2H(X)(In2 − δP ). We have not
been able to find a pattern between these singular values. For an arbitrary function
f(X) and X ∈ L, the matrix H(X) is not necessarily symmetric nor does it commute
with P . However, if f is restricted to being an odd or even function, then a pattern
arises. This is a natural restriction, as f is an odd function if and only if f(L) ⊆ L,
while f is an even function if and only if f(L) ⊆ J [7].

First, consider an odd function f(X) =
∑∞

m=0 α2m+1X
2m+1. The Kronecker

form of the Fréchet derivative of f is

D(X) =
∞∑

m=1

α2m−1

2m−2∑
k=0

(XT )2m−2−k ⊗Xk.

When X ∈ L, the matrix H(X) is highly structured. We can rearrange H(X) to get:

H(X) = (I ⊗M)D(X)(M ⊗ I),

= (M ⊗M)
∞∑

m=1

α2m−1

2m−2∑
k=0

(−1)kX2m−2−k ⊗Xk.

It can be shown that
• H(X) = H(X)T .
• H(X) commutes with P , that is PH(X) = H(X)P .

Using Lemma 4.1 we can show that the matrix 1
2H(X)(In2−δP ) has 1

2n(n−δ) singular
values in common with H(X). The natural question arises: which singular values of
H(X) does 1

2H(X)(In2−δP ) share and do they have the same largest singular values?
To gain insight into this question we performed the following experiment 10000 times.

Experiment 5.1. Using normally distributed random variables with mean 0 and
variance 1, generate

• Random Householder matrix M such that My = ‖y‖2e1 where y is a random
vector in R3.

• Random polynomial f(x) = a5x
5 + a3x

3 + a1x where the coefficients ai are
randomly distributed.

• Random X ∈ L. This is formed using random A ∈ R3×3 and forming X =
AMT −ATM .

Using this data, H(X) is formed, from which the condition numbers K(f,X)
and KL(f,X) are computed. We found a marked difference between the results of
Experiment 4.2 and 5.1. Out of 10000 examples, on just 740 occasions did we find
K(f,X) = KL(f,X). Also K(f,X)/KL(f,X) could grow large. In this experiment
we achieved a maximum ofK(f,X)/KL(f,X) = 349. In fact, this ratio is unbounded.
Let

X =
[

0 1
−1 0

]
∈ L,
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where L is the Lie algebra associated with the bilinear form 〈x, y〉 = xT y, that is, the
class of skew-symmetric matrices. Let f(X) = X3 + 3X . Then

H(X) =


1 0 0 −1
0 1 1 0
0 1 1 0
−1 0 0 1

 .
Note that H(X)P is the same as H(X) except that the second and third columns
have been swapped over. Then, it is easy to see that 1

2H(X)(In2 − δP ) = 0 and
therefore KL(f,X) = 0. Hence, K(f,X)/KL(f,X) is unbounded at X . We can call
X a “stationary point” of the function f(X) = X3 + 3X when X is restricted to the
class of skew-symmetric matrices.

Now, consider an even function f(X) =
∑∞

m=0 α2mX
2m. The Kronecker form of

the Fréchet derivative of f is

D(X) =
∞∑

m=1

α2m

2m−1∑
k=0

(XT )2m−1−k ⊗Xk.

When X ∈ L, the matrix H(X) is highly structured. We can rearrange H(X) to get:

H(X) = (I ⊗M)D(X)(M ⊗ I),

= (M ⊗M)
∞∑

m=1

α2m

2m−1∑
k=0

(−1)k+1X2m−1−k ⊗Xk.

It can be shown that
• H(X) = −H(X)T .
• H(X) also satisfies PH(X) = −H(X)P .

These conditions are more restrictive on the singular values of H(X) than those for
odd functions. Because of this, more can be said about the structured condition
number at even f .

Theorem 5.2. Let X ∈ L, where L denotes the Lie algebra relating to a non-
degenerate bilinear form 〈x, y〉 = xTMy, where M ∈ Rn×n satisfies M = ±MT and
MTM = I. Let the even scalar function

f(x) =
∞∑

m=0

α2mx
2m

be absolutely convergent for all |x| < r where ‖X‖2 < r. Then

K(f,X) = KL(f,X).

