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Abstract. Linear, possibly over- or underdetermined, differential-algebraic equations are stud-
ied that have the same solution behavior as linear differential-algebraic equations with well-defined
strangeness index. In particular, three different characterizations are given for differential-algebraic
equations, namely by means of solution spaces, canonical forms, and derivative arrays. Two levels of
generalization are distinguished, where the more restrictive case contains an additional assumption
on the structure of the set of consistent inhomogeneities.
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1. Introduction. In this paper, we study linear differential-algebraic equations
(DAEs)

E(t)ẋ = A(t)x + f(t),(1.1)

where

E,A ∈ C(I,Cm,n), f ∈ C(I,Cm)(1.2)

are assumed to be sufficiently smooth on the interval I ⊆ R. In particular, we allow
(1.1) to be singular in the sense that the space of all solutions in C1(I,Cn) of the asso-
ciated homogeneous problem is infinite-dimensional or that the existence of solutions
requires the inhomogeneity to be contained in a proper subspace of C�(I,Cm) for a
sufficiently large �. Such singular systems arise naturally from control problems (see,
e.g., [11, 16]) in form of underdetermined problems or from automatic model genera-
tors (see, e.g., [3, 15, 18]) in form of (consistent) overdetermined systems. Throughout
the rest of the paper, we use the shorthand notation k = min{m,n}. Moreover, we
require all occurring functions to be sufficiently smooth, so that all derivatives that
arise in the analysis actually exist. Wherever it is possible, we explicitly state the
minimal smoothness requirements.

The case of regular DAEs, i.e., DAEs for which the solution space of the homoge-
neous problem is finite-dimensional (such that unique solvability can be achieved by
prescribing some initial condition) and for which existence of solutions only requires
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the inhomogeneity to be sufficiently smooth, is well studied. The investigations are
typically based on the concept of an index which in principle measures the smoothness
of the data we need to discuss existence and uniqueness of solutions. Unfortunately,
most index concepts as the differentiation index (see, e.g., [1, 2]) or the tractability
index (see, e.g., [4, 13, 14]) exclude singular DAEs by construction. An exception is
given by the so-called strangeness index, see [5, 10]. In this concept, no regularity of
the DAE is assumed. However, one needs a number of assumptions that certain ma-
trix functions derived from the data have constant rank in order to develop a theory
on existence and uniqueness of solutions. These assumptions exclude (already in the
regular case) classes of DAEs which behave well in the sense that the solution space
has some nice structure.

For regular DAEs, it has been shown in [1] that (1.1) has a well-defined dif-
ferentiation index and that (1.1) can be transformed to a canonical form. In this
canonical form, the DAE splits into two equations. One part, called the algebraic
part, is uniquely solvable for sufficiently smooth inhomogeneities without prescribing
an initial condition, whereas the other part, called the differential part, constitutes a
differential equation for the remaining unknowns. In [7], it has been shown that the
concept of the differentiation index is equivalent to the requirement that a hypothesis
that only involves matrix functions built from the data E, A and their derivatives,
so-called derivative arrays, is satisfied. The key point here is that this hypothesis
directly suggests a possible numerical treatment of regular DAEs. In this way, it
could also be shown how differentiation and strangeness index are related in the case
of regular DAEs.

Concerning singular DAEs, only a few results exist, see, e.g., [5, 6, 8, 11, 9, 12, 17].
As far as linear DAEs are concerned, they all require a number of constant rank
assumptions. In particular, it is not clear which singular DAEs are excluded by these
assumptions. It is therefore the aim of the present paper to generalize the results of
[1, 7] for singular DAEs that behave well with respect to the solution space. We also
include a discussion of a subclass for which the space of consistent inhomogeneities
can be parameterized in a certain way. After some preliminaries in Section 2, we
start from the results for DAEs with well-defined strangeness index to define classes
of singular DAEs which have similar properties with respect to solution spaces and
consistent inhomogeneities, see Section 3. In Section 4, we derive a (global) canonical
form for this class of DAEs. Section 5 yields an equivalent characterization in terms
of derivative arrays. In particular, it is shown that all three characterizations (by
solution space, by canonical form and by derivative arrays) are equivalent. We close
with a summary including a diagram that displays the overall logical structure of the
paper and some conclusions in Section 6.

2. Preliminaries. Studying a selected class of problems, all concepts that are
introduced should be invariant under a reasonable class of reversible transformations
that put a given problem of the class into a problem of the same class. In the case of
(1.1), the transformations one should look at are scaling of the equation and scaling
of the unknown by pointwise nonsingular matrix functions.
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Definition 2.1. We call two pairs (E,A) and (Ẽ, Ã) of matrix functions with
E,A, Ẽ, Ã ∈ C(I,Cm,n) (globally) equivalent and write (E,A) ∼ (Ẽ, Ã) if there exist
pointwise nonsingular matrix functions P ∈ C(I,Cm,m) and Q ∈ C1(I,Cn,n) such
that

Ẽ = PEQ, Ã = PAQ− PEQ̇.(2.1)

It is easy to see that this indeed defines an equivalence relation for pairs of matrix
functions.

From the regular case, it is known that in some proofs we must work with so-
called derivative arrays. Due to an idea of Campbell, see, e.g., [1], one successively
differentiates (1.1) with respect to t and gathers all resulting relations up to some
differentiation order � into inflated DAEs

M�(t)ż� = N�(t)z� + g�(t)(2.2)

with

(a) (M�)ij =
(

i
j

)
E(i−j) − ( i

j+1

)
A(i−j−1), i, j = 0, . . . , �,

(b) (N�)ij = A(i) for j = 0, (N�)ij = 0 else, i, j = 0, . . . , �,
(c) (g�)i = f (i), i = 0, . . . , �,
(d) (z�)j = x(j), j = 0, . . . , �.

(2.3)

A further advantage of derivative arrays is that one can also deal with them nu-
merically, since only the data functions together with their derivatives are involved.
We therefore also aim in characterizations of DAEs on the basis of derivative ar-
rays. The key property of the derivative arrays for our further considerations is the
following, see [8, 10].

Theorem 2.2. Let the pairs (E,A) and (Ẽ, Ã) of matrix functions be (globally)
equivalent via (2.1) and let (M�, N�) and (M̃�, Ñ�) be the corresponding derivative
arrays. Then

M̃� = Π�M�Θ�, Ñ� = Π�N�Θ� −Π�M�Ψ�,(2.4)

where

(a) (Π�)ij =
(

i
j

)
P (i−j), i, j = 0, . . . , �,

(b) (Θ�)ij =
(

i+1
j+1

)
Q(i−j), i, j = 0, . . . , �,

(c) (Ψ�)ij = Q(i+1) for j = 0, (Ψ�)ij = 0 else, i, j = 0, . . . , �,
(2.5)

as long as all quantities are defined.
Note that M� as well as Π� and Θ� are block lower triangular, whereas N� as

well as Ψ� have nontrivial entries only in the first block column. The diagonal entries
of Π� and Θ� are given by P and Q, respectively. Hence, Π� and Θ� are pointwise
nonsingular and (2.4) immediately implies that

(a) rank M̃� = rankM�,

(b) rank[ M̃� Ñ� ] = rank[M� N� ]
(2.6)

These properties will be the basis of further invariance results that we need below.
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3. DAEs with well-defined strangeness index. General DAEs of the form
(1.1) are well understood in the theory of the so-called strangeness index where during
the construction of a canonical form for (1.1) a number of assumptions that certain
arising matrix function have constant rank are involved. To omit details of this
theory we do not need in the course of this paper, we introduce the strangeness index
as follows.

