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COMPARISON OF CONGRUENCES AND STRICT EQUIVALENCES
FOR REAL, COMPLEX, AND QUATERNIONIC MATRIX PENCILS

WITH SYMMETRIES∗
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Abstract. The equivalence relations of strict equivalence and congruence of real and complex
matrix pencils with symmetries are compared, depending on whether the congruence matrices are
real, complex, or quaternionic. The obtained results are applied to comparison of congruences of
matrices, over the reals, the complexes, and the quaternions.
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1. Introduction. Let F be the real field R, the complex field C, or the skew field
of real quaternions H. Fix an involutory antiautomorphism φ of F, in other words, a
bijective map φ : F −→ F having the properties that

φ(xy) = φ(y)φ(x) and φ(x + y) = φ(x) + φ(y) ∀ x, y ∈ F

and

φ(φ(x)) = x ∀ x ∈ F.

We assume furthermore that φ is continuous. (Note that in contrast to the complex
case F = C, every antiautomorphism of R and of H is automatically continuous.) In
particular, φ is the identity map if F = R, and φ is either the identity map or the
complex conjugation if F = C. Denote by Fm×n the set of all m × n matrices with
entries in F, and let Sφ ∈ Fn×m stand for the matrix obtained from S ∈ Fm×n by
applying entrywise the antiautomorphism φ to the transposed matrix ST ∈ Fn×m.

We consider ordered pairs of matrices (A,B), whereA,B ∈ Fm×n, or equivalently,
matrix pencils A+ tB; here, t is assumed to be a real valued independent variable, in
particular, t commutes with A and B. The equivalence relation of strict equivalence
is defined on the set of matrix pencils of fixed size m× n: Matrix pencils A+ tB and
A′ + tB′, where A,B,A′, B′ ∈ Fm×n are said to be strictly equivalent, or F-strictly
equivalent if F is to be emphasized, if there exist invertible matrices S ∈ Fm×m,
T ∈ Fn×n such that the equality

S(A+ tB)T = A′ + tB′, ∀ t ∈ R,(1.1)

holds. Equality (1.1) clearly amounts to

SAT = A′, SBT = B′.
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For matrix pencils of square size (m = n), also the equivalence relation of congru-
ence (which depends on φ) is defined: Matrix pencils A + tB and A′ + tB′, where
A,B,A′, B′ ∈ Fn×n are said to be congruent, or more precisely φ-congruent, if there
exists an invertible matrix S ∈ Fn×n such that the equality

Sφ(A+ tB)S = A′ + tB′, ∀ t ∈ R,(1.2)

holds. Of particular interest in this respect are the cases when A and B have certain
symmetry properties with respect to φ, namely A = ±Aφ and B = ±Bφ (the signs
need not be the same for A and B). It is easy to see that such symmetry properties
are preserved under φ-congruence.

Canonical forms of matrix pencils under strict equivalence, and canonical forms
of matrix pencils with a symmetry property under congruence play a central role in
many applications of matrix analysis. In the real and complex cases, these canonical
forms are classical and can be found in numerous sources (see, e.g., [21] where many
bibliographical references are provided, or more recent expositions [11], [12]). In
the quaternionic case the literature on canonical forms is not nearly as extensive;
we mention here the books [1], [2] (the latter contains a detailed treatment of the
subject), and a list (far from compete) of relatively recent papers [4], [10], [16], [17],
[18], [19], [20].

In the present paper we study comparisons between the equivalence relations
of strict equivalence and congruence of matrix pencils with symmetry defined over
different F’s. To formulate the problems precisely, let F′ be the real or complex field,
with its own continuous involutory antiautomorphism φ′ (thus, φ′ is either the identity
or (in the complex case) complex conjugation), and assume that F′ is a proper subfield
of F and that φ when restricted to F′ coincides with φ′. The following are the main
problems addressed in the present paper.

Problem 1.1. Assume that A + tB and A′ + tB′, where A,B,A′, B′ ∈ F′n×n,
are matrix pencils with a symmetry property with respect to φ′.

(a) If A+ tB and A′ + tB′ are φ-congruent, in other words,

Sφ(A+ tB)S = A′ + tB′

for some invertible matrix S ∈ Fn×n, what can we say about the φ′-congruence between
A+ tB and A′ + tB′?

(b) If A + tB and A′ + tB′ are F-strictly equivalent, what can we say about the
F′-strict equivalence of A+ tB and A′ + tB′?

