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CONTROLLABILITY OF SERIES CONNECTIONS*

MARIJA DODIG

Abstract. In this paper the controllability of series connections of arbitrary many linear systems
is studied. As the main result, necessary and sufficient conditions are given, under which the system
obtained as a result of series connections of arbitrary many linear systems is controllable.
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1. Introduction. Let S; be a time-invariant linear system, with state x;, input
u; and output y;, i =1,...,m:

u; Yi (1.1)

Suppose that the system S; is described by the following system of linear differ-
ential equations:

&y = Az + Biu,,

—
—_ =
W N
= =

yi = Cixy,

where A; € Krixn"i B, e KMixmi C; ¢ KPix™ ¢ =1,...,m, K € {R,C}; for details
see e.g., [3].

Let j € {1,...,m}. The algebraic properties of the system S; depend on the
properties of the triple of matrices (4;, Bj, C;). Recall that the system S, is control-
lable if and only if the pair (A;, B;) is controllable, where the controllability of a pair
is defined as follows:

DEFINITION 1.1. Let F be a field. Let A; € F**", B; € F">™i_ The pair
(A;, B;) is said to be controllable if one of the following (equivalent) conditions is
satisfied:

1) minrank| M -A4; —-B; | =n,
) i [ J i ] J
2) all invariant factors of the matrix pencil | Ml —A; —B; |
are trivial (1.4)

3) rank| B, A;B; A3B; - APT'B; | =n,

In this case, we also say that the matrix [ A; Bj ] and the corresponding matrix
pencil [ A\I —A; —B; | are controllable.
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By series connections of the linear systems S, ..., S,, we mean connections where
the input of the system S;1 is a linear function of the output of S;, i =1,...,m—1,
ie.,
uiJrl:Xiyiv i=1,...,m—1, (15)
where X; € F™i+1%Pi  Ag a result of this connection, we obtain a new linear system
S, with input w1, output y,, and state [ o R }T.

Thus, studying the properties of the system S, arise the following matrix com-
pletion control problem:
PROBLEM 1.2. Let F be a field. Find necessary and sufficient conditions for the

existence of matrices X; € F™i+1%Pi =1 ... m — 1, such that the matriz
[ Ay 0 0 e 0 | By ]
By X1 C4 Ao 0 . 0 0
L 0 0 Bme,lCm,l Am 0 i

is controllable.

In Section 4 (Theorem 4.1), we give a complete solution to Problem 1.2 when F is
an infinite field. Furthermore, in Section 5, we obtain solutions over arbitrary fields
of particular cases of the previous problem.

Similar problems, especially in the case m = 2, have been studied previously; see
for example the results of I. Baragania and I. Zaballa [1], and F. C. Silva [8].

2. Notation and Auxiliary results. Let F be a field. For any polynomial
f € F[\], d(f) denotes its degree. If f(A) = A\¥ —ap 1AL —... —a1\ —ap € F[)],
where k£ > 0, then the matrix

T
N =] e o B o],
where egk) is the ith column of the identity matrix I, and a = [ag - - - ak_l]T, is called

the companion matriz for the polynomial f(\).
If A(N) € F[A]™*™, with r = rank A(A\), and 1] - - |4, are the invariant factors
of A(X), make a convention that ¢; =1 for ¢ <0 and ¢; =0 for i > r + 1.
DEFINITION 2.1. Let A, A’ € F**", B, B’ € F**!. Two matrices

M=[A B], M=[A B] (2.1)

are feedback equivalent if there exists a nonsingular matrix

~[¥ 2]
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where N € F**" vV € F>X" T € F'X!, such that M’ = N"'MP.

If M and M’ are feedback equivalent, then we also say that the corresponding
pairs (A, B) and (A’, B’) are feedback equivalent.

It is easy to verify that two matrices M and M’ are feedback equivalent if and
only if the corresponding matrix pencils

R=[M-A -B] and R=[MX-4A -B] (2.2)

are strictly equivalent, for details see [4].
If (A, B) € F™*™ x F"*™ is a controllable matrix pair, then it is feedback equiv-
alent to the pair (A., B.) with

A, = diag(Ay,. .., Ay), B, = | diag(B1,...,Bs) 0 |,

where
0
Ai: 0 Ik,‘,—l E}Fkiin, Bi: €]Fkixl7 ].SZSS
0 0 0
1

The pair (A, B.) is called the Brunouvsky canonical form of the pair (A, B), and the
positive integers k1 > - -+ > kg are called the nonzero controllability indices of (A, B).
Analogously as in [2], we introduce the following definition.

DEFINITION 2.2. Two polynomial matrices A(\) € F[A]P*? and B(\) € F[A]P*?
are SP-equivalent if there exist invertible matrices P € FP*P and Q(X) € F[A]9*? such
that

LEMMA 2.3. [2] Let F be an infinite field and f(zx), g(x), h(x) be nonzero poly-
nomials over F. Then there exists o € F such that

ged(f(x) + ag(z), h(z)) = ged(f(x), g(x), h(x)). (2.3)

In fact, in [2] was proved that (2.3) is not valid only for finitely many « € F.
Hence, (2.3) is valid for a generic (almost every) « € F.