Definition 3.1. A pair (E,A) of matrix functions with E,A ∈ C(I,Cm,n) or
the corresponding DAE (1.1) is said to have strangeness index µ ∈ N0 if

(E,A) ∼



 Id 0 W

0 0 F
0 0 G


 ,


 0 L 0

0 0 0
0 0 Ia




 ,(3.1)

where W , F and G have the block structures

(a) W =
[
0 Wµ · · · W1

]
,

(b) F =




0 Fµ ∗
. . . . . .

. . . F1

0


 ,

(c) G =




0 Gµ ∗
. . . . . .

. . . G1

0


 ,

(3.2)

with the same partitioning with respect to the columns. Furthermore, Fi and Gi

together have pointwise full row rank for each i = 1, . . . , µ.
Observe that due to (3.2) the strangeness index µ (if defined) satisfies µ ≤ k−1 =

min{m,n}−1. For the derivation of (3.1), the character of the imposed constant rank
assumptions and further details in the context of the strangeness index, see [5, 7, 8] or
[10]. Since, besides sufficient smoothness of the matrix functions E,A, only constant
rank assumptions are involved in the construction of (3.1), the strangeness index has
the important property that it is defined on a dense subset of I, see [7]. For this, we
assume for simplicity that in the following I is closed.

Theorem 3.2. Let (E,A) be a pair of sufficiently smooth matrix functions. Then
there exist pairwise disjoint open intervals Ij ⊆ I, j ∈ N, with

I =
⋃
j∈N

Ij(3.3)

such that for every j ∈ N the pair (E,A) restricted to Ij possesses a well-defined
strangeness index.

Due to Definition 3.1, a DAE (1.1) with well-defined strangeness index µ can be
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transformed to a DAE of the form

(a) ẋ1 +W (t)ẋ3 = L(t)x2 + f1(t),
(b) F (t)ẋ3 = f2(t),
(c) G(t)ẋ3 = x3 + f3(t).

(3.4)

Utilizing the nilpotent structure of G, the third equation has a unique solution x3 for
every f3 ∈ Cµ+1(I,Ca). This solution can be written in the form

x3 =
µ∑

i=0

Dif
(i)
3 ,(3.5)

with sufficiently smooth coefficients Di ∈ C(I,Ca,a). Having determined x3 and
choosing x2 ∈ C1(I,Cu) arbitrarily with u = n − d − a then leaves a solvable linear
DAE in (3.4a). Thus, for the DAE (3.4) to be solvable, it remains to look at (3.4b)
which states a consistency condition for the inhomogeneity. Because of (3.5), this can
be written in the form

f2 = F ẋ3 =
µ+1∑
i=0

Cif
(i)
3 ,(3.6)

with sufficiently smooth Ci ∈ C(I,Cv,a), v = m− d− a.
Considering now the homogeneous problem

E(t)ẋ = A(t)x(3.7)

associated to (1.1), i.e., setting f = 0 gives x3 = 0 and the consistency condition (3.6)
is trivially satisfied. Choosing t0 ∈ I fixed and

c ∈ C1(I,Cu), α ∈ C
d(3.8)

arbitrarily, we can parameterize all solutions of (3.4) according to x3 = 0, x2 = c, and
x1 being the solution of the initial value problem

ẋ1 = L(t)c(t), x1(t0) = α,(3.9)

hence

x1(t) = α+
∫ t

t0

L(τ)c(τ) dt = α+ I[c](t).(3.10)

The solution space of the homogeneous problem in the transformed form (3.4) is
therefore given by

K̃ = {x̃ =


 x1

x2

x3


 ∈ C1(I,Cn) | x1 = α+ I[c], x2 = c, x3 = 0}.(3.11)
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Denoting the canonical form given in (3.1) by (Ẽ, Ã), we have the relation (2.1),
where P and Q belong to the equivalence relation (3.1). Back transformation then
yields

x = Qx̃.(3.12)

With

Q = [ Φ Ψ Θ ](3.13)

partitioned conformally with x̃, the solution space of the homogeneous problem asso-
ciated with the original pair (E,A) is given by

K = {x ∈ C1(I,Cn) | x1 = Φ(α+ I[c]) + Ψc}.(3.14)

Accordingly, one can write the consistency condition (3.6) as

f2 = C[f3] =
µ+1∑
i=0

Cif
(i)
3 , Pf =


 f1

f2

f3


 , PEΦ =


 Id

0
0


 .(3.15)

Note that both the space K and the space of all consistent inhomogeneities are pa-
rameterized by (3.8) and f3 ∈ Cµ+1(I,Ca), respectively. Moreover, these properties,
if also valid for every restriction to a nontrivial subinterval of I (i.e., a subinterval of I

with nonempty interior) as in the present case, exclude all possible irregular behav-
ior of the DAE as for example inner point conditions for the inhomogeneity or the
existence of local solutions that cannot be extended to solutions on the whole interval.

In this paper we are interested in the characterization of all linear DAEs which
show the same properties as DAEs with well-defined strangeness index. In the follow-
ing, we distinguish two levels of characterizations. On the first more general level A,
we only use properties of the solution space. On the second level B, we also include a
structure for the space of consistent inhomogeneities. The reason for this will become
clear in the next section.

We start with the following two hypotheses which hold for problems with well-
defined strangeness index due to the previous discussion in this section.

Hypothesis A.1. The pair (E,A) of matrix functions and every restriction to
a nontrivial subinterval have the following properties:
1) There exist matrix functions Φ ∈ C1(I,Cn,d) and Ψ ∈ C1(I,Cn,u) with [ Φ Ψ ]
having pointwise full column rank such that the associated homogeneous problem (3.7)
possesses a solution space of the form

K = {x ∈ C1(I,Cn) | x = Φ(α+ I[c]) + Ψc, α ∈ C
d, c ∈ C1(I,Cu)}(3.16)

with

I[c](t) =
∫ t

t0

L(τ)c(τ) dt,(3.17)
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and t0 ∈ I fixed. Moreover,

rankEΦ = d on I.(3.18)

2) There are matrix functions Di ∈ C1(I,Ca,m), i = 0, . . . , k−1, and Θ ∈ C1(I,Cn,a)
with [ Φ Ψ Θ ] is pointwise nonsingular such that, if f ∈ Ck(I,Cn) is consistent, i.e.,
if it permits a solution of (1.1), then there exists a particular solution of (1.1) of the
form

x = Φx1 +Θ
k−1∑
i=0

Dif
(i), x1 ∈ C1(I,Cd).(3.19)

Hypothesis B.1. The pair (E,A) of matrix functions and every restriction to a
nontrivial subinterval have property 1) of Hypothesis A.1 and the following property:
3) There exists a pointwise nonsingular R ∈ C(I,Cm,m) with

REΦ =


 Id

0
0


(3.20)

and Ci ∈ C(I,Cv,a) such that for given f3 ∈ Ck(I,Ca) in

Rf =


 f1

f2

f3


(3.21)

the DAE (1.1) is solvable if and only if

f2 = C[f3] =
k∑

i=0

Cif
(i)
3 .(3.22)

Lemma 3.3. Hypotheses A.1 and B.1 are invariant under (global) equivalence
transformations.

