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Abstract. An infinite matrix is called irreducible if its directed graph is strongly connected.
It is proved that an infinite Toeplitz matrix is irreducible if and only if almost every finite leading
submatrix is irreducible. An infinite Hankel matrix may be irreducible even if all its finite leading
submatrices are reducible. Irreducibility results are also obtained in the finite cases.
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1. Introduction. The concepts of irreducibility of a finite square matrix with
nonnegative real entries were treated in a remarkable historical perspective in a paper
by H. Schneider [9]. In the paper [6] by I. Marek and K. Zitny concepts of irreducibility
for possibly infinite matrices were studied and compared, e.g. the concepts of G.
Frobenius [2], D. König [5] and H. Geiringer [3] with those of others. Based on their
results on the (essential) equivalence of all these concepts, we accept the following
definition due to D. König [5], which is also standard in the field of countable Markov
chains (cf., e.g., [8]):

Definition 1.1. Assume that N is a positive integer or the cardinal ℵ0 (which
we shall simply denote by ∞). Accordingly, let D(N) be either the finite sequence
{0, 1, 2, . . . , N} or the infinite sequence {0, 1, 2, . . .} ≡ N0. Let

M(N) : D(N) × D(N) → C

be a matrix with complex entries. It is called irreducible, if its directed graph (≡
digraph) is (strongly) connected.

For the corresponding concepts of elementary graph theory we refer the reader to
König [5] or Ore [7]. Recall that the graph of M is strongly connected, by definition,
if each vertex k is accessible (or, equivalently, reachable) from each vertex j �= k. This
means that there is a path between them, i.e. a finite sequence of states(≡ vertices)
{i1, . . . , ir} such that

mji1mi1i2 . . . mirk �= 0.

In this case we say that k is accessible from j in r + 1 steps. Clearly, these concepts
depend only on the zero-nonzero structure of the matrix M , so we can and will al-
ways consider the indicator or Boolean matrix of M containing the entry 1 at the

∗Received by the editors 21 March 2006. Accepted for publication 24 September 2006. Handling
Editor: Richard A. Brualdi.

†Institute of Mathematics, Technical University of Berlin, Str. 17. Juni 136, D-10623 Berlin,
Germany (foerster@math.tu-berlin.de)

‡Department of Analysis, Institute of Mathematics, Budapest University of Technology and Eco-
nomics, H-1521 Egry J. u. 1. Budapest, Hungary (bnagy@math.bme.hu). The research was partially
supported by the Hungarian National Foundation for Scientific Research, Grant No. T047276, by
the DAAD, by the TU Berlin and the Budapest UTE.

274

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 15, pp. 274-284, October 2006

http://math.technion.ac.il/iic/ela



ELA

Irreducible Toeplitz and Hankel Matrices 275

place of each nonzero entry of M . It is also clear that in the question of reducibil-
ity the convergence problems concerning an infinite matrix (representing perhaps an
operator) are irrelevant. Note that we shall use the words diagonal, main diagonal,
perpendicular diagonal in the classical sense (hence not in the sense used frequently
in combinatorial matrix theory).

We want to study the reducibility problem of finite and infinite Toeplitz and
Hankel matrices. According to the preceding paragraph, this is the same as to study
the reducibility of matrices of type T and H , respectively, in the following

Definition 1.2. We shall say that the square matrix is of type T (of type H) if
its each diagonal parallel (perpendicular) to the main diagonal contains either exclu-
sively 0, or exclusively nonzero entries. Consequently, in their indicator matrices the
corresponding diagonals contain either exclusively 0, or exclusively 1 as entries. The
corresponding indicator matrices will be denoted by T (N) and H(N), respectively.
If we consider an infinite matrix T (∞), then T (N) for N ∈ N0 will denote its left
upper corner (N + 1) × (N + 1) (leading) submatrix or, equivalently, finite section
(and similarly for type H). We shall consider the 1 × 1 zero matrix as reducible.