PROPOSITION 2.4. [6, 7, 9] Let D be a principal ideal domain. Let A € D"*",
B e D™™. Leta|- - |y, be the invariant factors of A, and 31| - - - |3y be the invariant
factors of B. Let 1|+ |yn be the invariant factors of AB. Then we have

lem(an p—it18i41: 0 < i <n — k) | yn—py1 | ged(an—it1Bn—nti 1 1 <0 < k), (2.4)

k=1,...,n.
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3. Preliminary results. The following proposition deals with the almost cano-
nical form for the SP equivalence of arbitrary square polynomial matrix. Proof goes
analogously as the proof of Proposition 2 in [2], thus will be omitted.

PROPOSITION 3.1. Let F be an infinite field and let A(X) € F[\]"*™. Let r =
rank A(A) < n. Then A(X) is SP-equivalent to a lower triangular matriz S(\) =
(sij(N), 1,7 € {1,...,n}, with the following properties:

1. sy A) =s;(A), i=1,...,r =1, where s1(A)| -+ [sr—1(N)
are the first r — 1 invariant factors of A(X)
2. S“‘()\)|Sji(>\), 1§i§7“—1, Zg]gn
3. 52 (0) = ged(5mr (N, - 5ur(N) and d(ep (V) > -+ > d(spr (V)
where s.(N\) is the r-th invariant factor of A(N)
4. if i<r—1 and i<j and sj;(\)#0,
then  s;(A)  is monic and  d(s;(A)) < d(sj:(N))
5. Sij = 0, j>r
Further on, the matrix S(\) will be called the SP canonical form of the matrix A(M\).

LEMMA 3.2. LetF be a field. Let A € F"*"™ B € F"*™. [f there exists X € F"™*P
such that (A, BX) is controllable, then the pair (A, B) is controllable.

Proof. There exists an invertible matrix P € F"*" such that
PBX: |: }(; :|7 YEankBXp-

Thus, from the controllability of (A, BX) and since

A Ay Y

-1 _ 1 2 (n—rank B) x (n—rank B)

[ PAP pBX]_[A3 P 0}, A cF ,

we have that the pair (A4, A3) is controllable. Furthermore, there exists an invertible
matrix @ € F™*™ such that

PBQ = [ Imng 8 }

Hence, the controllability of (A, B) is equivalent to the controllability of (A4, As),

which concludes our proof. O

LEMMA 3.3. Let F be an infinite field. Let A(\) € F[]A\]"*" and C(\) € F[A]**?
be such that n = rank A(X\). Let aq|---|aw, be the invariant factors of A(N), and let
Bil---|Bs be the invariant factors of C(N), where s = rank C(A).

There exists X € F"** such that

[ A(\) XC(N) | is equivalent to [ I, 0 ], (3.1)
if and only if

ged(y, Bry1—i) =1, i=1,...,n. (3.2)
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Proof. If a < b, then there exists an invertible matrix Q(\) € F[A]®*®, such
that

CNQ\) =] D(\) 0 ], where D(\) € F[A]**“.

Thus, instead of C'(A) we can consider the matrix D(\).
If a > b, then instead of the matrix C'(\) consider the matrix

D\) =] C(A) 0 ], where D(X) € F[A]**“.

Thus, without loss of generality, we can assume that a = b.

Necessity:

Suppose that there exists X € F"*®, such that | A(\) XC(\) ] is equiva-
lent to [ I, 0 ]. Denote by A’(\) and C’()\) the Smith canonical forms of the
matrices A(A) and C()), respectively. Then [ A(\) XC(X) | is equivalent to
[ A(A)  X(N)C'(N) ], for some X (X) € F[A]"*. Thus, we have that for every
zeF, rank | A(z) X(2)C'(z) | =n.

If ged(an,Bs) = 1, then the condition is obviously satisfied. Otherwise, let
i € {1,...,n} and j € {1,...,s} be such that ged(a;,3;) # 1. Let Ao € F be
a common zero of a; and ;. Let t := mingegy, . n){klax(Xo) = 0} and p :=
mine (1,53 {I|Bi(Xo) = 0}. The rank of the matrix [ A’(XAo) X (Xo)C’(Xo) | (which
is equal to n) is less or equal than the number of its nonzero columns. Since the num-
ber of nonzero columns of A’(\g) is ¢—1 and the number of nonzero columns of C’ ()
is p — 1, we have

n<t—14+p—1,andso i+j>n+2.

Thus, for all indices ¢ and j such that ¢ + j < n 4 1, the polynomials o; and 3; are
mutually prime, which proves our condition.

Sufficiency:

Suppose that the condition (3.2) is satisfied. Without loss of generality, we shall
consider A(A) in its SP canonical form, and C()\) in its SP equivalent form M (X)
which we describe below:

First, put the matrix C'(\) € F[\]**“, into its SP canonical form:

b1 0 0 0 0
anf B2 0 0 |0
as—211  @s—2202 - Bs—1 0 01, (3.3)
as-111  as—12f2 -+ as—1s-18s-1 Xo |0
L aafllﬂl aa712ﬂ2 e aaflsflﬁsfl Xafs 0 _
where a;; € F[A],1<i<a—-1,1<j<s—1,and ged(Xo,...,Xq—s) = 0s. By using
the condition and Lemma 2.3, there exist x1,...,24—s € F, such that

ng(O‘nferleO +oXa+-- 4 xastafs) =1



Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 16, pp. 135-156, June 2007
http://math.technion.ac.il/iic/ela

140 M. Dodig

Let B :== Xo+21X1 + -+ + To—s Xa_s. By multiplying the row s + 3 by x;, for all
1=1,...,a — s, and adding it to the sth row, we obtain the matrix M (\), which is
SP equivalent to the matrix C()), and at the position (s,s) has the polynomial §;.
Further on, the matrix M () will be called the SP-quasi canonical form of the matrix
C(N). Note that 3|8s and ged(ay,—si1,3s) = 1.

