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AN INVARIANT OF 2 × 2 MATRICES∗
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Abstract. Let W be the space of 2×2 matrices over a field K. Let f be any linear function on W
that kills scalar matrices. Let A ∈ W and define fk(A) = f(Ak). Then the quantity fk+1(A)/f(A)
is invariant under conjugation and moreover fk+1(A)/f(A) = traceSkA, where SkA is the k-th
symmetric power of A, that is, the matrix giving the action of A on homogeneous polynomials of
degree k.
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1. Introduction. Given a matrix A =
(

a b
c d

)
with b �= 0, denote its k-th power

by Ak =
(

ak bk

ck dk

)
. The present paper proves that the quantity bk+1/b is invariant

under conjugation showing that it is equal to the invariant traceSkA, where SkA
is the k-th symmetric power of A, that is, the matrix giving the action of A on
homogeneous polynomials of degree k. This observation, although elementary, seems
not to be in the literature or to be known.

The author originally proved this result by direct combinatorial computation of
both quantities in terms of the coefficients a, . . . , d. This proof does not give any a
priori reason why bk+1/b is invariant.

Several people, after showing them the result, have given different proofs, in
particular, Robert Guralnick and Alastair King. Robert Guralnick also pointed out
to me that the result was also true for any linear function that kills the scalar matrices,
as stated in Theorem 2.1 and in the abstract.

The natural question is to ask if this result can be generalized to n× n matrices,
that is, given an n×n matrix A, can traceSkA be written in terms of some coefficient
of Ak+1 and the corresponding coefficient in A? For an n × n matrix A, are there
other invariant quantities given by coefficients of Ak+1?

In Section 2 we give some notation and state the main theorem (Theorem 2.1).
We also state the result for the particular case when the function is the coordinate
function on the 1,2 entry (Proposition 2.2) and we show that it has as a corollary the
general case. In Section 3 we present several proofs of Proposition 2.2, the original one
and the other proofs communicated to me, to show the different approaches. Finally
in the last section we give an application.

2. The main result. Let W be the vector space of 2 x 2 matrices over a field
K. Let A ∈ W , the matrix A acts naturally by matrix multiplication on K2. The
k-symmetric power SkK2 is isomorphic to the space of homogeneous polynomials of
degree k in two variables x and y. The k-th symmetric power SkA of A is the matrix
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of the linear action of A on SkK2 given by

(A · P )(z) = P (zA), (2.1)

where

P ∈ SkK2, A =
(
a b
c d

)
, z = (x, y) and zA = (ax + cy, bx+ dy).

The monomials

Pj(x, y) = xk−jyj, 0 ≤ j ≤ k,

give a basis for the space SkK2.
Let K[W ] be the ring of polynomial functions on W . Denote by S the subset

of K[W ] consisting of linear functions that kill scalar matrices, that is, f ∈ S if and
only if it is linear and f(

(
λ 0
0 λ

)
) = 0 for any λ ∈ K. The group G = PGL(2,K) acts

on W by conjugation and this action induces an action on K[W ] given by

(g · f)(A) = f(g−1Ag), A ∈ W and g ∈ G.

The main result of the paper is the following
Theorem 2.1. Let A ∈ W and f ∈ S. Put fk(A) = f(Ak). If f(A) �= 0 then
1. fk(A)/f(A) is G-invariant. In other words, fk(A)/f(A) belongs to the in-

variant ring K[W ]G.
2. fk+1(A)/f(A) = traceSkA.

Theorem 2.1 is an immediate consequence of the following proposition for the
case when f is the coordinate function on the 1,2 entry or on the 2,1 entry.

Proposition 2.2. Let b be the coordinate function on W on the 1,2 entry and
bk(A) = b(Ak). Let c and ck be the corresponding functions for the 2,1 entry. Then

1. bk/b = ck/c is G-invariant.
2. bk+1(A)/b(A) = traceSkA.

Proof of Theorem 2.1. Once the proposition is proved for the coordinate functions
b and c, the theorem is clearly true for any G-translate (and this is a linear condition),
whence true for the span of that orbit that is precisely S.

3. Four proofs. In this section we give four proofs of Proposition 2.2. The first
one is the most efficient, is due to Jeremy Rickard and it was communicated to me by
Alastair King. The second one is the original combinatorial proof. These two proofs
show that bk+1/b is equal to traceSkA and therefore invariant, but they do not give
any a priori reason why bk+1/b is invariant.

The third one is an algebraic proof by Robert Guralnick, which is valid in all
characteristics; the fourth one is by Alastair King, which is of a more geometrical
nature. In both of the latter two proofs, it is first shown that bk+1/b is invariant and
afterward that bk+1/b = traceSkA.

In the second part of the fourth proof it is not necessary to know that bk+1/b is
invariant, so it is in itself a proof of Proposition 2.2. It is due to M.S. Narasimhan
and was communicated to me by Alastair King.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 13, pp. 146-152, June 2005

www.math.technion.ac.il/iic/ela



ELA

148 J. L. Cisneros-Molina

First proof of Proposition 2.2. Observe that by continuity is enough to prove
the result for diagonalizable matrices

A =
(
a b
c d

)
=

1
xw − zy

(
x y
z w

) (
p 0
0 q

) (
w −y
−z x

)
.