Problem 1.2. Under the hypotheses of Problem 1.1, identify those pencils A+tB
for which:

(a) A pencil A′+tB′ is φ-congruent to A+tB if and only if A′+tB′ is φ′-congruent
to A+ tB.

(b) As in (a), but with respect to F-strict equivalence and F
′-strict equivalence.

Note that without the hypothesis on A+ tB and A′ + tB′ having the symmetry
property, the answers to parts 2 of Problems 1.1 and 1.2 are well known, and are
given in terms of the Kronecker forms of the matrix pencils.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 16, pp. 248-283, September 2007

http://math.technion.ac.il/iic/ela



ELA

250 Leiba Rodman

As a corollary of a solution of Problem 1.2 we obtain necessary and sufficient
conditions for a matrix Y ∈ F′n×n to have the following property: For any matrix
X ∈ F′n×n, if there exists an invertible S ∈ Fn×n such that SφXS = Y , then there
exists also an invertible R ∈ F′n×n such that Rφ′

XR = Y . See Theorems 3.2, 4.6, 7.6
for more details.

It will be convenient to introduce the classification of symmetries to be used in the
present paper into 5 cases, as follows. Let σ is a fixed involutory antiautomorphism,
in short iaa, of F which is assumed to be continuous. The 5 cases are:

(I) F = R, σ = id; (II) F = C, σ = id; (III) F = C, σ = complex conjugation;

(IV) F = H, σ = quaternionic conjugation;

(V) F = H, σ = iaa different from quaternionic conjugation.

In the sequel the iaa’s of H different from the quaternionic conjugation will be termed
nonstandard. We note that all nonstandard iaa’s of H are similar to each other (and
are not similar to the quaternionic conjugation): If τ1, τ2 are two such iaa’s, then
there exists an automorphism σ of H such that

τ1(α) = σ−1(τ2(σ(α))), ∀ α ∈ H.(1.3)

This property, as well as and many other properties of iaa’s to be used later on in the
present paper, follows easily from the following known description of iaa’s (see [15],
[16], for example):

Proposition 1.3. A map φ : H −→ H is an iaa if and only if φ is real linear,
and representing φ as a 4× 4 real matrix with respect to the basis {1, i, j, k}, we have:

φ =
[

1 0
0 T

]
,

where either T = −I3 (in which case φ is the quaternionic conjugation) or T is a
3 × 3 real orthogonal symmetric matrix with eigenvalues 1, 1, −1.

In view of (1.3), indeed all nonstandard iaa’s can be treated in one category (V).
We also note that if σ is a nonstandard iaa of H, then there is a unique (up to

multiplication by −1) quaternion β such that β2 = −1 (this equaity holds if and only
if β has norm 1 and zero real part) and σ(β) = −β. Conversely, for every β ∈ H with
β2 = −1 there exists a unique nonstandard iaa σ of H such that

σ(β) = −β.(1.4)

We will often use the notation (V)β instead of (V) to indicate that the iaa σ in
question is such that (1.4) holds.
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Let A,B,A′, B′ ∈ Hn×n (in particular, the case when A,B,A′, B′ are real or
complex matrices is not excluded). We say that the matrix pencils A + tB and
A′ + tB′ are (I)-, (II)-, (III)-, (IV)-, or (V)β-congruent, respectively, if the equality

Sσ(A+ tB)S = A′ + tB′

holds for some invertible S ∈ Fn×n, where F and σ are determined by (I), (II), (III),
(IV), or (V)β , as the case may be, and where in addition in the case (V)β we assume
that (1.4) holds. Clearly, each of these congruences is an equivalence relation.

We now review briefly the contents of the paper section by section. Section 2
is preliminary, and contains well known background information (to be used in the
present paper) on quaternionic linear algebra. In Section 3 we study Problems 1.1 and
1.2 in the case when F′ is the real field. It turns out in particular, that for real matrix
pencils with a symmetry, congruence (using the complex or quaternionic conjugation)
with a complex or quaternionic congruence matrix is equivalent to that with a real
congruence matrix, whereas (V)-congruence is the same as R-strict equivalence. The
main results there are Theorems 3.1 and 3.3. In Section 4 we study Problems 1.1 and
1.2 in the case when F′ = C, F = H, φ′ is the identity map, and φ is a nonstandard
iaa. In this case, it turns out that H-strict equivalence is the same as (IV)-congruence
(Theorem 4.2). The comparison of congruences over the complex field and of con-
gruences over the skew field of quaternions is given in terms of canonical forms of
complex matrix pencils with symmetries (Theorem 4.4).