Proof. Let (E,A) satisfy Hypothesis A.1 or Hypothesis B.1, respectively, and let

Ẽ = PEQ, Ã = PAQ− PEQ̇, f̃ = Pf, x̃ = Q−1x

with P and Q according to Definition 2.1. Defining

Φ̃ = Q−1Φ, Ψ̃ = Q−1Ψ,

we find for the corresponding solution space K̃ of the homogeneous problem that

K̃ = {x̃ ∈ C1(I,Cn) | x̃ = Q−1Φ(α+ I[c]) +Q−1Ψ} =
= {x̃ ∈ C1(I,Cn) | x̃ = Φ̃(α + I[c]) + Ψ̃}.
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Moreover, Φ̃ ∈ C1(I,Cn,d), Ψ̃ ∈ C1(I,Cn,u), and

rank ẼΦ̃ = rankPEQQ−1Φ = rankEΦ.

Setting

[ D̃0 D̃1 · · · D̃k−1 ] = [D0 D1 · · · Dk−1 ]Π−1
k−1

for (3.19) with Πk−1 from (2.5), we get

x̃ = Q−1x = Q−1(Φx1 +Θ[D0 D1 · · · Dk−1 ]gk−1) =
= Φ̃x1 + Θ̃[ D̃0 D̃1 · · · D̃k−1 ]Πk−1gk−1 = Φ̃x1 + Θ̃

∑k−1
i=0 D̃if̃

(i).

Finally, with

R̃ = RP−1

we obtain

R̃ẼΦ̃ = RP−1PEQQ−1Φ = REQ

and

R̃f̃ = RP−1Pf = Rf.

Thus, the claimed invariance is obvious.
Summarizing the above discussion on pairs (E,A) with well-defined strangeness

index, we have shown the following result in terms of invariant properties.
Theorem 3.4. Let (E,A) have a well-defined strangeness index. Then (E,A)

satisfies Hypotheses A.1 and B.1.

4. Global canonical forms. In this section, we study implications for a pair
(E,A) of matrix functions that satisfies Hypothesis A.1 or Hypothesis B.1. We start
with the common part of both hypotheses, in particular with the special form of the
solution space K. From

x = Φ(α+ I[c]) + Ψc(4.1)

it follows by differentiation that

ẋ = ΦLc+ Φ̇(α+ I[c]) + Ψċ+ Ψ̇c(4.2)

because of

I[c](t) =
∫ t

t0

L(τ)c(τ) dt, d
dt (I[c])(t) = L(t)c(t).(4.3)

Hence

E[ΦLc+ Φ̇(α + I[c]) + Ψċ+ Ψ̇c] = A[Φ(α+ I[c]) + Ψc](4.4)
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for arbitrary α ∈ Cd, c ∈ C1(I,Cu). Note that we can combine several choices of α
and c in (4.4) into a matrix relation. Thus, for the choice α = Id, c = 0, we find that

EΦ̇ = AΦ.(4.5)

This reduces (4.4) to

E[ΦLc+Ψċ+ Ψ̇c] = AΨc,(4.6)

which still holds for arbitrary c ∈ C1(I,Cu). For the choice c = Iu, we get

E[ΦL+ Ψ̇] = AΨ,(4.7)

which reduces (4.6) to

EΨċ = 0,(4.8)

again for arbitrary c ∈ C1(I,Cu). Finally, the choice c = tIu yields

EΨ = 0.(4.9)

Since [ Φ Ψ ] is continuously differentiable and has pointwise full column rank, there
exists a matrix function Θ ∈ C1(I,Ca) with a = n − d − u such that [ Φ Ψ Θ ] is
pointwise nonsingular also under the assumptions of Hypothesis B.1. Hence, on both
levels

(E,A) ∼ ([ EΦ EΨ EΘ ], [AΦ−EΦ̇ AΨ−EΨ̇ AΘ−EΘ̇ ]) =
= ([ EΦ 0 EΘ ], [ 0 EΦL AΘ−EΘ̇ ]),

(4.10)

where we used (4.5), (4.7), and (4.9).
At this point, we first look at Hypothesis A.1. Because of (3.18), there exists a

pointwise nonsingular P ∈ C(I,Cn,n) with

PEΦ =
[

Id

0

]
(4.11)

such that

(E,A) ∼
([

Id 0 ∗
0 0 H

]
,

[
0 L ∗
0 0 B

])
.(4.12)

Consider now the subproblem

H(t)ẋ3 = B(t)x3 + f2(t),(4.13)

where

Q−1x =


 x1

x2

x3


 , Pf =

[
f1

f2

]
.(4.14)
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Since the first block row in (4.12) is solvable independently of x3, consistency of
f ∈ C(I,Cm) is equivalent with the consistency of f2 ∈ C(I,Cu+a) for the subproblem
(4.13). Due to the structure of K, the subproblem (4.13) must fix a unique solution
for consistent f2. Moreover, since x3 does not depend on f1, the form of the particular
solution (3.19) yields that a solution of (4.13) must have the form

x3 =
k−1∑
i=0

D̃if
(i)
2 .(4.15)

For convenience, we write the derived properties of (E,A) as a new hypothesis for
(E,A).

Hypothesis A.2. The pair (E,A) of matrix functions satisfies

(E,A) ∼
([

Id 0 ∗
0 0 H

]
,

[
0 L ∗
0 0 B

])
,(4.16)

where

H(t)ẋ3 = B(t)x3 + f2(t),(4.17)

possesses a unique solution for every consistent sufficiently smooth f . This also holds
for every restriction to a nontrivial subinterval of I. In particular, there exist D̃i ∈
C(I,Ca,u+a), i = 0, . . . , k − 1, such that the solution of (4.17), if it exists, is of the
form

x3 =
k−1∑
i=0

D̃if
(i)
2 .(4.18)

Note that Hypothesis A.2 is trivially invariant under (global) equivalence trans-
formations. Since the above discussion also holds for every nontrivial subinterval, we
have shown the following implication.

Theorem 4.1. Hypothesis A.1 implies Hypothesis A.2.
We return now to (4.10) and concentrate on Hypothesis B.1. From (3.20), we

have

P−1


 Id

0
0


 = EQ = R−1


 Id

0
0


 .(4.19)

Setting

Pf =


 f̃1

f̃2

f̃3


(4.20)

for a given inhomogeneity, it follows with (3.21) that
 f1

f2

f3


 = Rf = RP−1


 f̃1

f̃2

f̃3


 =


 Id P12 P13

0 P22 P23

0 P32 P33




 f̃1

f̃2

f̃3


 .(4.21)
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Application of the transformation RP−1 to the pair on the right hand side of (4.12)
yields

(E,A) ∼



 Id 0 E13

0 0 E23

0 0 E33


 ,


 0 L A13

0 0 A23

0 0 A33




 .(4.22)

Note that by construction the transformation of (1.1) according to (4.22) produces
(3.21) as inhomogeneity. Hence, the transformed DAE reads

(a) ẋ1 + E13(t)ẋ3 = L(t)ẋ2 +A13(t)x3 + f1(t),
(b) E23(t)ẋ3 = A23(t)x3 + f2(t),
(c) E33(t)ẋ3 = A33(t)x3 + f3(t).