A moment’s reflection will convince us that for any infinite matrix M(∞) the
irreducibility of an infinite number of the finite sections M(Nr) (r = 1, 2, . . .) implies
the irreducibility of M(∞). On the other hand, the converse for general matrices is
false.

The main aim of this paper is to solve the converse problem for the case of
matrices of type T and of type H . We shall prove that T (∞) is irreducible if and only
if there is N1 ∈ N such that for every N ≥ N1 the submatrix T (N) is irreducible.
On the other hand, it can happen that the matrix H(∞) (of type H) is irreducible,
and all finite sections H(N) are reducible. Further, we shall obtain results on the
irreducibility of finite matrices T (N) and H(N) of types T and H , respectively.

Note that it will be convenient to let the subscripts run always from 0. Further,
we shall be working with integers, so the interval [a, b] for a, b ∈ Z will denote the set

[a, b] := {z ∈ Z : a ≤ z ≤ b}.

The greatest common divisor of integers in the set S will be written as gcd(S). Clearly,
gcd(S) > 0 means that S is nonvoid. The algebraic difference of the sets A and B
will be denoted by

A − B := {a− b : a ∈ A, b ∈ B},

and for n ∈ N we set

nA := {na : a ∈ A}.

2. Matrices of type T. Let N be a positive integer or the symbol ∞. Let
B(N) := [−N, N ] if N is an integer, let B(∞) := Z, and let

b : B(N) → [0, 1]
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be a finite two-way sequence if N is an integer, and a two-way infinite sequence if
N = ∞. Define

tij := b(j − i) (i, j ∈ B(N) ∩N0).

The (finite or infinite) square matrix

T ≡ T (N) ≡ T (N, b) := {tij : i, j ∈ B(N) ∩ N0}
of order (N + 1) (or ∞) is the indicator or Boolean matrix of any corresponding
matrix of type T .

The following notation will be used in Section 2 throughout. Consider the se-
quence of exactly those integers 0 < p1 < p2 < p3 < . . . for which b(pr) = 1. In a sim-
ilar vein, consider the sequence of exactly those integers 0 > −n1 > −n2 > −n3 > . . .
for which b(−ns) = 1. The strictly increasing (finite or infinite) sequences of positive
integers {pr} and {ns} describe exactly the nonzero places of the 1s in the zeroth row
(column, respectively) of the matrix T . Define

p := gcd(p1, p2, . . .), n := gcd(n1, n2, . . .), g := gcd(p, n).

It is clear that these greatest common divisors are the gcd-s of finite numbers of terms
from the sequences:

p = gcd(p1, p2, . . . , pu), n = gcd(n1, n2, . . . , nv), g = gcd(p1, . . . , pu, n1, . . . , nv).

Theorem 2.1. Using the above notation, the infinite matrix T (∞) of type T is
irreducible if and only if p > 0, n > 0 (or, equivalently, there is [apart from the place
0] at least one 1 both in the zeroth row and in the zeroth column), and g = 1.

Proof. By definition, the matrix is irreducible iff its directed graph is strongly
connected. This is equivalent to the statement that the state 0 is reachable from
every state m ∈ N, and every state j ∈ N is reachable from the state 0. The second
condition implies that there exist nonnegative integers xi ≡ xi(j) and yk ≡ yk(j) such
that

j =
u∑

i=1

xipi −
v∑

k=1

yknk.

The reason is that the structure of the indicator matrix T (∞) shows that the allowed
1-step transitions are exactly either pi states in the positive direction or nk states in
the negative direction. This implies that p > 0, and also that g|j (i.e. g divides j)
for every j ∈ N. It follows that g = 1. The first condition implies that there exist
nonnegative integers wi ≡ wi(m) and zk ≡ zk(m) such that

0 = m +
u∑

i=1

wipi −
v∑

k=1

zknk.

Hence we obtain that the set of the nk’s cannot be empty, i.e. n > 0, and the necessity
of the stated conditions is proved.
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According to the above argument, in order to prove that the stated conditions
are sufficient, we shall show that for every m ∈ N both the equations

u∑
i=1

xipi −
v∑

k=1

yknk = +m [or = −m]

have nonnegative integer solutions {xi(m), yk(m)} (and similarly for −m). We shall
prove it for the first case, the second being completely similar.