Consider the submatrix M (X) of M()) formed by the rows 2,...,a — 1, and by
the columns 2,...,a — 1. If s = a, the invariant factors of M () are Ba]---|8s—1 and
if s < a, the invariant factors of M()) are 2| |Bs_1|8%, for some polynomial /3
which satisfies 3,|3%|0s-

From now on, we shall consider the matrix M (\) instead of the matrix C'(\) in
(3.1). The proof is further split into three cases:

Case 1. Let n = a.

The proof goes by induction on n. The case n = 1 is trivial. If n = 2, there are
two nontrivial possibilities on s: s =1 or s = 2.

If s = 2, it is enough to prove the existence of x € F, such that the matrix

B1 0

@V + D)8 B (3-4)

(5] 0
b()\)ozl a9
has two invariant factors both equal to 1, where a()),b(A) € F[A].

In fact, we shall prove that there exists = € F such that the second determinantal
divisor of (3.4), Da, given by

Dy = ged(B1 52, g, frag, a1 B2, a1 B1(b(A) — a(A) — ),

is equal to 1.
Since F is infinite, by applying Lemma 2.3, there exists « € F, such that

Dy = ged(B1 52, anaz, frag, a1 B2, 1 f1).

Since ged(f1, a2) = 1 and ged(B2, 1) = 1, we have Dy = 1, as wanted.
If s = 1, we need to prove the existence of x € F such that the second determi-
nantal divisor of the matrix

p(\) 0
g(\) +ap(h) 0

[ b(1>\) 0?2

is equal to 1, whenever ged(p(A), a2) = 1, b(A),p(A),q(A) € F[A]. By simple calcu-
lation, we have Dy = ged(p(A)b(A) — g(A) — 2p(A), g, p(A)az, a2). Thus, again by
applying Lemma 2.3, we obtain the existence of x € F such that Dy = 1.

Now suppose that the claim is true for n — 2 and prove that it will be valid for n.

Let A()\) be a submatrix of A(\) formed by the rows 2,...,n—1 and the columns
2,...,n—1. Thus, A()\) has az|---|a,_1 as the invariant factors. In both cases, s = a
or s < a, the invariant factors of M()) and of A()) satisfy the condition (3.2). Thus,
we can apply the induction hypothesis and obtain that there exists Y € F(r—2)x(n=2)
such that the matrix [ A(X\) YM()) | is equivalent to [ I,—2 0 |.
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To finish the proof, we shall show that there exists z € F, such that the matrix
[ A(\) XDM(X) | is equivalent to [ I, 0 |, where

1 0 0
X=10 Y 0
z 0 1

Since [ A(A\) YM()) | is equivalent to [ I,— 0 |, and from the forms of
matrices A(X) and M ()), the matrix [ A(X\) XM(X) | is equivalent to the following

one
o 0 | o B 0] o
I, 2] 0 0 ol o |, (3.5)
pNei | 0 | an | (gN) +2)B1 | * | B

for some polynomials p(\) and ¢(A\) € F[\] (x denotes unimportant entries).
The matrices

i R P
p()\)al Qp Q(A)ﬁl ﬂn
have aq|ay, and 1|6, as the invariant factors, respectively, and they are both in SP
canonical forms.

Since ged(aq, Bn) = ged(am, $1) = 1 by applying the case n = 2, there exists
x € F such that

|: (65) 0 ﬂl 0 :|
pNar  an | (gN) + )81 By
is equivalent to [ I, 0 }

Hence, for such « € F we have that the matrix (3.5) is equivalent to [ I, O ],

as wanted.
Case 2. Let n > a.
Let
M) = { Io }M(A)[ L 0 ]eFn™"

Then the invariant factors of M()\) are 3;]---|8s. From the Case 1., there exists
Y € F™**" such that

[ A YM() ]
is equivalent to [ I, O } Now, put X :=Y [ IS € Fnxe,
Case 3. Let n < a. )
Let
M\ =[ I, 0]M(\) { % € F[A]™™"™,
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If n < s, then the invariant factors of M'(X\) are fy]---|Bn, and if n > s, then
the invariant factors of M'(\) are f1|---|8s-1|37, for some polynomial 3 such that
Bs|8Y|8s. By applying the Case 1, there exists Y € F"*" such that

[ AN YM'(N) ]

is equivalent to [ I, 0 ] Now, put X := Y[ I, 0 ] eFrxe 0

REMARK 3.4. Let A()) be in its SP canonical form and M (A) be the SP-quasi
canonical form of the matrix C'(\). Let Xy € F"*® be the matrix defined in the
previous lemma, such that

[ A\) XoM()) | isequivalent to [ I, 0 ]. (3.6)

Let P € F™"*" be a lower triangular matrix with units on diagonal. From the proof of
Lemma 3.3 (see (3.4)), we have that for a generic matrix P, PXy also satisfies (3.6).