(4.23)

By Hypothesis B.1, the DAE (1.1) and thus (4.23) is solvable if f3 is sufficiently
smooth and f2 = C[f3]. In particular, the subsystem (4.23c) is solvable for every
sufficiently smooth f3. Moreover, due to the structure of K, the solution must be
unique. It follows that the DAE

E33(t)Ṡ = A33(t)S + Ia(4.24)

possesses a unique solution S ∈ C1(I,Ca,a). Following the arguments in [1], a
small (smooth) perturbation of S yields a pointwise nonsingular matrix function
S̃ ∈ C1(I,Ca,a) such that

J = E33
˙̃S −A33S̃(4.25)

is still pointwise nonsingular. We then get

(E,A) ∼




 Id 0 E13S̃

0 0 E23S̃

0 0 E33S̃


 ,




0 L A13S̃ −E13
˙̃S

0 0 A23S̃ −E23
˙̃S

0 0 A33S̃ −E33
˙̃S




 ∼

∼



 Id 0 Ẽ13

0 0 Ẽ23

0 0 Ẽ33


 ,


 0 L Ã13

0 0 Ã23

0 0 J




 ∼

∼



 Id 0 W

0 0 F
0 0 G


 ,


 0 L 0

0 0 0
0 0 Ia




 ,

(4.26)

where the subsystem

G(t)ẋ3 = x3 + f3(t)(4.27)

possesses a unique solution for every sufficiently smooth f3. Again the whole con-
struction is valid on every nontrivial subinterval. As before, we formulate the obtained
properties as a hypothesis on (E,A).
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Hypothesis B.2. The pair (E,A) of matrix functions satisfies

(E,A) ∼



 Id 0 W

0 0 F
0 0 G


 ,


 0 L 0

0 0 0
0 0 Ia




 ,(4.28)

where

G(t)ẋ3 = x3 + f3(t)(4.29)

possesses a unique solution for every sufficiently smooth f3. This also holds for every
restriction to a nontrivial subinterval of I.

The invariance of Hypothesis B.2 is again trivial and the above discussion can
now be formulated as follows.

Theorem 4.2. Hypothesis B.1 implies Hypothesis B.2.
At this point, it becomes clear why the more restrictive Hypothesis B.1 is of

interest. Comparing with (3.1), the canonical form given in (4.28) has the same
block structure. The main difference to (3.1) is that we do not have the nilpotent
structure of the matrix functions F and G in (4.28). The reason for this is that in
Hypothesis B.1 we do not require all the constant rank conditions to obtain (3.2).

We close this section with an equivalent formulation of (3.18) in terms of solution
properties of the given DAE.

Lemma 4.3. An equivalent formulation of Hypothesis A.1 is obtained if the con-
dition (3.18) is replaced by the following property:

Let x ∈ C1 (̂I,Cn) solve (1.1) with f ∈ rangeEΦ on a nontrivial subinterval Î ⊆ I

and let ΠHx = 0, where Π ∈ C1(I,Cn,u) has pointwise full column rank and satisfies
ΠH [ Φ Θ ] = 0. Then x can be (uniquely) extended to a function in C1(I,Cn) that
solves (1.1).

Proof. In contrast to (3.18), let

rankE(t̂)Φ(t̂) < d

for some t̂ ∈ I. Then there exists a w ∈ Cd, w �= 0, with

E(t̂)Φ(t̂)w = 0.

Choosing Î ⊆ I open such that t̂ is a boundary point of Î and setting
 x1(t)

x2(t)
x3(t)


 =


 log(|t− t̂|)w

0
0


 , f(t) =

{
E(t)Φ(t) 1

t−t̂
w for t �= t̂,

d
dt(E(t)Φ(t)w)|t=t̂ for t = t̂,

we have

E(t)Φ(t)ẋ1(t) = E(t)Φ(t)
1

t − t̂
w = f(t)

for t �= t̂, i.e., [xT
1 , xT

2 , xT
3 ]

T with x2 = 0 and x3 = 0 solves the transformed problem
given in (4.10). Hence, x given by

x(t) = Φ(t)x1(t) = Φ(t) log(|t− t̂|)w
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solves the original DAE on Î. Moreover,

Π(t)Hx(t) = Π(t)HΦ(t) log(|t− t̂|)w = 0

on Î. But x cannot be extended to a function in C1(I,Cn).
On the other hand, if (3.18) holds, then we can transform the DAE (1.1) according

to (4.12). The inhomogeneity is then given by [fT
1 , fT

2 ]T , where f2 = 0 for f ∈
rangeEΦ. Let now x1 ∈ C1 (̂I,Cd), x2 = 0, and x3 = 0 (where the latter two
guarantee ΠHx = 0) solve the transformed DAE. Then the equation corresponding
to the second block row is trivially satisfied and the one corresponding to the first
block row reduces to ẋ1 = f1, which is solved by x1 on Î. It is then obvious that x1

can be extended to a solution on the entire interval I.

5. Derivative arrays and reduced DAEs. An obvious advantage of (2.2),
at least in the numerical treatment of DAEs, see, e.g., [8], is that only the data
functions E, A and f together with their derivatives are involved. One is therefore
interested in equivalent characterizations of DAEs in terms of derivative arrays. More-
over, this will also help in proving that all characterizations that belong to the same
level are equivalent.

We first assume that Hypothesis A.2 holds. Furthermore, let (M̃�, Ñ�) be the
derivative arrays which belong to the canonical form (Ẽ, Ã) given in (4.16). The
entry Id occurring in every diagonal block of M̃� always contributes to the rank
of M̃�. But then the entry L never contributes to the rank of [ M̃� Ñ� ]. Thus the
only contribution of Ñ� to the rank of [M̃� Ñ� ] can come from the block column built
of H and its derivatives. Since this block column only consists of a columns, we have

rank[ M̃� Ñ� ] ≤ rank M̃� + a.(5.1)

On the other hand, the DAE (4.17) is (uniquely) solvable for all inhomogeneities f2

of the form

f2 = Hẋ3 −Bx3(5.2)

for given sufficiently smooth x3 ∈ C1(I,Ca). Hence,

x3 =
k−1∑
i=0

D̃i( d
dt )

i(Hẋ3 −Bx3)

or

x3 = [ D̃0 D̃1 · · · D̃k−1 ]




−B H

−Ḃ Ḣ −B H
...

...
. . .

. . .
−B(k−1) ∗ · · · ∗ H







x3

ẋ3

...
x

(k−1)
3



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for all sufficiently smooth x3 ∈ C1(I,Ca). This implies

[ Ia 0 · · · 0 ] = [ D̃0 D̃1 · · · D̃k−1 ]




−B H

−Ḃ Ḣ −B H
...

...
. . . . . .

−B(k−1) ∗ · · · ∗ H


 .

Thus, defining Z̃3 ∈ C(I,Ckm,a) by

Z̃H
3 = [ 0 D̃0 | 0 D̃1 | · · · | 0 D̃k−1 ],(5.3)

we have

Z̃H
3 M̃k−1 = 0, rank Z̃H

3 Ñk−1 = a.(5.4)

This implies that rank[ M̃� Ñ� ] ≥ rank M̃� + a for � = k − 1. Trivially extending Z3

by zero blocks shows that this holds for every � ≥ k − 1 so that

rank[ M̃� Ñ� ] = rankM̃� + a for � ≥ k − 1,(5.5)

as long as all quantities are defined. Finally, defining T̃3 ∈ C(I,Cn,n−a) by

T̃3 =


 Id 0

0 Iu

0 0


(5.6)

and Z̃1 ∈ C(I,Cm,d) by

Z̃1 =


 Id

0
0


(5.7)

yields the relations

Z̃H
3 Ñk−1[ In 0 · · · 0 ]H T̃3 = 0, rank Z̃H

1 ẼT̃3 = d.(5.8)

A pair (E,A) of matrix functions satisfying Hypothesis A.2 therefore satisfies the
following hypothesis, at least when (E,A) is given in the canonical form of (4.16).