Proof. We have shown that K(f,X) = ‖H(X)‖2 and

KL(f,X) =
1
2
‖H(X)(In2 − δP )‖2, δ = ±1.
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Therefore, we shall compare the singular values of H(X) and 1
2H(X)(In2 − δP ) to

show our result. Define

M(X) =
1
2
H(X)(In2 − P ),

N(X) =
1
2
H(X)(In2 + P ).

When X ∈ L and f is an even function, it can be shown that M(X) = −N(X)T .
Therefore M(X) and N(X) have the same singular values. Using Lemma 4.1 we can
show thatM(X) has 1

2n(n−1) singular values in common with H(X) (plus 1
2n(n+1)

zero singular values) while N(X) has the other 1
2n(n + 1) singular values of H(X)

(plus 1
2n(n− 1) zero singular values). As we have shown M(X) and N(X) have the

same singular values, then

‖H(X)‖2 = ‖M(X)‖2 = ‖N(X)‖2.

Recall that

KJ(f,X) =
1
2
‖H(X)(In2 + δP )‖2

where δ = ±1. Therefore, the proof of Theorem 5.2 also shows that for X ∈ L and an
even function f , the condition number is unaffected if the perturbations are restricted
to J. That is K(f,X) = KJ(f,X).

5.1.1. Real skew-symmetric case (M = I). We now compare the unstruc-
tured and the structured condition numbers of f at X when X is a skew-symmetric
matrix. We have seen that K(f,X) = ‖D(X)‖2 and Theorem 3.3 shows that

KL(f,X) = max
Z �=0,Zskew.

‖L(Z,X)‖F

‖Z‖F
=

1
2
‖D(X)PSJ(I)T ‖2.

Therefore, we shall compare the singular values ofD(X) and 1
2D(X)PSJ(I)T . Using a

slightly modified version of Lemma 4.5, where XT is replaced by X∗ in the Kronecker
form of the Fréchet derivative, we can show that if X has the eigendecomposition
X = QDQ∗ where Q is unitary and D = diag(λi) then D(X) = V ΦV ∗ where

Φ =
∞∑

m=1

αm

m−1∑
k=0

(D∗)m−1−k ⊗Dk = diag(φk)

and V = Q⊗Q. The diagonal elements of Φ are given by

φn(i−1)+j =

{
f(λ∗

i )−f(λj)
λ∗

i −λj
λ∗i �= λj ,

f ′(λj) λ∗i = λj .
(5.1)

As P commutes with V , it is easy to see that

1
2
D(X)PSJ(I)T =

1
2
V (ΦP −Φ)V ∗.
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By applying a similarity transformation to 1
2 (ΦP − Φ) using a permutation matrix

we can get a block diagonal matrix consisting of n 1 × 1 blocks whose elements are
zero and 1

2n(n− 1) 2 × 2 blocks

Λij =
1
2

[−φn(i−1)+j φn(j−1)+i

φn(i−1)+j −φn(j−1)+i

]
for 1 ≤ i < j ≤ n. Using the fact that f(λ∗k) = f(λk)∗, it is easy to see from (5.1)
that φn(i−1)+j = φ∗n(j−1)+i. Therefore the singular values of Λij are |φn(i−1)+j | and
0 and the singular values of 1

2 (ΦP −Φ) are

σn(i−1)+j =
{

0 i ≤ j
|φn(i−1)+j | i > j.

(5.2)

As in the symmetric case, the singular values of D(X) exist in pairs, |φn(i−1)+j | =
|φn(j−1)+i|. However, ignoring multiplicities, not all the nonzero singular values of
D(X) appear as singular values of 1

2D(X)PSJ(I)T . The “missing” singular values
are

σ̂i = |φn(i−1)+i| =
{

| f(λ∗
i )−f(λi)
λ∗

i −λi
| λi �= 0,

|f ′(0)| λi = 0.
(5.3)

For certain functions these “missing” singular values are never the largest singular
values of D(X) and so, for these functions, we have K(f,X) = KL(f,X) for all
skew-symmetric X .