Further on in this paper, by S we denote the set of all lower triangular matrices
with units on diagonal, P, such that PX{ satisfies (3.6), and we define

G := {PXQlP S S}
LEMMA 3.5. Let F be an infinite field. Let A(X) € F[\"*™ be such that n =
rank A(X), and let oq|-- |y be its invariant factors. Let D(X) € F[A]™*™ be such

that m = rank D(X) and let Bi|---|Bm be its invariant factors. Let C'(X\) € F[A\|**™,
a <m, and let y1|- - |vs be its invariant factors, s = rank C'(\). Let pi|- - - |un be the

invariant factors of
A(N)
Rl

If
ged(Viy Bry1—i) =1, i=1,...,m, (3.7)
then there exists X € F™*% such that
[ D(A) XC(\) |
b's

is equivalent to [ L, O ], and such that every zero of a polynomial € 1=

m+41’
1,...,m, is a zero of the polynomial oy or of the polynomial ged(B), tm+i—j+1), fo
some j =1,...,m, where e |- |5§1+n are the invariant factors of
A | oo
T = =y T (38)
Proof. Without loss of generality, consider the matrix D(\) in its SP canonical

form, and the matrix C'(A) in its SP-quasi canonical form. By the condition (3.7),
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and by applying Lemma 3.3 there exists Xo € F™*?, such that [ D(A) X,C(}) |
is equivalent to [ I, O ] Even more, by Remark 3.4, for every X € G, the matrix

[ D(A) XC(X) | is equivalent to [ I, 0 ]. (3.9)

Also, note that for every X € G, the invariant factors of

et ]

are exactly pi|- - |pn. Indeed, the invariant factors of [ ég\\; } € F[\J(mta)xn are
A(N)
the same as the invariant factors of | C()\) | € F[A](»*"™)*" since a < m.
0

If @ = m, then by the proof of the previous Lemma, every matrix X € G is

oy || S0

invertible, and so the invariant factors of { ) ] coincide.

If a < m, then (see case 2. in the previous lemma) we defined X :=Y { I(‘; },

where Y is an invertible matrix. Thus,

AN 1 A [ o0 égg
XcN) | | Y [ 6‘ ] cAN | | 0 Y 0 ’
and so its invariant factors are pq|- - |-

Now, from (3.9), there exist invertible matrices P(\) € F[A]"*™, and

_ Ql()‘) QQ(/\) n+m)x (n+m nxn
Q) =| G @) | e Fnr e, where Qu() € FAM

such that
{ é P?A) } [ );4(/(*?/)\) I D(())\) }Q(,\): [ AO\)OQIO\) A(A)?Q(A) }

Thus, the invariant factors of A(X\)Q1(\) are exactly e |- |em . On the other
hand, we have that

0 ri ) et ew = 450 )

Hence, the nontrivial invariant factors of @Q1(\) coincide with the nontrivial invariant
factors of D(A). So, the invariant factors of the matrix Q1()), denoted by 81 ---|8.,,
satisfy 8 = Bixm—n, i =1,...,n.

Now, by applying Proposition 2.4 to the matrix product A(A)Q1()\), we have that
for every X € G

efim| ged(iBmy -« - s nBitm—n), 1=1,...,n. (3.10)



Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 16, pp. 135-156, June 2007
http://math.technion.ac.il/iic/ela

144 M. Dodig

Denote by ¢; := gcd(;Bm, -+ WnBitm—n), © = 1,...,n. Let \i .. .,)\};i € I be
distinct zeros of ¢;, i =1,...,n.

Let I € {1,...,k;}. We shall show the following:

(¥)  If A} is not a zero of the polynomial a; [T}~ ged(8;, ptm+i—j+1), then for
a generic X € G, )\f is not a zero of the corresponding ;% i
This will obviously prove that for generic X € G, for every ¢ = 1,...,n, every
zero of the polynomial €X 4; is a zero of the polynomial «; or of the polynomial
ged (B, thm+i—j+1) for some j =1,...,m, as wanted.

Thus, we are left with proving (x).

Let i € {1,...,n}, 1 € {1,...,k;}, and A} be a zero of ¢; such that a;(\}) # 0
and ged(B3), fimti—j+1) (M) # 0, for all j =1,...,m. Let

p= min  fulaw() =0}

=1y...,

t= min +1{w|ﬂw()\§) =0}.

w=i+m—n,...,m

Since ¢;(A}) = 0, we have ap_1 () # 0 = Biym—ptr1(A\}) =0, and Bi_1(\}) # 0 =
aHm,tH(Af) =0, which gives p+t <i+m+ 1.

Furthermore, since a;(A}) # 0 we have p > i and since ged(Bi4m—n, fint+1)(Nf) =
Bitm-n(Al) # 0, we have t > i + m — n. Also, since B(\}) = 0, we must have
Hnti—t+1(A;) # 0. A

Consider the following equivalent form of the matrix T/(\}) € F(ntm)x(n+m).

ngon ) -0 09) 0| ;
0 0
TGO, o) 0| Y
XC'(A?) ‘ ag(o1(Ar), -+, Pe—1(A
0 0
where C(\}) € F*xn,
Since X = PXj, P € S (see Remark 3.4), the matrix (3.11) becomes
diag(ar (M), ..., ap—1(A})) 0 0
0 0 | | (3.12)
P A B dlag(ﬁl(/\;), e ,ﬁt_l(A;)) 0 ’ ’
C D 0 0
where
AN A B mxn (t—1)x(p—1)
XOC(AI)[C D}GIE‘ , AeF .
Let

/ !
& §]er[2 §lwepmennem

Since, Mm+i7t+1()\§~) # 0, we have

B B _ AN g
rank{D}>rank[D,}rank[XC()\D p+1=
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pin (A7)
= rank —p+l>m+i—-t—p+2 (=1).
Hn ()‘;)
On the other hand, €% ;(\}) # 0 is equivalent to
rank D' >m+i—t—p+2. (3.13)

Indeed, this is because the rank of the matrix (3.11) is equal to p+t—2+rank D’.
Since p >i+1andt >i+m—n+ 1, we have

min{fm—t+1l,n—p+1}>m+i—p—1t+2.