It is well known that any infinite set S of positive integers, which is closed under
addition, contains all but a finite number of the positive multiples of its greatest
common divisor (see, e.g., [8, Lemma A.3, p.183]). Consider the cases

S1 := {
u∑

i=1

xipi : xi ∈ N0, there exists xj > 0},

S2 := {
v∑

k=1

yknk : yk ∈ N0, there exists yj > 0}.

It is clear that gcd(S1) = p > 0, and gcd(S2) = n > 0. Hence there is a positive
integer M such that x, y ∈ N, x, y ≥ M imply xp ∈ S1, yn ∈ S2. Further, the
assumptions p > 0, n > 0, g = 1 imply that the linear Diophantine equation

xp − yn = m

has an infinite number of such solutions (x, y) that x, y ≥ M . By the above argument,
the stated solution then exists, and the sufficiency is proved.

It is remarkable that the irreducibility of a finite leading submatrix T (N) of T (∞)
seems to be harder to decide. If T (∞) has the determining parameters denoted as
above, then it is clearly sensible to study only those submatrices T (N) which already
contain all the 1s in the zeroth row and in the zeroth column. Hence we shall assume
that N ≥ max[pu, nv], and we have the following

Theorem 2.2. If the finite leading submatrix T (N) (of order (N + 1)) of T (∞)
is irreducible then, using the above notation, we have p > 0, n > 0, g = 1, further

N + 1 ≥ p1 + n1 ≡ min{pk : k = 1, . . . , u} + min{ns : s = 1, . . . , v}.

In the converse direction: if p > 0, n > 0, g = 1, further

N + 1 ≥ pu + nv ≡ max{pk : k = 1, . . . , u} + max{ns : s = 1, . . . , v},

then T (N) is irreducible.
Proof. A short inspection of the first half of the preceding proof shows that the

irreducibility of T (N) implies the conditions p > 0, n > 0, g = 1 in the finite case,
too. Further, if p1 + n1 > N + 1, then the matrix T (N) contains a zero row (and
column), which contradicts irreducibility.
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In the converse direction: if p > 0, n > 0, g = 1, then the second half of the
preceding proof shows that for every m ∈ Z satisfying −N ≤ m ≤ N there exist
nonnegative integers xi and yk such that

u∑
i=1

xipi −
v∑

k=1

yknk = m.

In the case N < ∞ we shall show that, under our additional condition, the above
representation of the state m can be written in such an order of the summation that
all “partial sums” stay within the interval [0, N ]. Clearly, if we have achieved this
for a given partial sum, and all the remaining terms have the same sign, then the
condition that m is also in the interval [0, N ] ensures that all the remaining partial
sums stay within. On the other hand, if the remaining terms have different signs,
then the condition pu + nv ≤ N + 1 ensures that we can choose the next term (pi or
nk) so that we still remain in the interval [0, N ]. Indeed, if we are in state q and, a
contrario, q + pu > N and q − nv < 0, then pu + nv > N + 1, a contradiction.

The following theorem is the main result on the irreducibility of infinite and finite
matrices of type T , and follows simply from the preceding ones.

Theorem 2.3. The infinite matrix T (∞) of type T is irreducible if and only
if for N + 1 ≥ pu + nv every finite left upper corner submatrix T (N) of T (∞) is
irreducible. �

The next Proposition gives a method for deciding which finite leading submatrices
T (N) (with a given parameter set) are irreducible.

Proposition 2.4. Consider a matrix T (∞) of type T with the parameter set (as
above)

(p1, . . . , pu), (n1, . . . , nv).

The irreducibility of the leading submatrices T (N) (with these given parameters) can
be checked systematically starting by the integer(≡ order − 1)

Ns := max[pu, nv, p1 + n1 − 1],

and progressing upwards by order 1 at each step. If for some N0 ≥ Ns the submatrix
T (N0) is irreducible, so is T (N) for every N ≥ N0. The smallest value N for which
T (N) is irreducible will be denoted by N1, and it satisfies

Ns ≤ N1 ≤ pu + nv − 1 =: Nf .