Lemma 5.3. Let the scalar function f(x) =
∑∞

m=0 αmx
m be absolutely convergent

for all |x| < r, and let

max
{
|f ′(0)| ,

∣∣∣∣f(µi)− f(−µi)2µ

∣∣∣∣} ≤ |f ′(µi)| .(5.4)

for all real µ such that 0 < |µ| < r. Then

K(f,X) = KL(f,X)

for all skew-symmetric X such that 0 < ‖X‖2 < r.
Proof. A skew-symmetric matrix has purely imaginary eigenvalues which we

denote by λk = iµk. Then using (5.3) we see that

σ̂k =

{
| f(−iµk)−f(iµk)

2µk
| λk �= 0,

|f ′(0)| λk = 0.

are the singular values of D(X) that are not singular values of 1
2D(X)PSJ(I)T .

All we have to show is that, providing (5.4) holds, there exists a singular value of
1
2D(X)PSJ(I)T that is greater than or equal to max σ̂k.
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As X is a real matrix, its eigenvalues exist in complex conjugate pairs. Therefore,
for each nonzero eigenvalue λi, then λi = λ∗j for some j. From (5.1), we can see that

|φn(i−1)+j | = |f ′(λj)| and |φn(j−1)+i| = |f ′(λi)|
are singular values of D(X), and from (5.2), we can see that one of them is also a
singular value of 1

2D(X)PSJ(I)T . As |f ′(λi)| = |f ′(λj)|, we can use (5.4) to show
there exists a singular value of 1

2D(X)PSJ(I)T greater than or equal to max σ̂k.

The condition (5.4) in Lemma 5.3 holds when f is a wide range of functions,
including exponential, sine, cosine and cosh. For cosine and cosh and other even
functions, this result has already been proved in Theorem 5.2. It can also be seen that
the left hand side of (5.4) is zero for even functions. However this condition (5.4) does
not hold for sinh. Examples where K(sinh, X) > KL(sinh, X) are easily generated.

5.1.2. Skew-symmetric case, symmetric perturbations. If we consider the
condition number of f at X , where X is skew-symmetric, subject to symmetric per-
turbations, then Theorem 3.3 shows that

KJ(f,X) = max
Z �=0,Zsymm.

‖L(Z,X)‖F

‖Z‖F
=

1
2
‖D(X)PSL(I)T ‖2.

It is easy to see that

1
2
D(X)PSL(I)T =

1
2
V (ΦP + Φ)V ∗,

and the singular values of 1
2 (ΦP + Φ) are

σn(i−1)+j =
{ |φn(i−1)+j | i ≤ j

0 i > j.

As |φn(i−1)+j | = |φn(j−1)+i| for all 1 ≤ i, j ≤ n, all the nonzero singular values
of D(X) appear as singular values of 1

2D(X)PSL(I)T , if multiplicities are ignored.
Therefore K(f,X) = KJ(f,X) which means the condition number of f at a skew-
symmetric X , is unaffected if the perturbations are restricted to just symmetric per-
turbations.

5.2. Sesquilinear forms. We shall now assume that L denotes the Lie algebra
relating to a nondegenerate sesquilinear form 〈x, y〉 = x∗My whereM ∈ Rn×n satisfies
M = δMT , δ = ±1 and MTM = I. From (3.12) we can show that

KL(f,X) = max
v∈Cn2

‖H(X)(v − δP v̄)‖2

‖v − δP v̄‖2
,

where H(X) is defined in (4.2). We shall again restrict our attention to odd or even
functions of X , as this gives properties of H(X) which we can work with. For an odd
function f(x) =

∑∞
m=0 α2m+1x

2m+1 and X ∈ L, we can show that
• H(X) is Hermitian.
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• H(X)P = PH(X)T .
For an even function f(x) =

∑∞
m=0 α2mx

2m and X ∈ L, we can show that
• H(X) is skew-Hermitian.
• H(X)P = PH(X)T .