Thus, for a generic matrix X € G, we have that (3.13) is valid, which finishes our
proof. O

4. Main result. The following theorem gives our main result:

THEOREM 4.1. Let F be an infinite field. Let A; € F"i*™i B, € Frix™mi 4 =
1,...,m, C; € FPixmi 4 =1 ..., m — 1. There exist matrices X; € F"i+1%Pi_j =
1,...,m—1, such that

A 0 0 0 B:
BQXlCl A2 0 0 0
M= 0 B3XQCQ A3 0 0 (41)
L 0 0 . Bme—lcm—l Am 0 J

s controllable if and only if:

(A;, B;) are controllable for all i=1,...,m, (4.2)
and
i -1 o
ng(’)/kla,u'k;rla'"7/1'g¢j_i7a§cj_i+1) = ]-a 1 <1 < < m, (43)
for all indices ki, ..., kj_i+1 such that
i+ F+kipi <ng+---4+n;+5—1.
Here ~i|---|ni, are the invariant factors of
A — A —B; o
[ _c 0 }, i=1,....m—1, (4.4)
y; 1s its rank, a§|'~|a%i are the invariant factors of N\ — A;, i = 1,...,m, and
ph] - |ph, are the invariant factors of
M — A; _
|: _Ci :| ) - ]-a ) T — 1
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Proof.
Necessity:

From the controllability of (4.1), we have that the pair (A1, B1) is controllable
and (A;, B;X;_1C;_1) are controllable for all i = 2,...,m. By applying Lemma 3.2,
we obtain the condition (4.2).

Furthermore, there exist invertible matrices P; € F™*™i such that

P,B; = { 7(;1' } T; € FrankBixmi =5 — 1 m.
Let
At A ;
—1 7 rank B; Xrank B; .
P, A;P; _[Afi, Ai}, AL eTF x , i=1,...,m.

Then (A}, AY) is controllable (moreover the controllability of (A%, A%) is equivalent to
the controllability of (A4;, B;)) and there exist invertible matrices Q;(X) € F[\]™ >
and S;(\) € F[A]™*™ ¢=1,...,m, such that

QW - rar s = | AV ).

where A;(\) € F[AJrank BoxrankBi j — 1 m. Note that the first rank B; columns of

. . I , . .
the matrices Q;()\), ¢ = 1,...,m are of the form rarbk B } Denote the invariant
factors of A;(A) by af|---|af . p,, then off := -a;+n,1—rankB,;’ j = 1,...,rank B;,
1=1,...,m.

Let
Y; =Ty X; € FrankBivixpi -y —q ;1.

Let P, € F™ix™i be the invertible matrices such that —T; P, = [ Lankp, O },
i =1,...,m. Denote by P = diag(P1,...,Pn), Q(\) = diag(Q1(A),...,Qm(N)),
P =diag (P, ", ..., P, Py) and S(\) = diag (S1(\), ..., Sm(A), I).

Furthermore, let —C;P;"S;(A) = [ Ci(A)  CI(A) |, Ci(\) € F[Apixrank Bi 1 —
1,....,m—1.

Now, consider the matrix
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The matrix M () has the following form

T AN 0 107
0 1 00
Vi YO,V A2(N) 0
0 0 0 1
Y2020 YaCh (M| As(N) 0
0 0 0 I

Ym—lcm—l()\) Ym—lc’;n,1 ()\) Am()\)
0 0

[en)
~

Thus, the matrix A [ I 0 ] — M is equivalent to
[YiC1(X)  A2(N) T

Y2C2(A)  Asz(N)
Y3C3(A) As(N)

YineaCmosO)|  Am_1(V)

(4.5)
where nonmarked entries are equal to zero.
Since the matrix

[@%Mﬁ?][Aia@ %ﬁ}[g*&@)

is equal to the following one

I 0
0 0|, i=1,....m—1,
0 0

the invariant factors of the matrix Cj()), denoted by ~¥{'|--- |y, _,,, satisfy v} :=
YitnsJ =1 yi—ni, i =1,...,m—1

Moreover, if denote by pf|-- - |ut, p. the invariant factors of
Al()‘) (rank B;+p;) xrank B; .
[Ci(A)]EF[/\] , 1=2,...,m—1,
from
A;(N) 0
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they satisfy u}i = u§+ni7rank3i, j=1,...,rankB;,1=2,...,m — 1.
Now the condition (4.3) becomes

o 1 o
ged(vi, i s ) =1, 1<i<j<m, (4.6)
for all ki, ... kj_i41 such that

ki+--+kj_ip1 <rank Biy1 +--- +rank B; 4+ j —i.