Proof. The only non-evident statement is: T (N − 1) irreducible implies T (N)
irreducible. The reason is the structure of a matrix of type T . All the diagonals
indexed by p’s and n’s will be “elongated” in T (N), i.e. they will contain at least
one entry 1 in column N and in row N , respectively. Since T (N − 1) is irreducible,
every vertex in [0, N − 1] is reachable from every other such vertex in (the graph of)
T (N − 1). By the above remark, from the vertex N we can reach some vertex in
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[0, N − 1], and from some such vertex we can reach vertex N in T (N). Hence T (N)
is irreducible.

Note that the checking of irreducibility at each step can be done e.g. by the
technique proposed by Y. Malgrange and Tomescu and described by Kaufmann in
[4], which is easily adaptable to this order-increasing process.

The following example will show that the interval obtained for N1 in the above
Proposition is the best possible. It will be suggestive to write the parameter set in the
form (p1, . . . , pu) − (n1, . . . , nv) rather than (p1, . . . , pu), (n1, . . . , nv).

Example 2.5. (6, 15)−(10, 15) implies N1 = 15. Here 15 = Ns = N1 < Nf = 29.
(6, 10) − (6, 10, 15) implies N1 = 16. Here 15 = Ns < N1 < Nf = 24.
(6) − (6, 13) implies N1 = 18. Here 13 = Ns < N1 = Nf = 18.
(2) − (3) implies Ns = 4 = Nf = N1.
(6, 10) − (15) implies N1 = 20. Here 20 = Ns = N1 < Nf = 24.

3. Matrices of type H. Let N be a positive integer or ∞, and let D(N) be
the finite set [0, N ] or D(∞) := N0, respectively. Let

b : D(2N) → [0, 1]

be a finite or infinite sequence, according as N is finite or ∞. Define

hij := b(i + j) (i, j ∈ D(N)).

The (finite or infinite) square matrix

H ≡ H(N) ≡ H(N, b) := {hij : i, j ∈ D(N)}
of order (N + 1) (or ∞) is the indicator matrix of any corresponding matrix of type
H.

Consider the (finite or infinite) set K ≡ K(2N) of exactly those values k ∈ D(2N)
for which b(k) = 1. This set describes exactly the places of the 1s in the zeroth row
of the matrix H(∞), and determines exactly the (perpendicular) diagonals of the
matrix H(N) in which hij = b(i + j) = 1. Note that all indicator matrices of type
H are symmetric, thus it is sufficient to consider their undirected graphs rather than
digraphs when we study the question of reducibility.

We start with the following simple lemma on the matrices H(N).
Lemma 3.1. The state j ∈ D(N) is accessible from state 0 in the graph of H(N)

in n steps if and only if there is a finite sequence {k1, k2, . . . , kn} of elements of the
set K(2N) such that

k1 ≥ 0, k2−k1 ≥ 0, k3−k2 +k1 ≥ 0, . . . , kn −kn−1 +kn−2− . . .+(−1)n−1k1 = j ≥ 0

and, in the finite case N ∈ N in addition, all the left-hand sides above are contained
in the interval [0, N ].

Proof. Assume first that the state j is accessible from state 0 in n steps through
the states s1, s2, . . . , sn = j (in that order), i.e.

h0s1hs1s2 . . . hsn−1j = 1.
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Define

k1 := s1, k2 := s1 + s2, k3 := s2 + s3, . . . , kn := sn−1 + sn.

By the definition of H(N), all the numbers sr are in the interval D(N), hence all the
numbers kr are contained in the set K(2N). From the equations above we obtain

s1 = k1, s2 = k2 − k1, s3 = k3 − k2 + k1, . . . , sn = kn − kn−1 + . . . + (−1)n−1k1,

and our claims follow. The converse direction is proved by tracing our steps back-
wards.