Hypothesis A.3. The pair (E,A) of matrix functions with its derivative arrays
(M�, N�) has the following properties:
1) There exists a matrix function Z3 ∈ C(I,Ckm,a) with pointwise full column rank
and

ZH
3 Mk−1 = 0, rankZH

3 Nk−1 = a(5.9)

implying that there exists a matrix function T3 ∈ C(I,Cn,n−a) with pointwise full
column rank and

ZH
3 Nk−1[ In 0 · · · 0 ]HT3 = 0.(5.10)
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2) For every t ∈ I and every matrix Z4 whose columns form a basis of corangeMk(t),
we have

ZH
4 Nk(t) = a.(5.11)

3) There exists a matrix function Z1 ∈ C(I,Cn,d) with pointwise full column rank and

rankZH
1 ET3 = d.(5.12)

Lemma 5.1. Hypothesis A.3 is invariant under (global) equivalence transforma-
tions.

Proof. Let (E,A) with its derivative arrays (M�, N�) satisfy Hypothesis A.3 and
let

Ẽ = PEQ, Ã = PAQ− PEQ̇, f̃ = Pf, x̃ = Q−1x

with P and Q according to Definition 2.1. Furthermore, let (M̃�, Ñ�) be the derivative
arrays of (Ẽ, Ã). Then (2.4) holds. Defining

Z̃H
3 = ZH

3 Π−1
k−1, T̃3 = Q−1T3, Z̃H

4 = ZH
4 Π−1

k (t), Z̃H
1 = ZH

1 P−1

yields

Z̃H
3 M̃k−1 = ZH

3 Π−1
k−1Πk−1Mk−1Θk−1 = ZH

3 Mk−1Θk−1 = 0

and

rank Z̃H
3 Ñk−1 = rankZH

3 Π−1
k−1(Πk−1Nk−1Θk−1 −Πk−1Mk−1Ψk−1) = a.

Property 2) follows accordingly. Furthermore,

Z̃H
3 Ñk−1[ In 0 · · · 0 ]H T̃3 = ZH

3 Nk−1Θk−1[ In 0 · · · 0 ]HQ−1T3 =
= ZH

3 Nk−1[Q ∗ · · · ∗ ]HQ−1T3 = ZH
3 Nk−1[ In 0 · · · 0 ]HT3,

since only the first block column of Nk−1 is nontrivial. Finally,

rank Z̃H
1 ẼT̃3 = rankZH

1 P−1PEQQ−1T3 = rankZH
1 ET3 = d.

Again, the previous discussion together with the invariance of the developed hy-
pothesis shows that the following implication holds.

Theorem 5.2. Hypothesis A.2 implies Hypothesis A.3.
We now assume that Hypothesis B.2 holds and show that it implies Hypothe-

sis A.2. The principle part of the corresponding proof can already be found in [7].
Nevertheless we present a detailed proof, since we need the same techniques later in
the course of our discussion. It is sufficient to concentrate on the part belonging to
(4.29). We therefore consider

(E,A) = (G, Ia),(5.13)
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with G as in (3.2c), and the corresponding derivative arrays (M�, N�) and assume that
the associated DAE is uniquely solvable for every sufficiently smooth inhomogeneity.

Suppose that there exists t̂ ∈ I with corank[M�(t̂) N�(t̂) ] > 0, where the corank
is defined to be the rank deficiency with respect to the rows. Then there exists a
v� ∈ C(l+1)a, v� �= 0, with vH

� [ M�(t̂) N�(t̂) ] = 0 and an arbitrarily smooth func-
tion f = f3 with vH

� g�(t̂) �= 0 for the corresponding g� defined by (2.3c). But this is
in contradiction to the solvability of (4.29) which implies (2.2) and thus vH

� g�(t̂) = 0.
Hence, we have

corank[M� N� ] = 0 on I.(5.14)

Since N� has only a nontrivial columns this implies

corank M� ≤ a on I.(5.15)

On the other hand, there exist disjoint open intervals Ij ⊆ I with (3.3) such that the
strangeness index µ is well-defined for (5.13) restricted to a selected Ij . Because of
the unique solvability of the associated DAE (5.13) on Ij due to Hypothesis B.2, its
canonical form from (3.1) can only consist of the part (G, Ia). Recall that the other
parts would allow for a free choice of initial values x1(t0) or of functions x2 according
to (3.4) and the following discussion. Hence, we may assume on Ij that G has the
nilpotent structure (3.2c). The corresponding derivative arrays M� are given by

M =




G

Ġ− I G

G̈ 2Ġ− I G
...

. . . . . . . . .


 ,(5.16)

where we formally consider M to be an infinite matrix function as suggested in [7].
The expressions that will be developed in the following will turn out to be finite when
taking into account that due to the nilpotent structure of G all (µ+1)-fold products,
where each factor is G or one of its derivatives, vanish.

We are interested in the corange (i.e., in the orthogonal complement of the range)
of M . Thus, we look for a nontrivial Z of maximal rank with

ZHM = 0.(5.17)

With ZH = [ ZH
0 ZH

1 ZH
2 · · · ], this can be written as

[ ZH
0 ZH

1 ZH
2 · · · ]







G

Ġ G

G̈ 2Ġ G
...

. . . . . . . . .


−




0
I 0
0 I 0
...

. . . . . . . . .







= 0.(5.18)

Setting ZH
0 = I and solving for the other blocks of Z gives

[ ZH
1 ZH

2 · · · ] = [G 0 · · · ](I −X)−1,(5.19)
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where

X =




Ġ G

G̈ 2Ġ G
...

. . . . . . . . .


(5.20)

is nilpotent, hence

(I −X)−1 =
∑
i≥0

X i.(5.21)

A simple induction argument then yields that ZH
j is a sum of at least j-fold products,

where each factor is G or one of its derivatives. Thus, ZH
j = 0 for j > µ and all

expressions are indeed finite. Moreover, we have shown that

corankM� ≥ a on Ij for � ≥ µ.(5.22)

Because of (2.6a), this also holds when G does not necessarily have the nilpotent
structure of (3.2c). Observing that corank M�+1 ≥ corank M� for every � due to
(2.3), we get

corank M� ≥ a on
⋃

j∈N

Ij for � ≥ µ̂,(5.23)

where µ̂ ≤ min{m,n} − 1 = k − 1 is the maximum of all strangeness indices for the
subintervals Ij . Since the rank function is lower semicontinuous, this implies

corank M� ≥ a on I for � ≥ µ̂.(5.24)

Together with (5.15), this gives

corank M� = a on I for � ≥ µ̂.(5.25)

In particular, Mk−1 has constant rank on I. Hence, there exists a matrix function
Z3 ∈ C(I,Cka,a) with

ZH
3 Mk−1 = 0, rankNk−1[ Ia 0 · · · 0 ]H = a,(5.26)

the latter because of (5.14) and the special form of Nk−1. In particular, ZH
3 has the

form

ZH
3 = [ Ia D̃1 · · · D̃k−1 ](5.27)

with appropriately defined matrix functions D̃i, i = 1, . . . , k − 1. The inflated DAE
(2.2) for (5.13) with � = k − 1 implies

0 = x3 + ZH
3 gk−1(5.28)
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due to the special form of N�. Hence, the solution of (4.29) is given by

x3 = −ZH
3 gk−1.(5.29)

Observing the definition of gk−1, we can write x3 as

x3 =
k−1∑
i=0

D̃if
(i)
3 .(5.30)

But this is exactly the form of solution representation as required in (4.18) such that
we have shown the following result.

