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Abstract. It is shown that all potentially nilpotent full sign patterns are spectrally arbitrary.
A related result for sign patterns all of whose zeros lie on the main diagonal is also given.
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1. Full Spectrally Arbitrary Patterns. In what follows, Mn denotes the
topological vector space of all n × n matrices with real entries and Pn denotes the
set of all polynomials with real coefficients of degree n or less. The superdiagonal of
an n × n matrix consists of the n − 1 elements that are in the ith row and (i + 1)st
column for some i, 1 ≤ i ≤ n− 1.

A sign pattern is a matrix with entries in {+, 0,−}. Given two n×n sign patterns
A and B, we say that B is a superpattern of A if bij = aij whenever aij �= 0.
Note that a sign pattern is always a superpattern of itself. We define the function
sign : R → {+, 0,−} in the obvious way: sign(x) = + if x > 0, sign(0) = 0, and
sign(x) = − if x < 0. Given a real matrix A, sign(A) is the sign pattern with the
same dimensions as A whose (i, j)th entry is sign(aij). For every sign pattern A, we
define its associated sign pattern class to be the inverse image Q(A) = sign−1(A). A
sign pattern is said to be full if none of its entries are zero [8]. A sign pattern class
Q(A) is an open set in the topology of Mn if and only if A is a full sign pattern; this
observation will be very useful in proving our first theorem.

Recall that a square matrix N is nilpotent if there exists a k ∈ N such that
Nk = 0. We define the index of a nilpotent matrix N to be the smallest k ∈ N

such that Nk = 0. A sign pattern A is said to be potentially nilpotent if there
exists a nilpotent matrix N ∈ Q(A). (Allows nilpotence is sometimes used in place
of potentially nilpotent). Potentially nilpotent sign patterns were studied in [6] and
[10]. An n × n sign pattern matrix A is said to be spectrally arbitrary if every nth
degree monic polynomial with real coefficients is a characteristic polynomial of some
matrix in Q(A). The study of spectrally arbitrary sign patterns was initiated in [5].

It is clear that any spectrally arbitrary sign pattern is potentially nilpotent. The
converse can easily be seen to be false. For instance, any potentially nilpotent sign
pattern with only zeros on the main diagonal is not spectrally arbitrary. For n ≤ 3,
these are the only counterexamples to the converse as any 2× 2 or 3 × 3 potentially
nilpotent sign pattern whose main diagonal does not consist entirely of zeros is spec-
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trally arbitrary [2]. For n ≥ 4, there exist potentially nilpotent sign patterns whose
main diagonals do not consist entirely of zeros yet are still not spectrally arbitrary.
The following example is given in [3].

Example 1.1. The following 4 × 4 nilpotent matrix belongs to a sign pattern
which is not spectrally arbitrary:




1 1 −1 0
−1 −1 1 0
0 0 0 1
1 1 0 0


 .(1.1)

It is noted in both [3] and [4] that it is the location of the zero entries in (1.1)
which prevents this sign pattern from being spectrally arbitrary. (In the sense that
any other sign pattern with zeros in the exact same locations would not be spectrally
arbitrary). Another collection of potentially nilpotent but not spectrally arbitrary
sign patterns can be obtained by following an argument of [4] and noting that any
reducible sign pattern having all of its irreducible blocks being potentially nilpotent
and at least two of its irreducible blocks being of odd order would be potentially
nilpotent but not spectrally arbitrary (since it would require two real eigenvalues).
Note that in this case as well it is the location of the zero entries which prevent the
sign patterns in this collection from being spectrally arbitrary. This would suggest
that one should look at sign patterns with no or few zero entries to see if potential
nilpotence implies being spectrally arbitrary in these cases. In page 14 of [1] (Question
2.14), it was asked whether any potentially nilpotent full sign pattern is spectrally
arbitrary. We answer this question in the affirmative.

Theorem 1.2. Any potentially nilpotent full sign pattern is spectrally arbitrary.
Proof. Let A be an n × n full sign pattern and let N ∈ Q(A) be a nilpotent

matrix. Let N = PJP−1 be the Jordan decomposition of N . Since J is a direct sum
of Jordan blocks; it is a matrix with ones and zeros on the superdiagonal and zero
entries everywhere else. We now show that there is a nilpotent matrix of index n
in Q(A). If all the elements on the superdiagonal of J are one, then N is nilpotent
of index n. Otherwise, let Jε be the n × n matrix obtained by replacing all of the
zeros on the superdiagonal of J by ε and leaving all other entries unchanged. Then
Nε = PJεP

−1 is a nilpotent matrix of index n for ε �= 0 and further Nε ∈ Q(A) for
some non-zero ε sufficiently small. Since Nε is a nilpotent matrix of index n, it has
a Jordan decomposition Nε = SJ1S

−1 where S is an invertible matrix and J1 is the
matrix with ones along the superdiagonal and zeros everywhere else. Now consider
matrices of the form SCpS

−1 where Cp is the companion matrix with characteristic
polynomial p(x) = xn + an−1x

n−1 + ...+ a1x+ a0.

Cp =




0 1 0 ... 0
0 0 1 ... 0
...

...
...

. . .
...

0 0 0 ... 1
−a0 −a1 −a2 ... −an−1



.
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There exists an ε > 0, such that if |ai| < ε for 0 ≤ i ≤ n − 1, SCpS
−1 ∈ Q(A).

Now let p(x) be an arbitrary nth degree monic polynomial with real coefficients,
Then there exists a positive k ∈ R such that the polynomial q(x) = knp(x/k) is a
monic polynomial all of whose nonleading coefficients have modulus less than ε. Then
1
kSCqS

−1 is in Q(A) and has characteristic polynomial p(x). Hence A is spectrally
arbitrary.