Definition 3.2. If the assertion of Lemma 3.1 holds, we say that the state j is
accessible from the state 0 (in n steps) by using recursion from the interval D(2N).
If N = ∞, and the kq’s of Lemma 3.1 are in an interval [0, d] ⊂ N0, we say that the
state j is accessible from the state 0 (in n steps) by using recursion from the interval
[0, d]. If either statement holds for every j ∈ [0, c], we say that the interval [0, c] is
accessible from 0 by using recursion from the interval D(2N) or [0, d], respectively.

We record the simple consequence of Lemma 3.1 as
Theorem 3.3. The matrix H(N) is irreducible if and only if for every j ∈ D(N)

there is n ≡ n(j) ∈ N for which the conditions of Lemma 3.1 are satisfied. �
The following necessary conditions may be useful both in the finite and in the

infinite case.
Proposition 3.4. If the matrix H(N) is irreducible, then gcd[K(2N)] = 1. If,

in addition, N < ∞, then both sets

Q := K(2N) ∩ [1, N ], R := K(2N) ∩ [N, 2N − 1]

are nonvoid, and there are (at least) two distinct elements q ∈ Q, r ∈ R satisfying
q + 1 + N ≥ r.

Proof. If H(N) is irreducible, every j ∈ [1, N ] must have a representation of
the form stated in Lemma 3.1. This implies that gcd[K(2N)] = 1. Assume now
that, in addition, N < ∞. If the set Q is empty, then it is impossible to reach any
state from state 0. If the set R is empty, then it is impossible to reach the state N .
Finally, if N is the unique element in Q ∪ R, then H(N) is clearly reducible. Hence,
if H(N) is irreducible, there must exist two distinct elements q ∈ Q, r ∈ R. If for
every such pair we have q + 1 < r − N , then there is a zero row in H(N) (e.g. the
row sup{q + 1 : q ∈ Q}).

The following sufficient conditions yield useful examples of (finite and infinite)
irreducible Hankel matrices.

Proposition 3.5. If there are distinct elements q ∈ Q and r ∈ R that are
neighbours in the order of K(2N), then the finite matrix H(N) is irreducible. Con-
sequently, if N = ∞, and there are infinitely many pairs {kr, kr + 1} ⊂ K(N), then
the matrix H(∞) is irreducible.

Proof. Note that the first condition means that either N − 1, N ∈ K(2N) or
N, N + 1 ∈ K(2N). Assume the first case, the proof for the second being completely
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similar. By assumption, the states N −1 and N are accessible in 1 step from 0, hence
the following sequence of states is a path in the graph of H(N):

0, N − 1, 1, N − 2, 2, N − 3, 3, . . .

It is clear from this that H(N) is irreducible.
In the case N = ∞ the preceding paragraph shows that each upper left finite

section submatrix H(kr + 1) is irreducible. There are infinitely many of them, hence
the matrix H(∞) is irreducible.

The following Remark and Examples will show that it may be too optimistic to
hope for a simpler characterization of irreducibility than that in Theorem 3.3 (even
in the case N = ∞).

Remark 3.6. It is clear that if any H(N) is irreducible, and we replace a zero
diagonal (perpendicular to the main one) by a diagonal consisting of 1s, then the
modified Hankel matrix is also irreducible. In the case N < ∞ it might also be
tempting to conjecture that if H(N) is irreducible, and we move one (perpendicular)
diagonal of 1’s closer to the main (perpendicular) diagonal (onto the place of a zero
diagonal), then the modified Hankel matrix (containing more 1’s) is also irreducible.
However, this conjecture is false, as is demonstrated by the following examples.

Example 3.7. Let N := 10, K(2N) := {8, 10, 12, 15}. Then H(N) is irreducible.
If we modify K(2N) to become {8, 10, 12, 14}, then the modified matrix is reducible
(the gcd is 2).

In the following example both gcd-s are 1, so the change is perhaps more remark-
able.

Example 3.8. Let N := 10, K(2N) := {7, 11, 17}. Then H(N) is irreducible. If
K(2N) := {8, 11, 17}, then the modified matrix is reducible.