Theorem 5.3. Hypothesis B.2 implies Hypothesis A.2.
At this point, it seems to be convenient to first study implications of Hypoth-

esis A.3 before we proceed with further implications of Hypothesis B.2. Given a
Z2 ∈ C(I,C(k+1)m,v) with v = m− d− a satisfying

ZH
2 Mk = 0, ZH

2 Nk = 0,(5.31)

Hypothesis A.3 fixes a so-called reduced DAE


 Ê1(t)

0
0


 ẋ =


 Â1(t)

0
Â3(t)


 x+


 f̂1(t)

f̂2(t)
f̂3(t)


 ,(5.32)

where

Ê1 = ZH
1 E, Â1 = ZH

1 A, Â3 = ZH
3 Nk−1[ In 0 · · · 0 ]H ,

f̂1 = ZH
1 f, f̂2 = ZH

2 gk, f̂3 = ZH
3 gk−1.

(5.33)

Obviously, every (sufficiently smooth) solution x of (1.1) must also solve (5.32) im-
plying (pointwise)

gk ∈ range[Mk Nk ](5.34)

and thus we must have f̂2 = 0. If such a Z2 does not occur, then we can set f̂2 = 0
anyway. On the other hand, one can show that (5.34) implies solvability of (1.1).

Theorem 5.4. Let (E,A) satisfy Hypothesis A.3. Furthermore, let f satisfy
(5.34). Then x solves (1.1) if and only if it solves (5.32).

Proof. As already mentioned, if x solves (1.1) it is immediately clear by con-
struction that it also solves (5.32). Let x now be a solution of (5.32). According
to Theorem 3.3, we restrict the problem to an interval Ij and transform there to
the canonical form (Ẽ, Ã) given in (3.1). Due to Hypothesis A.3 the block-sizes of
both canonical forms must coincide. Let the corresponding derivative arrays be de-
noted by (M�, N�) and (M̃�, Ñ�), respectively. In the notation of Hypothesis A.3 and
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Lemma 5.1, we have

Z̃H
1 Ẽ = ZH

1 P−1PEQ = Z1EQ,

Z̃H
1 Ã = ZH

1 P−1(PAQ− PEQ̇) = Z1AQ− Z1EQ̇,

Z̃H
3 Ñk−1[ In 0 · · · 0 ]H =

= ZH
3 Π−1

k−1(Πk−1Nk−1Θk−1 −Πk−1Mk−1Ψk−1)[ In 0 · · · 0 ]H =
= ZH

3 Nk−1Θk−1[ In 0 · · · 0 ]H = ZH
3 Nk−1[Q ∗ · · · ∗ ]H =

= ZH
3 Nk−1[ In 0 · · · 0 ]HQ.

This shows that the reduced problem transforms covariantly with Q. Thus, it is
sufficient to consider the problem in the canonical form of (3.1). Hence, we are
allowed to assume that

E =


 Id 0 W

0 0 F
0 0 G


 , A =


 0 L 0

0 0 0
0 0 Ia


 , f =


 f1

f2

f3


 ,

where F and G have the nilpotent structure of (3.2). Using again formally infinite
matrix functions, we get from (5.18) that we can choose

ZH
3 = [ 0 0 Ia | 0 0 ZH

31 | 0 0 ZH
32 | · · · ]

with

[ ZH
31 ZH

32 · · · ] = [G 0 · · · ](I −X)−1

satisfying (5.9). In the same way, we can choose

ZH
2 = [ 0 Iv 0 | 0 0 ZH

21 | 0 0 ZH
22 | · · · ]

with

[ ZH
21 ZH

22 · · · ] = [ F 0 · · · ](I −X)−1

satisfying (5.31) because of

ZH
2 Mk = [ F 0 · · · ] + [ ZH

21 ZH
22 · · · ](X − I) = 0,

ZH
2 Nk = Iv0 + [ ZH

21 ZH
22 · · · ]0 = 0.

Finally, we can choose

ZH
1 = [ Id 0 0 ].

The corresponding reduced problem thus reads

 Id 0 0

0 0 0
0 0 0




 ẋ1

ẋ2

ẋ3


 =


 0 L 0

0 0 0
0 0 Ia




 x1

x2

x3


 =


 f̂1

f̂2

f̂3



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with

f̂1 = f1,

f̂2 = f2 + FV H(I −X)−1g,

f̂3 = f3 +GV H(I −X)−1g,

V =




Ia

0
...


 , g =




ḟ3

f̈3

...


 .

In particular, we have f̂2 = 0 due to the assumption on gk. The reduced problem at
once yields x3 = −f̂3. With the block up-shift matrix

S =




0 I
0 I

. . .
. . .


 ,

we have the identities ġ = SHg,

(I −X)−1SH = SH(I −X)−1 − (I −X)−1Ẋ(I −X)−1,

see [7], and

V H(I −X)−1 = V H
∑
i≥0

X i = V H + V HX
∑
i≥0

X i =

= V H + (ĠV H +GV HSH)(I −X)−1.

We then find that

f̂2 − F
˙̂
f3 = f2 + FV H(I −X)−1g − F ḟ3 − FĠV H(I −X)−1g −

−FGV H(I −X)−1Ẋ(I −X)−1g − FGV H(I −X)−1ġ =
= f2 + FV Hg + FĠV H(I −X)−1g + FGV HSH(I −X)−1g −

−F ḟ3 − FĠV H(I −X)−1g − FGV HSH(I −X)−1g +
+FGV H(I −X)−1SHg − FGV H(I −X)−1SHg =

= f2 + FV Hg − F ḟ3 = f2.

Replacing F with G yields in the same way that f̂3 −G
˙̂
f3 = f3. Hence,

F ẋ3 = −F
˙̂
f3 = f2 − f̂2 = f2,

Gẋ3 = −G
˙̂
f3 = f3 − f̂3 = x3 + f3.

This shows that the transformed x solves the transformed DAE (1.1) on Ij . Thus,
x solves (1.1) on Ij for every j ∈ N and therefore on a dense subset of I. Since all
functions are continuous, the given x solves (1.1) on the entire interval I.

Theorem 5.5. Hypothesis A.3 implies Hypothesis A.1.
Proof. Extending T3 from (5.10) to a smooth pointwise nonsingular matrix func-

tion [ T3 T4 ] and splitting T3 into [T1 T2 ] such that ZH
1 ET1 is pointwise nonsingular

and ZH
1 ET2 = 0, the pair of matrix functions belonging to the reduced problem (5.32)
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can be transformed to the canonical form of (3.1) according to




 Ê1

0
0


 ,


 Â1

0
Â3




 ∼




 ZH

1 ET1 0 ZH
1 ET4

0 0 0
0 0 0


 ,


 ∗ ∗ ∗

0 0 0
0 0 Â3T4




 ∼

∼



 Id 0 ∗

0 0 0
0 0 0


 ,


 J ∗ ∗

0 0 0
0 0 Ia




 ∼

∼



 Y 0 ∗

0 0 0
0 0 0


 ,


 JY ∗ ∗

0 0 0
0 0 Ia


−


 Ẏ 0 ∗

0 0 0
0 0 0




 ∼

∼



 Y 0 ∗

0 0 0
0 0 0


 ,


 0 ∗ 0

0 0 0
0 0 Ia




 ∼

∼



 Ia 0 W

0 0 0
0 0 0


 ,


 0 L 0

0 0 0
0 0 Ia




 ,

where Y is chosen as a solution of the differential equation Ẏ = JY with some
nonsingular initial value. See [5] for more details. Let now P and Q denote the matrix
functions associated with this transformation to canonical form. Comparing with (3.1)
shows that the reduced problem has a vanishing strangeness index. Thus, Theorem 3.4
yields that the reduced problem satisfies Hypothesis A.1 with Φ and Ψ from Q =
[ΦΨΘ]. Due to Theorem 5.4, the solution space of the homogeneous DAE associated
with the original pair (E,A) then has the required form (3.16). Furthermore, we have