An n× n sign pattern A is called p-striped if it has p columns with only positive
entries and n − p columns with only negative entries. In [9], it was shown that all
n × n p-striped sign patterns where 1 ≤ p ≤ n − 1 are spectrally arbitrary. Since it
is easy to construct a rank-one nilpotent matrix in any n × n p-striped sign pattern
class with 1 ≤ p ≤ n− 1, we now have an alternate and shorter proof of this result.

Theorem 1.2 suggests the following random algorithm to find most (or possibly
even all) of the full spectrally arbitrary n × n sign patterns for small n. Randomly
choose an invertible P ∈ Mn, calculate PJ1P

−1. If all the entries of PJ1P
−1 are far

enough from zero to avoid sign errors, add the sign pattern containing PJ1P
−1 to

the list of n × n spectrally arbitrary full sign patterns to generate a (not necessarily
complete) list of full spectrally arbitrary sign patterns.

2. Patterns with zeros only on the main diagonal. In this section we give
a variant of Theorem 1.2 in the case of a sign pattern whose zeros are restricted to
the main diagonal. The adjugate of an n× n matrix A, denoted adj(A) is the n× n
matrix whose (i, j)th entry is (−1)i+jdet(A[j|i]) where A[j|i] is the (n− 1)× (n− 1)
matrix obtained by deleting the jth row and ith column of A. If A is invertible then
A−1 = adj(A)

det(A) . If the (i, j)th entry of A, aij , is considered to be a variable; then
∂det(A)

∂aij
is equal to the (j, i)th entry of adj(A). More about the adjugate can be found

in [7]. We also will use Dn to denote the subspace of Mn consisting of the n × n
diagonal matrices; Mn/Dn is the quotient vector space.

One of the most useful tools in finding spectrally arbitrary sign patterns is the
Nilpotent-Jacobian method first used in [5] but first explicitly stated as Lemma 2.1
of [2]. We state it here as follows:

Lemma 2.1. [2] Let A be a n × n sign pattern, and suppose there exists some
nilpotent A ∈ Q(A) with at least n non-zero entries, say ai1j1 , ai2j2 , ..., ainjn . Let X
be the matrix obtained by replacing these entries in A by the variables x1, ..., xn and
let

det(xI −X) = xn + α1x
n−1 + α2x

n−2 + ...+ αn−1x+ αn.

If the Jacobian ∂(α1,α2,...,αn)
∂(x1,x2,...,xn) is invertible at (x1, x2, ..., xn) = (ai1j1 , ai2j2 , ..., ainjn),

then every superpattern of A is a spectrally arbitrary.
We will now prove a result for sign patterns whose zeros lie solely on the main

diagonal. Since any sign pattern with less than two non-zero elements on the main
diagonal is not spectrally arbitrary, we will restrict the statement of our theorem to
patterns which have at least two non-zero elements on the main diagonal.

Theorem 2.2. Let A be a n× n sign pattern having at most n− 2 zero entries
all of which are on the main diagonal. If there exists a nilpotent matrix of index n in
Q(A), then every superpattern of A is a spectrally arbitrary sign pattern.
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Proof. Let N be a nilpotent matrix of index n in Q(A). We have span{adj(xI −
N) : x �= 0} = span{(xI −N)−1 : x �= 0} = span{Nk}n−1

k=0 where the latter equality
follows from the Neumann series for N which gives us the identity (xI − N)−1 =∑n−1

k=0 x
−k−1Nk. Let V be the image of span{Nk}n−1

k=0 in Mn/Dn. Since I = N0 gets
mapped to 0, dim(V ) is at most n−1. If dim(V ) < n−1, then there would exist real
numbers {ck}n−1

i=1 not all zero such that D =
∑n−1

k=1 ckN
k is a diagonal matrix. Since

D would also be nilpotent, it must be zero which is impossible since the index of N
is n. So the dimension of V is exactly n− 1.

Now let pij(x) be the (j, i)th entry of adj(xI −N). (Taking the (j, i)th entry is
intentional and not a misprint; this choice makes the notation simpler later on.) Each
polynomial pij is of degree n− 1 if i = j and of degree n− 2 otherwise. The result of
the previous paragraph implies that dim(span{pij(x) : 1 ≤ i, j ≤ n; i �= j}) = n − 1
and hence {pij(x) : 1 ≤ i, j ≤ n; i �= j} spans Pn−2. We can obtain a basis of Pn−2

from the elements {pij(x) : 1 ≤ i, j ≤ n; i �= j}. Now choose any i such that the
(i, i)th entry of Q(A) is nonzero. By adjoining pii(x) to the basis of Pn−2, we get a
basis of Pn−1 which we will write as {pikjk

}n
k=1.

We now apply the Nilpotent-Jacobian method to N . Let X(x1, x2, ..., xn) be
the n × n matrix obtained by replacing the (ik, jk)th entry of N by the variable xk

for 1 ≤ k ≤ n. Let $x = (x1, x2, ..., xn), and $η be the n-vector whose kth entry
is the (ik, jk)th entry of N and let p(x, x1, x2, ..., xn) = det(xI − X(x1, x2, ..., xn)).
Then ∂p

∂xk
|�x=�η = −pikjk

(x). The kth column of the required Jacobian consists of the
coefficients of the polynomial pikjk

(x) for all k where 1 ≤ k ≤ n and the invertibility
of the Jacobian follows from the linear independence of these polynomials.

It should be noted that the 4 × 4 nilpotent matrix in Example 1.1 is of index 4;
hence Theorem 2.2 becomes false if we allow too many additional zeros outside of the
main diagonal.
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