Since the matrix (4.5) is equivalent to [ I 0 } , every submatrix formed by some
of its rows is also equivalent to [ I 0 ] Let 7 and j be such that 1 <7 < j < m.
Consider the submatrix

YiCi(A)  Aip1(N)
Yit1Civ1(N)  Aip2(N)
R()\) = Yip2Cia(A) Aigs(A) A7)

Y1y (V) A ()

Let k1, ...,kj—i4+1 be arbitrary indices such that the polynomials 'y,’jl , ,ug:rl, cees

..,ugf_f,a%_iﬂ have a common zero \g € F. Then, since R()\) is equivalent to
[ I 0 ], we have
rank R(\o) = rank B;11 + - - - + rank B;.

On the other hand, from the form of R(\), we have

j—1
rank R(Ag) < rank C;(\o) + lzzi;l rank { éﬁg;g; ] +rank 4;(Xg) <

j—i

Shi—=1+Y (i—D4kip—1=ki+- 4k —(G—i+1),
1=2
as wanted.
Sufficiency:
Since (A;, B;) is controllable for every i = 1,...,m, as in the necessity part of the
proof, the matrix (4.1) is equivalent to the matrix (4.5). Thus, it is enough to define
Yi, ..., Y1 over F, such that the matrix (4.5) is equivalent to [ I 0 |, when the

condition (4.6) is satisfied.
Further proof goes by induction on m. For m = 2, the condition (4.6) becomes

ged(v/', o2 pys1—i) =1, foralli=1,... rank By,
and so by Lemma 3.3, there exists a matrix Y,,_; € FrankBmXPm—-1_gych that

[ AN Yie1Cmoi(V) ]
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is equivalent to [ Lankp,, O }
Now suppose that the condition is sufficient for m — 1 and we shall prove that it
is sufficient for m. Consider the matrix

A1 (V) 0

If po1 < rank B,,, by Lemma 3.5, there exists a matrix Y,,_1 such that the
matrix

[ An(A) Yoo 1Cri (V) ]

is equivalent to [ Lank B, O ], and every zero of the polynomial €;,ank B, is the
zero of the polynomial o' or of the polynomial ged(aj™, u;?nile +ijy1)s for some
j=1,...,rank B,,, where €| - |€rank B,, +rank B,,_, are the invariant factors of (4.8).

If pm—1 > rank By, instead of A,,(\) consider the matrix A,,(A\) := A, (\) @
Iy, . —rankB,,- Now, again by Lemma 3.5, there exists a matrix Y,,_; € FPm-1%Pm-1
such that

[ An(A) Y5 1Cna(N) ]

is equivalent to [ I,.., 0 } Then define Y,,_1 := [ Lanks,, O }Yn’@_l.
In both cases, the matrix (4.8) is equivalent to the matrix

A 1(A) 0 kB kB

0 for some A’ ,(\) € F[a]rank Bm—1xrank By—1

0 Irank B ’ m 1( ) [ ]

Note that the invariant factors of Aj,_;()), denoted by €} |- --|€l, . g, satisfy €] =
€itrank By, 1= 1, . ,rank Bm—l-

Denote the submatrix of (4.5) formed by the rows 1,..., E:’;;l rank B; and by

the columns 1,..., Z:’;z rank B;, by E. Now, our problem reduces to defining the
matrices Y7, ..., Y, s such that the matrix

0
E
#] b |
is equivalent to [ I 0 }
In order to apply the induction hypothesis, and thus to finish the proof, we need
to prove the validity of the following condition

god (v, iy T ) = 1 (4.9)
for every i = 1,...,m — 2 and for all indices k1, ..., ky_; such that

ki+--+kp; <rankB;;; +---+rank B,,_1 +m —i— 1.

Suppose that the condition (4.9) is not valid. Then there exists A\g € F, a common
zero of the polynomials v, , py ..., u;::if_l and €, for some indices ki, ...,k

satisfying k1 + -+ + kp—y <rankB;11 + - - +rank B,—1 +m —17— 1.
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Hence, A¢ is a zero of the polynomial €k, . irank B,,-
fined by Lemma 3.5, A\g is a zero of the polynomial a;:?’ij or of the polynomial

gcd(u;;”ﬁiﬁgwﬁknﬂ4“, a)™), for some index I € {1,...,rank B, }.

If &)™ 1(Xg) = 0, then

ged(Ve ittt ety #1

m—i—17 Km—i

which is a contradiction by (4.6).
If ged (™t tk 14102 )(Ao) = 0, then

m

17 1i+1 m—2 $m—1 m
ged (Ve > iy >+ -5 Mgy Hrank By —141 Q) 7 1,

which is again a contradiction. Thus, (4.9) is valid, as wanted. O

5. Special cases. In this section we study some special cases of the Problem
1.2 over arbitrary fields.

THEOREM 5.1. Let F be a field. Let A; € F™*"™i B; € F"*™i ¢ =1,...,m,
C; € Fpixmi j =1,....m—1. Let rankB; = 1,7 = 1,...,m, and rankC; = 1,

i=1,...,m — 1. There exist matrices X; € F™i+1*Pi 4§ =1,...,m — 1, such that
A 0 0 0 | By
By X1 C4 Ao 0 - 0 0
0 B3 X5(C5 A3 . 0 0 (51)
L 0 0 Bme—lcm—l Am 0 J

is controllable, if and only if

(1) (A, B;) is controllable, i=1,...,m,
(i) ged(yp,4r,0h,) =1, 1<i<j<m,

where V|- |y} 11 are the invariant factors of the matriz
AM—-A; -B;

B .
i=1,....,m—1. Also, a;” is the only nontrivial invariant factor of NI — A;, j =
1,...,m.