The following examples will demonstrate the applicability of the above results.
Example 3.9. If K(∞) is the complement of a finite set in N0, then Proposition

3.5 is applicable, and H(∞) is irreducible. On the other hand, if K(∞) is a finite
subset of N0, then all the states accessible from 0 must be not greater than the largest
element in K(∞). Hence H(∞) is reducible.

Example 3.10. If there is a positive integer n > 1 such that K(∞) ⊂ nN0, then
gcd[K(∞)] ≥ n > 1, hence H(∞) is reducible. On the other hand, if

K(∞) := [N0 \ nN0] \ F,

where F is any finite set, then for n > 2 Proposition 3.5 applies and yields that
H(∞) is irreducible. If n = 2, then denote by f the smallest odd number such that
f + 2N0 ⊂ K(∞). Then each state in the set f + 2N0 is accessible from 0 in 1 step,
and each state 2, 4, 6, . . . is accessible from f in 1 step. It easily follows that each
state in N is accessible from 0, hence H(∞) is irreducible.

Example 3.11. The following example will show that it can happen that an
infinite Hankel matrix H(∞) is irreducible, and its every finite (left upper) section
matrix H(N) is reducible. It will make essential use of the notion of accessibility
(from 0) by using recursion from an interval as defined after Lemma 3.1.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 15, pp. 274-284, October 2006

http://math.technion.ac.il/iic/ela



ELA

282 K.-H. Förster and B. Nagy

Consider the following recursively defined sequence of positive integers:

j0 := 1, j1 := 2, jr := 3jr−1 + jr−2 + 1 (r = 2, 3, . . .).

The sequence j is clearly strictly increasing. Define also the sequences

cr := 2jr, dr := 3jr + jr−1 ≡ jr+1 − 1 (r = 1, 2, . . .).

It is clear that then

jr < cr < dr < jr+1 (r = 1, 2, . . .).

Define the (Boolean) Hankel matrix H(∞) by prescribing that the zeroth row should
contain the entries 1 exactly at the values of the sequences c and d, all other entries
there should be 0, i.e. let

K(∞) := {cr : r ∈ N} ∪ {dr : r ∈ N}.

Then the following assertions on the left upper section matrices H(N) (of order N +1)
are immediately clear.

The matrices H(0) and H(1) are zero matrices, hence reducible. For every r =
1, 2, . . . the condition

jr ≤ N ≤ dr − 1 − jr

implies that the matrix H(N) in row (and column) jr has only zeros (apart from
the entry hjrjr = bcr = 1). Hence these vertices(≡ states) jr are isolated in the
(undirected) graph of H(N), thus H(N) is reducible for these values of N . Further,
if

dr − jr ≤ N ≤ dr ≡ jr+1 − 1,

then the only nonzero entry (not on the main diagonal) in row jr is hjr ,dr−jr = 1.
Since N ≤ dr < 2dr < cr+1, the only nonzero entry (not on the main diagonal) in
row dr − jr is the symmetrically lying hdr−jr,jr = 1. Hence the vertices jr, dr − jr

form a connected component in the graph of H(N). Therefore H(N) is reducible for
every N ∈ N.

Now we shall show that H(∞) is irreducible. We want to prove this by showing
that each vertex n in (the graph of) H(∞) is accessible from the vertex 0. Note that
from now on all recursions are understood in H(∞). Further, by definition, exactly
the vertices cr, dr are accessible in 1 step from 0.

We can show directly that the closed interval [0, d1] is accessible (from 0) by
recursion from the interval [0, d2]. Indeed, we reach in 1 step c1 = 4 and d1 = 7.
Hence we reach 7-4=3 and 4-3=1, thus also 7-1=6. Note that j2 = 8, c2 = 16, d2 = 26.
Starting from 4 we reach c2 − 4 = 12 and d2 − 12 = 14, hence also c2 − 14 = 2, and
finally d1 − 2 = 5 as stated.