Then, since Ak+1 has eigenvalues pk+1 and qk+1 one easily computes that

bk+1/b =
qk+1 − pk+1

q − p
,

which is well known to be traceSkA and therefore invariant.

Second proof of Proposition 2.2. In order to prove Proposition 2.2 we need
the following lemmas. The first lemma, given the matrix A, expresses traceSkA in
terms of the entries of A.

Lemma 3.1. Let A =
(

a b
c d

)
. Then

traceSkA =
k∑

j=0

min{k−j,j}∑
i=0

(
k − j

i

)(
j

j − i

)
ak−j−ibicidj−i.

Proof. Consider the basis of SkK2 given by the monomials Pj , 0 ≤ j ≤ k. Use
the action of A on Pj defined in (2.1) to compute the matrix of the automorphism of
SkK2 given by the action of A and then take the trace.

The second lemma expresses the n-th power of A in terms of its entries.
Lemma 3.2. Consider the matrix A =

(
a b
c d

)
. Denote by an, bn, cn and dn the

corresponding entries of the matrix An, i.e. An =
(

an bn

cn dn

)
. Then

an = an +
[ n
2 ]∑

s=1

n−2s∑
m=0

(
n− s−m

s

)(
m+ s− 1

m

)
an−2s−mbscsdm,

bn =
[ n−1

2 ]∑
s=0

n−2s−1∑
m=0

(
n− s−m− 1

s

)(
m+ s

m

)
an−2s−m−1bs+1csdm,

cn =
[ n−1

2 ]∑
s=0

n−2s−1∑
m=0

(
n− s−m− 1

s

)(
m+ s

m

)
an−2s−m−1bscs+1dm,

dn = dn +
[ n
2 ]∑

s=1

n−2s∑
m=0

(
n− s−m− 1

s− 1

)(
m + s

m

)
an−2s−mbscsdm,

where [x] denotes the integral part of x.
Proof. Since An = An−1A =

( an−1 bn−1
cn−1 dn−1

)(
a b
c d

)
one gets the recursive equations

an = aan−1 + cbn−1, cn = acn−1 + cdn−1,

bn = ban−1 + dbn−1, dn = bcn−1 + ddn−1.
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Using this equations, one can find which kind of terms appear in the entries of An.
Next, using elementary combinatorics one can count how many times each term ap-
pears and this is given by the binomial coefficients in the formulae.

Proof of Proposition 2.2. Combining the formula in Lemma 3.1 and some of the
formulae in Lemma 3.2 we show that bk+1/b = ck+1/c = traceSkA. Just put n = k+1,
s = i and m = j − i in the expression of bn (or cn) in Lemma 3.2 and compare with
the formula in Lemma 3.1. To see that in both cases i and j take the same values,
from the expression of bn (or cn) in Proposition 3.2 and taking n = k + 1, s = i and
m = j − i we have that

0 ≤ i ≤ [
k

2
], (3.1)

0 ≤ j − i ≤ k − 2i, (3.2)

From (3.1) we have

0 ≤ i. (3.3)

From (3.2) we have

i ≤ j, (3.4)
i ≤ k − j. (3.5)

From (3.3), (3.4) and (3.5) we have that

0 ≤ i ≤ min{j, k − j}.

From (3.3) and (3.5) we have that

j ≤ i+ j ≤ k. (3.6)

Finally, by (3.3), (3.4) and (3.6)

0 ≤ j ≤ k.

Third proof of Proposition 2.2. Let W , b, bk, c, ck and G as in Section 2.
1. Let B the Borel subgroup of G of lower triangular matrices with U the unipo-

tent radical, i.e., matrices of the form
(

1 0
t 1

)
. It is easy to see by direct com-

putation that bk(uAu−1) = bk(A) for every u ∈ U and therefore bk and b are
each U -invariant.
Let T be the diagonal torus, i.e. matrices of the form

(
r 0
0 s

)
. Then both b and

bk are eigenfunctions with eigenvalue r−1s (for the diagonal matrix diag(r, s))
and so bk/b is T -invariant. Since bk/b is both U -invariant and T -invariant it
is also B-invariant.
Similarly, ck/c is invariant under the opposite Borel (upper triangular ma-
trices). So it suffices to show that bk/b = ck/c (for then these are invariant
under both Borels which generate G).
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We use induction on k. If k = 1, this is clear.
Write

A =
(
a b
c d

)

and

Aj =
(
aj bj
cj dj

)
.

By induction, bk−1/b = ck−1/c or bk−1c = bck−1 . So Ak = Ak−1A, hence
bk = ak−1b+ bk−1d.
Also, Ak = AAk−1, therefore ck = ak−1c+ ck−1d so bk/b = ak−1 + d(bk−1/b)
and ck/c = ak−1 + d(ck−1/c), whence the result by induction.