Proof. First, since rank C; = 1,4 = 1,...,m—1, there exist invertible matrices

P; € FPi*Pi guch that

,m— 1.

@—aa—{g]nmmqewmni—hm
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Let
X, =X;P', i=1,....m—1.

Further on, instead of matrix (5.1), we shall consider the matrix

A1 0 0 0 Bl
BQXlCl AQ 0 0 0
M = 0 BsXoCy  As . 0 0 . (5.3)
L O O Bmeflcmfl Am 0 i

Necessity:

Suppose that there exist matrices Xi, ..., X,,—1 such that the matrix (5.3) is
controllable. Like in Theorem 4.1, we obtain the condition (7). Also, note that the
fact that rank of the matrix (5.2) is equal to n; 4+ 1 follows from the controllability of
the pair (4;,B;),i=1,...,m.

Furthermore, we shall consider the matrix )\[ I 0 ] — M. As in Theorem
4.1, matrix A [ I 0 ] — M is equivalent to the matrix (4.5), and since in this case
rank B; = 1,4 = 1,..., m, the matrix (4.5) is of the following form

_ 9 _
Qo o,

3
q2 Qo

1 . , (5.4)

m-1  Qp,

1

where the polynomials aﬁ” are the only nontrivial invariant factors of the matrices
M — A;, i = 2,...,m, and the polynomials ¢;, i = 1,...,m — 1 (see the proof of
Theorem 4.1) are the last nonzero invariant factors of the matrices

M__C;Ai _fi : (5.5)
ie.
G =" 41, i=1....m—1
Hence, we have that the matrix
%111+1 04%2
TYnat1 04313
N = 7234-1 (5.6)

m—1 m
Y141 Yngy
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has only trivial invariant factors. Thus, D,,—1 = 1 (D,,—1 is the (m — 1)th determi-
nantal divisor of (5.6), i.e. the greatest common divisor of minors of order m — 1 of
(5.6)). We shall prove that this is equivalent to the condition (i7).

Indeed, since

Dm,1 = ng(Hmfl, Hm,Q, N ,Ho),

where

1 ’L+2 m .
I i=vpy 41 - 'ynﬂ Migs - Op 0=0,...,m—1,

we shall prove that:

D ,1:1¢>gcd(7ﬁl+1,aj):1 1<i<j<m, ie,
Dy #1 ¢ 3i,j:1<i<j<m, such that ged(y), 41,07, )7é1

Let D,,_1 # 1. Let Ao € F be a common zero of II,,_1,...,IIy. Since II,,_;

is the product only of 'yfliﬂ’s, at least one of 'yfh_ﬂ, i =1,...,m — 1, must have
Ao as its zero Let k := min{i|v; ,1(Xo) = 0}, 1 < k < m —1. Then II;_; =
Vo4l 'ynk 11+104ﬁﬁ1 .- . Thus, there exists j > k such that o ,(do) = 0.

Then, obviously, gcd('ynk e ) # 1, as wanted.

Conversely, suppose that there exist indices ¢ and j such that 1 < i < j < m
and ged(vh 4, 7,) # 1 ie, 3o € F such that 7% 1(Xo) = 0 and oz%j(/\o) =0.
Then every 1L, l = 0,. — 1, has Ap as its zero. Indeed, if ¢ < [, then since
75 +1(Xo) = 0, we have Hl()\o) = O If i > [, then j > i > [+ 1 and since o, ,(A0) =0,
we have II;(Ag) = 0.

Sufficiency:

Let the conditions (i) and (i) be valid. Then as in the proof of Theorem 4.1, we
can consider the matrix A\[ I 0 | — M in the equivalent form (4.5). Define

Yz‘:[l 0o ... O}eIE‘lX’”, i1=1,....,m—1.

Then (4.5) becomes

[]g ?] (5.7)

In the necessity part of the proof, we have proved that the condition (i) is
equivalent to the fact that the matrix N has all invariant factors equal to 1. Thus,
the matrix (5.7) has all invariant factors equal to 1, as wanted. O

In the following theorem, we consider the series connection of the linear systems
Si, i = 1,...,m, in the case when rank B; = n;, i = 2,...,m, and rankC; = n;,
i=1,...,m—1.

THEOREM 5.2. Let F be a field. Let A; € F*™i ¢ =1,...,m, By € Fr1>xm
rank By = s. Letl; > 0,4 =1,...,m — 1. There exist matrices X; € Fri+1xmi
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i=1,...,m—1, such that the matriz
Ay 0 0 0 B,
X, A 0 0 0
0 X, As 0] 0 (5.8)
L 0 0 Xm-1 Am 0 |

s controllable and such that rank X; < 1I;, i =1,...,m — 1, if and only if
(1) (A1, By) is controllable
(i)

Here, by r; we have denoted the number of nontrivial invariant factors of \I — A;,
1=1,...,m.

min{s,l;,n;} >  max {r;}, i=1,...,m—1.
j=i1+1,....m

yeos

Proof.