Next we shall prove the following statement.
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Let r be any positive integer, and let cr + jr−1 be accessible (from 0) by using
recursion from the interval [0, dr+1]. Then the vertex jr+1 is also accessible (from 0)
by using recursion from the interval [0, dr+2].

Notice first that

cr + jr−1 = 2jr + jr−1 < 3jr + jr−1 = dr < cr+1.

Since cr + jr−1 is accessible by recursion from the interval [0, dr+1], so is

cr+1 − (cr + jr−1) = 2(jr+1 − jr) − jr−1.

It follows that the following vertices are also accessible (from 0) by recursion from the
interval [0, dr+2]:

cr+2 − preceding = 2(jr+2 − jr+1 + jr) + jr−1,

dr+2 − preceding = 6jr+1 − jr + 1 − jr−1 > 0,

cr+2 − preceding = 2jr+2 − 6jr+1 + jr − 1 + jr−1 = 3jr + jr−1 + 1 = jr+1.

This shows the validity of our claim.
Assume now that r ≥ 1, and that the closed interval [0, dr] is accessible (from 0)

by using recursion from the interval [0, dr+1]. Then the interval [0, dr+1] is accessible
(from 0) by using recursion from the interval [0, dr+2].

Indeed, using the assumption, by recursion from the interval [0, dr+1] we can also
reach the states in the interval

cr+1 − [0, dr] = 2jr+1 − [0, jr+1 − 1] = [jr+1 + 1, 2jr+1].

From what has been proved above, we can also reach the state jr+1 by recursion
from the interval [0, dr+2]. Hence we can do the same for the interval [1, jr+1]. Since
cr+1 = 2jr+1, we can reach the whole interval [0, cr+1] by recursion from the interval
[0, dr+2]. Further, we have

dr+1 − cr+1 = jr+2 − 1 − 2jr+1 = 3jr+1 + jr + 1 − 1 − 2jr+1 = jr+1 + jr < cr+1.

It follows that

dr+1 − [0, cr+1] = [jr+1 + jr, dr+1] ⊃ [cr+1, dr+1].

We have obtained that we can reach the whole interval [0, dr+1] by recursion from the
interval [0, dr+2] as we had claimed.

The proof of the irreducibility of the matrix H(∞) proceeds by induction. We
have seen that the interval [0, d1] is accessible from 0 by recursion from the interval
[0, d2]. We have also proved that if the interval [0, dr] is accessible from [0, dr+1], then
the interval [0, dr+1] is accessible by using recursion from [0, dr+2]. By induction, we
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obtain that every interval of the form [0, dr] is accessible from the state 0. Hence the
graph of H(∞) is (strongly) connected, i.e. the matrix is irreducible as claimed. �

Remark 3.12. The unconventional agreement that the 1 × 1 zero matrix is
reducible was used only to make possible the elegant formulation of the statement of
Example 6, and nowhere else collided with established usage.

Remark 3.13. Assume that n ∈ N, T is a Toeplitz matrix, and P is the per-
mutation matrix containing 1’s exactly on the main perpendicular diagonal (both of
order n). It is well known that the matrix H := PT is then a Hankel matrix, and this
remains valid if we say “of type T and H” instead of “Toeplitz and Hankel”, respec-
tively. We shall call H = PT the matrix (of type H) corresponding to the matrix T .
It is also well known that the matrices T and H = PT are fully indecomposable at
the same time (for this notion see, e.g., [1, pp. 110-118] ). Further, if T is assumed to
be (only) irreducible, then [1, Theorem 4.2.3] shows that the indicator of the matrix
T + I (where I is the identity of order n) is fully indecomposable (and of type T ).
Hence H := P (T + I) is also fully indecomposable (and of type H). A fortiori, H is
irreducible.

On the other hand, the matrix

H :=
[

0 1
1 0

]

is irreducible, whereas T := P−1H = PH = I is reducible.
This shows that there is a certain (simple) connection between the irreducibility

of some matrices of type T and the corresponding matrices of type H (both of finite
order n). However, our results demonstrate that this connection is by far not sufficient
to deal with the problems treated here.
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