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ON POLYNOMIALS IN TWO PROJECTIONS∗

ILYA M. SPITKOVSKY†

Abstract. Conditions are established on a polynomial f in two variables under which the
equality f(P1, P2) = 0 for two orthogonal projections P1, P2 is possible only if P1 and P2 commute.
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1. Introduction. Denote by C
n×n the set of all n × n matrices with complex

entries. Let P1, P2 ∈ Cn×n be two orthogonal projections, that is,

Pj = P ∗
j = P 2

j , j = 1, 2.

Then an arbitrary polynomial f in two variables P1, P2 has the form

f(P1, P2) =
∑

c(m,i)P(m,i) (1.1)

with m assuming natural values and i ∈ {1, 2}. Here c(m,i) ∈ C, and P(m,i) is the
notation for an alternating product of m multiples P1, P2 starting with Pi.

We are interested in the question for which polynomials f it is true that

f(P1, P2) = 0 implies the commutativity of P1 and P2. (1.2)

The particular case of a binomial f was considered earlier in [3], and the situation
of three or four terms was dealt with in [1]. As a matter of fact, the problem of
describing all polynomials f for which condition (1.2) does not imply that P1 and P2

commute was also stated in [1], though not explicitly and in slightly different terms.
Our approach is different from that proposed in [3, 1], and is based on a (known)

canonical form in which a pair of orthogonal projections can be put by a unitary
equivalence. In Section 2 we recall this canonical form and prove the general result.
Section 3 is devoted to its particular cases. Finally, the infinite dimensional variations
are discussed in Section 4.

2. Main result. The following result is well known; relevant references will be
given in Section 4.

Lemma 2.1. For any two orthogonal projections P1, P2 there exists a unitary
transformation U such that U∗P1U is the orthogonal sum of one dimensional blocks

0, 1 and two dimensional blocks p =
[
1 0
0 0

]
while U∗P2U is the sum of (the same
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number of) one dimensional blocks 0, 1 and two dimensional blocks

pt =
[

t
√

t(1− t)√
t(1− t) 1− t

]
.

The number of two dimensional blocks coincides with the number of the eigenvalues
of P1P2P1 different from 0 and 1 (and therefore lying strictly in between), and the
parameter t runs through the set of all such eigenvalues (counting their multiplicities).

To formulate our main result, we need to introduce certain notation. Namely, let
us partition the set of indices in the right hand side of (1.1) into four disjoint classes,
corresponding to m being odd or even and i equal 1 or 2. Accordingly, introduce four
scalar polynomials:

φ1(t) =
∑

c(2k+1,1)t
k, φ2(t) =

∑
c(2k,1)t

k−1,

φ3(t) =
∑

c(2k+1,2)t
k, φ4(t) =

∑
c(2k,2)t

k−1 (2.1)

(as usual, we agree that a sum with the void set of indices is equal to zero).
Theorem 2.2. Let P1, P2 be two orthogonal projections, and let f be a polynomial

in P1, P2 given by (1.1). Then statement (1.2) holds if and only if all four polynomials
φj defined by (2.1) do not vanish simultaneously at any point in (0, 1).

Proof. Let us start by computing f(p, pt), where p and pt (t ∈ (0, 1)) are 2 × 2
Hermitian idempotent matrices introduced in Lemma 2.1. This is a technical part,
needed both for the proof of necessity and sufficiency.

Direct computations show that

ppt =
[
t

√
t(1− t)

0 0

]
, pptp = tp, ptp =

[
t 0√

t(1 − t) 0

]
, and ptppt = tpt.

Consequently,

f(p, pt) = φ1(t)p + φ2(t)ppt + φ3(t)pt + φ4(t)ptp. (2.2)

Necessity. Suppose that all four polynomials φj have a common zero (say, t0) in
(0, 1). Then, according to (2.2), f(p, pt0) = 0. On the other hand, the orthogonal
projections p, pt0 do not commute, since

ppt − ptp =
[

0
√

t(1− t)
−√

t(1− t) 0

]
.

Sufficiency. Suppose that the polynomials φj , j = 1, . . . , 4, do not have joint zeros
on (0, 1) and that the orthogonal projections P1, P2 do not commute. According to
Lemma 2.1, f(P1, P2) is then unitarily equivalent to the orthogonal sum in which
at least one of the summands is a two dimensional block of the form f(p, pt) with
t ∈ (0, 1). Combining formula (2.2) with the fact that the matrices p, pt, ppt and ptp
are linearly independent, we conclude that f(p, pt) �= 0. Hence, f(P1, P2) �= 0.
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3. Particular cases. Apparently, zero is the only root of a monomial. This
simple observation, when combined with Theorem 2.2. leads to the following state-
ment.

Corollary 3.1. Suppose that expression (1.1) contains exactly one term with
odd (or even) number of multiples and starting with P1 (or P2). Then (1.2) holds.

The situation is only slightly more complicated when one of the polynomials φj

is a binomial, since the latter has exactly one non-zero root.
Corollary 3.2. Suppose that one of the polynomials (2.1) is a binomial, say

d1t
k1 + d2t

k2 . Then either of conditions
(i) d1d2 > 0,
(ii) (k1 − k2)(|d1| − |d2|) ≤ 0,
(iii) at least one of the remaining polynomials φj assumes a non-zero value at

x0 = (−d2/d1)1/(k1−k2),
is sufficient for (1.2) to hold.