2. bk+1(A)/b(A) = trace(Sk(A)) when b(A) is nonzero.
Consider A with b(A) nonzero. Since bk/b is invariant, we can conjugate A
and assume that it is upper triangular with b(A) = 1 and diagonal entries
r, s say. It is easy to prove by induction that

(
r 1
0 s

)k+1

=
(
rk+1

∑k
i=0 r

isk−i

0 sk+1

)
.

Hence we have that bk+1(A) = tr(Sk(A)) =
∑k

i=0 r
isk−i.

Fourth proof of Proposition 2.2.
1. Let V be a 2-dimensional vector space and identify W with End(V ). Let

A ∈ End(V ). Then the natural interpretation of the off-diagonal entry b is
as follows:
Let S be a subspace of V (spanned by the second basis element) j : S → V the
inclusion and q : V → V/S the quotient. Then b = qAj : S → V/S. Likewise
bk+1 = qAk+1j : S → V/S, so the ratio is at least a well-defined scalar, but a
priori depending on S.
Now globalize over the projective line P (V ) that parametrizes all such S.
Then j and q become J : O(−1) → V ⊗O and Q : V ⊗O → O(1), where O(−1)
is the tautological line bundle, O the trivial bundle and O(1) the hyperplane
bundle (dual to O(−1)).
Considering A ∈ End(V ⊗ O), we have sections B = QAJ and Bk+1 =
QAk+1J of O(2) ∼= Hom(O(−1), O(1)), which give b and bk+1 for each S.
The zeros of these sections occur at the eigenspaces of A and Ak+1, but these
are the same, thus Bk+1 is a constant multiple of B. In other words, bk+1

is a constant multiple of b, independent of S. This shows that bk(A)/b(A) is
invariant.

2. bk+1(A)/b(A) = trace(SkA) when b(A) is nonzero.
From Cayley-Hamilton one has that Ak+2 − (traceA)Ak+1 + (detA)Ak = 0
hence

bk+2(A)/b(A) − (traceA)bk+1(A)/b(A) + (detA)bk(A)/b(A) = 0.
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On the other hand, the symmetric powers of V satisfy the ‘fusion rules’

V ⊗ SkV = Sk+1V ⊕ Λ2V ⊗ Sk−1V,

taking traces and remembering that detA = trace(Λ2A), show that the quan-
tity trace(SkA) satisfies precisely the same recurrence as bk+1(A)/b(A); since
they both start with b2(A)/b(A) = traceA and b1(A)/b(A) = 1, they must
be equal.

4. Application. The main result of the present paper was found computing the
characters of some representations of finite subgroups of SU(2).

For each k = 0, 1, . . . , there is a complex irreducible representation Ek of SU(2)
of dimension k + 1. We can describe this representations as follows. Firstly, E0 = C

is the trivial representation and E1 is the standard representation on C2 given by
matrix multiplication. For k ≥ 2, the representation space of the representation Ek

is the k-th symmetric power SkE1. Let Γ be a finite subgroup of SU(2). Consider
the restriction of Ek to Γ which we shall denote by Ek|Γ and let be χEk

: Γ → C its
character given by

χk(g) = trace(Skg)

for every g ∈ Γ ⊂ SU(2).
Let cΓ be the least common multiple of the different orders of the elements of Γ.

The number cΓ is called the exponent of the group Γ. Theorem 2.1 can be used to
prove the following result.

Proposition 4.1. Let Γ be a finite subgroup of SU(2). Let g ∈ Γ with g �= ±I,
where I is the identity. If k ≡ l mod cΓ, then

χEk
(g) = χEl

(g).

Proof. Let g =
(

a b
c d

) ∈ SU(2) of finite order |g| with g �= ±I. Without loss of
generality suppose that g is not diagonal (if it is, conjugate by a non-diagonal matrix
to get a non-diagonal matrix and since characters are constant on conjugacy classes
we get the same result). If k ≡ l mod cΓ we have that k ≡ l mod |g| and then
bk+1 = bl+1. Thus by Theorem 2.1

χk(g) = bk+1/b = bl+1/b = χl(g).

Remark 4.2. Note that Proposition 4.1 is also a consequence of the following
well-known formula χEk(g) =

∑k
l=0 e

it(k−2l) for the characters χEk
[1, p. 86] where

e±it are the eigenvalues of g.
Some of the applications of Proposition 4.1 are the following. In first place, it was

used in [2] to find an explicit formula for the inner product 〈χEk
, χα〉 of χEk

with the
character of any finite dimensional representation α of Γ. Such formula [2, Prop. 4.1]
was used to compute the multiplicities of the eigenvalues of the Dirac operator of
S3/Γ twisted by α [2, Thm. 3.2]. On the other hand, the aforementioned formula
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can also be used for the question mentioned by Kostant [3, 4], in relation with the
McKay correspondence, of decomposing EK |Γ into Γ-irreducibles. More specifically,
if {α1, . . . , αs} is the set of equivalence classes of irreducible representations of Γ, then
µtk = 〈χEk

, χαt〉 is the multiplicity of αt in Ek|Γ.
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