Necessity:

Since the matrix (5.8) is controllable, we directly obtain the condition (7). Also,
considering the submatrices of (5.8) formed by its last > 7, ny—iy1, j = 1,...,m,
rows, we can apply the result from Theorem 1 in [8] and thus obtain that s >
max,=o . m{r;}, and rank X; > maxj—it1,.m{r;}, ¢ = 1,...,m — 1. Thus, we
obtain the condition (ii).

Sufficiency:

Let ¢; > -+ > ¢4 > 0 be the nonzero controllability indices of the pair (A1, B1).
Let of]---|af, be the invariant factors of AI — A;, r; of them nontrivial, and let

D: = d(aj, 1), § = 1,...,7m, i = 2,...,m. Then the matrix (5.8) is feedback
equivalent to the following one

Ae 0 0 0 B,
X, N(4) 0 0 0
0 X, N(As) 0 0 (5.9)
L 0 0 X1 N(Am) | 0

where (A, B.) is the Brunovsky canonical form of the pair (4, By) and

is the normal form for similarity of the matrix A;, i = 2,...,m, see, e.g. [5].

Now, our problem is equivalent to the problem of defining matrices X/, i =
1,...,m — 1, such that the matrix (5.9) is controllable, and such that rank X! < [;,
i=1,...,m—1.
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Let I} := min{s,1,...,l;,ni,nip1}, i =1,...,m — 1. We shall define inductively
matrices X/ such that rank X/ =1}, ¢ = 1,...,m — 1. From the condition (i) we have

l; > max{riy1,...,"m}, t=1,....,m—1 (5.10)

First we define X7. Let b; = 12 D? j=1,...,79. Put ry units in the matrix
X/ at the positions

Jj—1
b5 ei+1), j=1,....7m.
i=1

Moreover, let bl 1, ... ,bll,1 be any [] — ro distinct numbers from the set {1,...,n2}\

{b},...,b},}. Then put I} — ro units at the positions

j—1
(b5, Y ei+1), j=ra+1,...,10,
i=1

while all other entries in X we put to be zeros. Obviously rank X| = .

Inductively, we define matrices X]’», j=2,....,m—1:
Let bi =y Df-“, k =1,...,741. Moreover, let bij+1+1,...,b{; be any
I}, = rj41 distinct numbers from the set {1,...,n;}\{b1,...,b.. }. Now, put I units

in the matrix X]’» in the rows b{, .. .,b{,_ such that they belong to any Z} different
J
columns among the following ones:
{b571+1a i:27~'~7l;71}u{1}a

while all other entries in X;, 7 =2,...,m—1, we put to be zeros.
Such obtained matrix

| A 0 0 0 B, ]
X] N(Ay) 0 0 0
0 X, N(43) - 0 0 (5.11)
Lo 0 . X, N(Aw | o0 |
is controllable, and rank X! =1/ <i;,i=1,...,m — 1, as wanted. O
In order to clarify the way of defining the matrices X7,..., X/ _; in the previous

theorem we give the following example:

EXAMPLE 5.3. Let m =3, ny =4, ngo =5and nz3 = 4. Let I =4, 15 =2
and s = 2. Let (A1, By) be a controllable pair of matrices with 2 > 2 as nonzero
controllability indices. Then

(Am BC) =

o O = O
= O O O
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Let 7o = 1, and let « be the only nontrivial invariant polynomial of Ay, d(a) = 5,
ie. @ =a}, while a? =---=a? = 1. Thus,

N(43) = C(a).

Let 73 = 2, and let (| be the nontrivial invariant polynomials of As, d(5) = 1
and d(y) = 3, i.e. a3 = and o = v, while o} = a3 = 1. Thus

N(A3) = C(B) @ C(v)-

Then both conditions (i) and (#i) from Theorem 5.2 are satisfied. Now define
matrices X and X} as explained in the theorem:

Since If = 2, ¢ = 2 and b} = D? = d(a) = 5, put a unit in the matrix X| at
the position (5,1). Let b3 =4 (4 € {1,...,5}\ {5}). Then put a unit at the position
(4, 3), and all other entries in the matrix X; put to be zeros. Thus,

0 0]0 0
0 0|0 0
X/=]0 0|0 0
0 0|1 0
1 0[0 0

Moreover, since Iy = 2 and b? = D3+ D3 = d(v) +d(B8) = 4, b3 = D3 = d(8) = 1,
put units in the matrix X} on the positions (4,1) and (1,b3+1) = (1,5), and all other
entries in the matrix X} put to be zeros. Hence,

0 0 0 0 1
;10 0 0 0 O
X2 = 0 0 0 0 O
1 0 0 0 O
For such defined X{ and X/ the matrix
Ac 0 0 B.
X Clo) 0 0 (5.12)

0 X3 CBe&ChH | 0

is controllable and rank X{ = 2 < 4, rank X} = 2 < 2, as wanted.
As a direct consequence of the previous result we obtain the following theorem:
THEOREM 5.4. Let F be a field. Let A; € F™*™ ¢ =1,...,m, and By € Frt>*™
be such that the pair (A1, B1) is controllable, rtank By = s. There exist matrices
X, e Frivixni g =1,...,m—1, such that

A1 0 0 0 Bl

A 619
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is controllable if and only if the following conditions are valid:

(i) s> max{ra,rs,...,"m}
(1i) n; > max{ry,...,rm}t, 1=2,...,m.
Here r; is the number of the nontrivial invariant factors of \I — A;, 1 =2,...,m.
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