P


 Ê1

0
0


Φ =


 Id

0
0




implying that rank Ê1Φ = rankZH
1 EΦ = d and therefore rankEΦ = d. Assume now

that the original DAE and thus the reduced DAE is solvable. Then, with x = Φx1 +
Ψx2 +Θx3 the reduced DAE yields x3 = −(Â3T4)−1f̂3 with f̂3 = ZH

3 gk−1. Choosing
x2 = 0 then gives a solution of the reduced DAE and thus of the original DAE which
has exactly the required form (3.19). Finally, if (E,A) satisfies Hypothesis A.3, then
every restriction of (E,A) to a nontrivial subinterval also satisfies Hypothesis A.3.

Let now (M̃�, Ñ�) be the derivative arrays belonging to the canonical form (Ẽ, Ã)
from (4.28). Since the part (G, Ia) satisfies Hypothesis A.2, we already know from
Hypothesis A.3 that there exists a Z̃3 ∈ C(I,Ckm,a) of the form

Z̃H
3 = [ 0 0 D̃0 | 0 0 D̃1 | · · · | 0 0 D̃k−1 ](5.35)

with

Z̃H
3 M̃k−1 = 0, rank Z̃H

3 Ñk−1 = a.(5.36)
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Furthermore, the DAE belonging to the canonical form from (4.28) is solvable if and
only if F ẋ3 = f2 in the notation as in (3.4). Replacing x3 with the help of (5.30)
gives

f2 =
k∑

i=0

C̃if
(i)
3(5.37)

with C̃i ∈ C(I,Cv,a). We then define Z̃2 ∈ C(I,C(k∗1)m,v) by

Z̃H
2 = [ 0 Iv − C̃0 | 0 0 − C̃1 | · · · | 0 0 − C̃k ].(5.38)

For every sufficiently smooth x̃ ∈ C1(I,Cn), the DAE belonging to the canonical form
from (4.28) with f̃ = Ẽ ˙̃x − Ãx̃ is obviously solvable. Hence, we have Z̃H

2 g̃k = 0 for
g̃k being the inhomogeneity of the corresponding inflated DAE. It follows that

Z̃H
2 M̃k

˙̃zk = Z̃H
2 Ñkz̃k(5.39)

must hold for all sufficiently smooth x̃ ∈ C1(I,Cn) implying

Z̃H
2 M̃k = 0, Z̃H

2 Ñk = 0.(5.40)

These properties of (Ẽ, Ã) lead to the following formulation of a characterizing hy-
pothesis.

Hypothesis B.3. The pair (E,A) of matrix functions satisfies properties 1)–3)
of Hypothesis A.3 and the following property:
4) There is a pointwise nonsingular R ∈ C(I,Cm,m) with (3.20), where Φ is as in the
proof of Theorem 5.5, such that for the transformed problem (RE,RA) with derivative
arrays (M̃�, Ñ�) there exists a Z̃2 ∈ C(I,C(k+1)m,v), v = m− d− a, of the form

Z̃H
2 = [ 0 Iv − C0 | 0 0 − C1 | · · · | 0 0 − Ck ](5.41)

satisfying

Z̃H
2 M̃k = 0, Z̃H

2 Ñk = 0.(5.42)

Moreover, there exists a Z̃3 ∈ C(I,Ckm,a) of the form

Z̃H
3 = [ 0 0 D0 | 0 0 D1 | · · · | 0 0 Dk−1 ](5.43)

with the properties of 1) for the transformed problem.
Since by construction property 4) of Hypothesis B.3 is invariant under (global)

equivalence transformations, the invariance of Hypothesis B.3 follows from the invari-
ance of Hypothesis A.3. Observing that for (E,A) satisfying Hypothesis B.2, we can
choose R to be the transformation P behind the equivalence in (4.28), the discussion
that led to Hypothesis B.3 proves the following result.

Theorem 5.6. Hypothesis B.2 implies Hypothesis B.3.
In the overall setting of characterizing classes of singular DAEs there is now only

one result missing.
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Theorem 5.7. Hypothesis B.3 implies Hypothesis B.1.
Proof. Since we have already shown that Hypothesis B.3 implies Hypothesis A.1,

we only must show property 3) of Hypothesis B.1. Moreover, we can use the results
of the beginning of Section 4 up to (4.22) and (4.23) with Q = [ Φ Ψ Θ ] from the
proof of Theorem 5.5 and R as given by Hypothesis B.3. In particular, we have

(REQ,RAQ) =




 Id 0 E13

0 0 E23

0 0 E33


 ,


 0 L A13

0 0 A23

0 0 A33




 .(5.44)

Since Z̃2 and Z̃3 are not affected by the part Q of equivalence transformations (see
proof of Lemma 5.1), we can assume that (M̃�, Ñ�) are the derivative arrays belong-
ing to (REQ,RAQ). Because of property 1) with the special form of Z̃3, the part
(E33, A33) satisfies Hypothesis A.3 with n = a and thus d = v = 0. The corresponding
reduced problem only consists of the part (5.32c) which is uniquely solvable as long
as f̂3 is defined, i.e., as long as f3 is sufficiently smooth. The proof of Theorem 5.4
then yields that the obtained solution of the reduced DAE also solves (4.23c) and
that it is unique.

Consider now (1.1) with sufficiently smooth f and corresponding f2 in (4.23). If
f2 does not satisfy (3.22) with the Ci chosen from Z̃2, the inflated DAE

M̃k
˙̃zk = Ñkz̃k + g̃k

belonging to the transformed problem produces Z̃H
2 g̃k �= 0 and (1.1) cannot have a

solution. If on the other hand f2 satisfies (3.22), we take x3 to be the unique solution
of (5.32c). Then




E33

Ė33 −A33 E33

...
. . . . . .

E
(k)
33 − kA

(k−1)
33 · · · kĖ33 −A33 E33







ẋ3

∗
...
∗


 =




A33

Ȧ33

...
A

(k)
33


x3 +




f3

ḟ3

...
f

(k)
3




and multiplication with [ C0 C1 · · · Ck ] yields

E23ẋ3 = A23x3 + f2

because of (5.42). Thus, x3 also solves (4.23b) implying that (4.23) and therefore
(1.1) is solvable.