These properties enable us to prove the following result.
Theorem 5.4. Let X ∈ L, where L denotes the Lie algebra relating to a nonde-

generate sesquilinear form 〈x, y〉 = x∗My where M ∈ Rn×n satisfies MTM = I and
M = δMT for δ = ±1. Let the f(x) be either

• An odd scalar function fodd(x) =
∑∞

m=0 α2m+1x
2m+1.

• An even scalar function feven(x) =
∑∞

m=0 α2mx
2m.

Also, let f(x) be absolutely convergent for all |x| < r where ‖X‖2 < r. Then

K(f,X) = KL(f,X).

Proof. This result comes from the fact that H(X) satisfies the conditions of
Lemma 4.7 for both functions fodd(x) and feven(x).

Using Lemma 4.7 with α = δ we can also show that K(f,X) = KJ(f,X) under
the same conditions on f , X and L that are used in Theorem 5.4.

6. Concluding Remarks. Kenney and Laub [6] presented a theory of condi-
tioning of matrix functions f(X) based on the Fréchet derivative at X . We have
extended this theory by imposing structure on X and its perturbations. Structured
conditioned numbers have been defined and, under certain conditions on the underly-
ing scalar products, explicit representations have been given for them in Theorem 3.3
and Theorem 3.5. Comparisons between the unstructured and the structured condi-
tion numbers were made and Table 6.1 summarizes the main results of this paper.
If the underlying scalar product is a sesquilinear form, we have shown that imposing
structure does not affect the condition number of f for

• All functions f of X ∈ J.
• Odd or even functions f of X ∈ L.

However, when the underlying scalar product is a bilinear form, equality between the
two condition numbers is not guaranteed in these cases. For general f and X ∈ J,
we have provided experimental and theoretical evidence to show that KJ(f,X) and
K(f,X) are often equal to each other. However, equality does not always hold and a
bound

K(f,X)
KJ(f,X)

<

√
3n(n+ δ)

2
(6.1)

was proved. A few questions merit further investigation:
• Is it possible to characterize when K(f,X) = KJ(f,X)?
• We have not been able to construct examples where the left hand side of (6.1)

is much larger than 1.2. Are better bounds obtainable? Or, can we generate
examples where K(f,X)

KJ(f,X) is as large as the bound suggests is possible?
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Bilinear form X ∈ J Matrix Function Result
〈x, y〉 = xT My or L class f

M = I J
Real

symmetrics all K(f, X) = KJ(f, X)

MT M=I
M=±MT J all K(f,X)

KJ(f,X)
≤

√
3n(n+δ)

2

M = I L
Real skew-
symmetrics

exp, sin,
cos and cosh K(f, X) = KL(f, X)

M = I L
Real skew-
symmetrics all K(f, X) = KJ(f, X)

MT M=I
M=±MT L odd K(f,X)

KL(f,X)
is unbounded

MT M=I
M=±MT L even K(f, X) = KL(f, X)

MT M=I
M=±MT L even K(f, X) = KJ(f, X)

Sesquilinear form X ∈ J Matrix Function Result
〈x, y〉 = x∗My or L class f

MT M=I
M=±MT J all K(f, X) = KJ(f, X)

MT M=I
M=±MT J all K(f, X) = KL(f, X)

MT M=I
M=±MT L odd K(f, X) = KL(f, X)

MT M=I
M=±MT L odd K(f, X) = KJ(f, X)

MT M=I
M=±MT L even K(f, X) = KL(f, X)

MT M=I
M=±MT L even K(f, X) = KJ(f, X)

Table 6.1
Summary of main results comparing unstructured and structured condition numbers. “all”

means all functions that can be written as a convergent power series.

For general f and X ∈ L less is known. The matrix H(X) has no observably nice
properties to work with. A natural restriction is to consider odd and even functions
of X ∈ L. For even f we have shown that K(f,X) = KL(f,X). For odd f , the ratio
K(f,X)/KL(f,X) is unbounded. More information about f , X and L is required to
form more meaningful bounds on this ratio.
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