Proof. Under condition (i) or (ii) the roots of d1t
k1+d2t

k2 lie outside of (0, 1), and
Theorem 2.2 applies in a trivial way. If conditions (i) and (ii) do not hold, then x0 is
the only root of d1t

k1 + d2t
k2 lying in (0, 1), so that the applicability of Theorem 2.2

is guaranteed by condition (iii).
We can now give an alternative proof for the following result from [3].
Theorem 3.3. Let

P(m,i) = P(l,k) with (m, i) �= (l, k). (3.1)

Then P1 and P2 commute.
Proof. Consider f(P1, P2) = P(m,i) − P(l,k). If m − l is even (but non-zero) and

i = k, then exactly one of the polynomials φj associated with f is different from zero,
and this polynomial is in fact a binomial ts1 − ts2 with s1 �= s2. Commutativity of P1

and P2 follows then from Corollary 3.2, since condition (ii) of this statement is met.
In all other cases there are two non-trivial polynomials φj , both being monomials, so
that Corollary 3.1 applies.

It is straightforward (and was also observed in [3]) that the converse of Theo-
rem 3.3 holds provided that m, l ≥ 2. The necessary and sufficient conditions for
(3.1) to hold can be easily established when min{m, l} = 1 but they are not worth
the further discussion.

Theorem 3.4. Let the polynomial (1.1) contain at most five summands. Suppose
that the set of the indices (m, i) is such that the following possibilities are excluded:

(i) all indices are of the same type, that is, all m are of the same evenness and
all i are the same;

(ii) there are two different types of the indices, one of them corresponding to
exactly two coefficients of the opposite sign.

Then statement (1.2) holds.
Proof. Suppose first that the number of types of the indices present (that is, the

number of non-zero polynomials (2.1) associated with f) is three or higher. Then at
least one of φj is a monomial, and Corollary 3.1 applies. This corollary applies also
when there are two non-zero polynomials φj but one of them is still a monomial. It
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remains to consider the case when there are exactly two non-zero polynomials φj ,
neither of which being a monomial. At least one of them must then be a binomial,
and its coefficients are of the same sign due to condition (ii). This is the situation (i)
of Corollary 3.2.

A particular case of Theorem 3.4, dealing with four summands and not utilizing
the properties of the coefficients, was proved in [1]1.

4. Infinite dimensional setting. Lemma 2.1 is a finite dimensional adaptation
of the following result.

Theorem 4.1. Let P1 and P2 be two orthogonal projections acting on a Hilbert
space H. Then there exist an orthogonal decomposition

H = M00 ⊕ M01 ⊕ M10 ⊕ M11 ⊕ M0 ⊕ M1, (4.1)

a Hermitian operator H on M0 with the spectrum in [0, 1] not having 0, 1 as its eigen-
values, and a unitary operator W : M1 → M0 such that with respect to decomposition
(4.1):

P1 =I ⊕ I ⊕ 0⊕ 0⊕
[
I 0
0 0

]
,

P2 =I ⊕ 0⊕ 0⊕ I ⊕
[
I 0
0 W ∗

] [
H

√
H(I − H)√

H(I − H) I − H

] [
I 0
0 W

]
.

(4.2)

As a matter of fact, the summands in (4.1) and the operator H are defined
uniquely. Namely,

M00 = ImP1 ∩ ImP2, M01 = ImP1 ∩KerP2,

M10 = KerP1 ∩KerP2, M11 = KerP1 ∩ ImP2,

M0 is the orthogonal complement of M00 ⊕ M01 in ImP1, and H is the restriction
of P1P2P1 onto M0. The non-trivial part of Theorem 4.1 is the statement that H is
unitarily equivalent to the restriction of (I −P1)(I −P2)(I −P1) onto the orthogonal
complement M1 of M10 ⊕ M11 in KerP1; the operator W arises from this unitary
equivalence. The operators P1 and P2 commute if and only if the subspace M0

(and therefore M1) has zero dimension, that is, the orthogonal sums in (4.1), (4.2)
degenerate to the first four summands.

Theorem 4.1 in various disguises can be found, for example, in [7, 4, 5], and some
of its applications are in [9, 8, 6].

The question on the validity of (1.2) can be asked in the setting of Hilbert spaces.
Using the notation (2.1) and formula (4.2), it is easy to see that f(P1, P2) is the sum
of a diagonal operator acting on M00 ⊕M01 ⊕M10⊕M11 with the operator unitarily
equivalent to[

φ1(H) +H(φ2 + φ3 + φ4)(H) (φ2 + φ3)(H)
√

H(I − H)
(φ3 + φ4)(H)

√
H(I − H) φ3(H)(I − H)

]
.

1Added in proof: The case of four summands was also considered in [2, Theorem 2.3].
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Due to the injectivity of H and I − H , the latter operator is zero if and only if
φj(H) = 0 for j = 1, . . . , 4. The spectral mapping theorem implies then that the
polynomials φj have a common root on (0, 1), unless the summands M0 and M1 are
missing in the decomposition (4.1). The latter happens if and only if the operators
P1 and P2 commute, which proves the operator version of Theorem 2.2. From here
it follows that the results of Section 3 also remain valid verbatim in the infinite
dimensional setting.

In fact, our results hold in a (formally) more general situation when P1 and P2

are selfadjoint idempotent elements of any C∗-algebra A, because any such A is iso-
morphic to a subalgebra of the algebra of bounded linear operators on a Hilbert space
H. On the other hand, the selfadjointness condition is essential: even Theorem 3.3 is
not valid if P1, P2 are idempotent non-selfadjoint matrices.
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