Remark 5.8. For the numerical treatment of linear DAEs, it is clear that we
cannot deal with consistency conditions as in property 4) of Hypothesis B.3. On
the other hand, Hypothesis A.3 is sufficient to define the reduced DAE (5.32). This
reduced DAE is numerically accessible except for f̂2 and non-smooth scalings from
the left. The latter do not affect the numerical solution, since they simply cancel
out in the standard discretization schemes like BDF methods. Furthermore, we can
simply set f̂2 = 0 or leave out the corresponding equation to make the reduced DAE
solvable. We can then fix the free part of the unknown function by some appropriate
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Table 1
Summary of implications

Hyp. A.1 Th. 4.1=⇒ Hyp. A.2 Th. 5.2=⇒ Hyp. A.3 Th. 5.5=⇒ Hyp. A.1
⇑ Th. 5.3

Hyp. B.1 Th. 4.2=⇒ Hyp. B.2 Th. 5.6=⇒ Hyp. B.3 Th. 5.7=⇒ Hyp. B.1
⇑ Th. 3.4
Hyp. C.0

additional condition, see, e.g., [6]. Moreover, the consistency of the inhomogeneity
can be checked numerically if one determines an approximation to the residual

r = Eẋ−Ax− f(5.45)

by using a discretized version of it. See also [6] for a similar statement.
Remark 5.9. Up to now, we have not yet addressed property 2) of Hypothe-

sis A.3. This is due to the fact that it is actually implied by the other properties.
Nevertheless, we have included it to make the following procedure possible. Let (E,A)
satisfy Hypothesis A.3. Then there is a minimal value µ̂, such that Hypothesis A.3 is
fulfilled with µ̂ replacing k − 1. Property 2) of Hypothesis A.3 then guarantees that
the quantities a and d are uniquely fixed and that the theory concerning the reduced
DAE still works for the smaller derivative arrays. If µj is the strangeness index of
(E,A) restricted to Ij from (3.3) for j ∈ N, it is possible to show that

µ̂ = max
j∈N

{µj}.(5.46)

In particular, one can consider µ̂ as a generalization of the strangeness index for such
a pair (E,A). Cp. [7] in the case of regular DAEs.

6. Summary and Conclusions. We started with properties of pairs of matrix
functions and the associated DAEs when they possess a well-defined strangeness in-
dex. We then examined pairs of matrix functions which exhibit the same properties.
In particular, the investigations ran on two levels, where in the more restrictive case
additional structure of the space of consistent inhomogeneities was considered. The
results of this paper are that on both levels we have obtained three equivalent char-
acterizations of the corresponding class of pairs. In particular, they were by means
of spaces, of canonical forms and of derivative arrays. To give an overview over all
theorems that contributed to these characterizations, we first introduce the following
hypothesis for completeness.

Hypothesis C.0. The pair (E,A) of matrix functions has a well-defined
strangeness index.

The course of our presentation can then be drawn from Table 1 which shows
all involved theorems with their implications. This diagram can then be simplified
to show the three levels of classes of singular pairs of matrix functions and DAEs
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Table 2
Levels and equivalences

Hyp. A.1 ⇐⇒ Hyp. A.2 ⇐⇒ Hyp. A.3
⇑

Hyp. B.1 ⇐⇒ Hyp. B.2 ⇐⇒ Hyp. B.3
⇑

Hyp. C.0

(when one includes the most special level of a well-defined strangeness index) and
their equivalent characterizations, see Table 2.

Of course, the most important level is the most general top level. For numerical
purposes it is therefore worth mentioning that the properties of DAEs belonging
to this level allow for a numerical treatment via the associated reduced problem.
Overall, we have obtained classifications for several different classes of possibly over-
or underdetermined DAEs.

We finish up with a small example in order to illustrate the various characteri-
zations we have dealt with in this paper. It should, however, be noted that such an
example cannot cover all aspects we have touched here.

Example 6.1. Let E,A ∈ C(R,C2,2) and f ∈ C(R,C2) be given by

E(t) =
[ −t t2

−1 t

]
, A(t) =

[ −1 0
0 −1

]
, f(t) =

[
h1(t)
h2(t)

]
.

Defining P ∈ C(R,C2,2) and Q ∈ C1(R,C2,2) by

P (t) =
[

0 −1
1 −t

]
, Q(t) =

[ −t 1
−1 0

]
,

a short computation yields

P (t)E(t)Q(t) =
[

0 1
0 0

]
, P (t)A(t)Q(t) − P (t)E(t)Q̇(t) =

[
0 0
0 1

]
.

Hence, the pair (E,A) of matrix functions has a well-defined strangeness index µ = 1.
In particular, we have F,G ∈ C(R,C1,1) with F (t) = 1 and G(t) = 0 in (3.1). It is
then obvious that (E,A) satisfies Hypothesis B.2.

Writing down the associated DAE (1.1) as

−tẋ1 + t2ẋ2 = −x1 + h1(t), −ẋ1 + tẋ2 = −x2 + h2(t),

we can multiply the second equation with t and subtract the so obtained relation from
the first equation. This yields

x1 = tx2 + h1(t)− th2(t).
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We can then differentiate x1 and eliminate ẋ1 in the second equation. In this way, we
obtain the consistency condition

ḣ1(t)− tḣ2(t) = 0,

which is certainly not of the form (3.22). To obtain all solutions of the corresponding
homogeneous problem, we can choose x2 = −c with arbitrary c ∈ C1(R,C) to get
x1 = −tc. Splitting Q according to (3.13), the part Φ is empty due to d = 0 and the
parts Ψ,Θ are given by

Ψ(t) =
[ −t

−1

]
, Θ(t) =

[
1
0

]
.

Hence, the solution space K has the required form (3.16). Furthermore, if the inho-
mogeneity is consistent, then the function x defined by

x(t) =
[

h1(t)− th2(t)
0

]
= Θ(h1(t)− th2(t))

is a particular solution of the DAE of the form (3.19). In order to show that the given
pair (E,A) satisfies Hypothesis B.1, we must show that there exists a suitable matrix
function R ∈ C(R,C2,2) such that consistency of the inhomogeneity is characterized
by a relation of the form (3.22). The property (3.20) holds here for every R because
of d = 0. Choosing R = P as suggested in the general setting and transforming the
original DAE by multiplying with R from the left gives

ẋ1 − tẋ2 = x2 + f1(t), 0 = −x1 + tx2 + f2(t),

with

R(t)f(t) =
[

0 −1
1 −t

] [
h1(t)
h2(t)

]
=
[ −h2(t)

h1(t)− th2(t)

]
=
[

f1(t)
f2(t)

]
.

Note that the numbering of the components is here different from that in (3.21).
Solving again for x1, differentiating, and eliminating x̃1 gives the consistency condition

f1(t) = ḟ2(t),

which obviously is of the form (3.22).
Turning to derivative arrays, we must consider M1, N1 due to k = 2. These are

given by

M1 =




−t t2 0 0
−1 t 0 0
0 2t −t t2

0 2 −1 t


 , N1 =




−1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0


 .

Following Hypothesis A.3, we can choose the matrix functions Z3, T3 according to

Z3(t)H = [ 1 −t | 0 0 ], T3(t) =
[

t
1

]
,
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while all possible matrices Z4 can be obtained from the choice

ZH
4 =

[
1 −t 0 0
0 0 1 −t

]

by multiplying with some nonsingular matrix from the left. Recalling d = 0, the part
3) of Hypothesis A.3 is trivially satisfied. In order to show part 4) of Hypothesis B.3,
we again choose R = P . The corresponding derivative arrays are given by

M̃2 =




1 −t 0 0 0 0
0 0 0 0 0 0
0 −2 1 −t 0 0
1 −t 0 0 0 0
0 0 0 −3 1 −t
0 −2 1 −t 0 0



, Ñ2 =




0 1 0 0 0 0
−1 t 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



.

Possible choices for the matrix functions Z̃2, Z̃3 are given by

Z̃2(t)H = [ 1 0 | 0 −1 | 0 0 ], Z̃3(t)H = [ 0 1 | 0 0 ].
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