Next is the case when F′ = C, F = H, φ′ is the complex conjugation, and φ is the
quaternionic conjugation, which is considered in Sections 5 and 6. Here, it turns out
that it is convenient to consider canonical forms for complex hermitian matrix pencils
under congruence, depending on the particular symmetry of the given matrix pencil
A+ tB, where A,B ∈ Cn×n: If A = A∗, B = −B∗, then we use the canonical form of
the hermitian matrix pencil A+tiB (i is the complex imaginary unit), and if A = −A∗,
B = −B∗, then we use the canonical form of the hermitian matrix pencil iA + tiB.
In the latter case, we obtain in particular the fact that H-strict equivalence is the
same as C-strict equivalence (Theorem 5.3). The more difficult case when A = A∗,
B = −B∗ is treated separately in Section 6. Here the main results are Theorems 6.1
and 6.3.

Finally, the situation when F′ = C, F = H, φ′ is the complex conjugation, and φ
is a nonstandard iaa, is dealt with in Section 7. For skewhermitian complex matrix
pencils, it turns out that C-strict equivalence coincides with H-strict equivalence, and
an analogous statement holds for congruence (Theorem 7.3). The main result here
is Theorem 7.4 which gives a complete characterization of congruences of hermitian
matrix pencils A+ tiB vs quaternionic congruences of pencils of the form A+ tB.

We conclude the introduction with notation to be used throughout the paper.
The standard imaginary units in H (the skew field of quaternions) will be denoted
i, j, k; thus, i2 = j2 = k2 = −1 and jk = −kj = i, ij = −ji = k, ki = −ik = j.
For a quaternion x = a0 + a1i + a2j + a3k, a0, a1, a2, a3 ∈ R, we let R(x) := a0 and
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V(x) := a1i+a2j+a3k be the real and the vector parts of x, respectively. The conjugate
quaternion a0 − a1i− a2j− a3k is denoted by x, and |x| = √

a20 + a21 + a22 + a23 stands
for the norm of x. We denote by diag (X1, X2, . . . , Xp), or by X1⊕X2⊕· · ·⊕Xp, the
block diagonal matrix with diagonal blocks X1, . . . , Xp (in that order). For short, for
a given p× q matrix X , we often use the notation

X⊕m := diag (X,X, . . . , X) = X ⊕X ⊕ · · · ⊕X,

where X appears m times; thus, X⊕m is a mp×mq matrix. The notation AT , resp.,
A∗, stands for the transpose, resp., conjugate transpose, of the matrix A. We denote
by SpanR {α, β} the real subspace of H spanned by α, β ∈ H.

The following matrices in standard forms and fixed notation that will be used.
The subscript in notation for a square size matrix will always denote the size of the
matrix.

I and 0 (possibly with subscripts indicating the size) stand for the identity and
the zero matrix, respectively.

The Jordan blocks:

Jm(λ) =




λ 1 0 · · · 0
0 λ 1 · · · 0
...

...
. . . . . . 0

...
... λ 1

0 0 · · · 0 λ



∈ H

m×m, λ ∈ H.

The real Jordan blocks:

J2m(a± ib) =




a b 1 0 · · · 0 0
−b a 0 1 · · · 0 0
0 0 a b · · · 0 0

0 0 −b a · · · ...
...

...
...

...
... 1 0

...
...

...
... 0 1

0 0 0 0 · · · a b
0 0 0 0 · · · −b a




∈ R
2m×2m, a ∈ R, b ∈ R \ {0}.

Real symmetric matrices:

Fm :=




0 · · · · · · 0 1
... 1 0
...

...

0 1
...

1 0 · · · · · · 0




= F−1
m = FT

m,(1.5)
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Gm :=




0 · · · · · · 1 0
... 0 0
...

...

1 0
...

0 0 · · · · · · 0




=
[
Fm−1 0

0 0

]
= GT

m.(1.6)

Pencils of real ε× (ε+ 1) matrices:

Lε×(ε+1) := Lε×(ε+1)(t) =



t 1 0 · · · 0
0 t 1 · · · 0
...

. . . . . .
...

0 0 · · · t 1


 .

2. Preliminaries: Quaternionic linear algebra. In this section we recall
basic facts about the quaternionic linear algebra, almost all without proofs. For more
information and proofs, we refer the reader to [22], [23], [16], [5], [15], among many
other sources. Recent interest in quaternionic linear algebra is motivated in part by
applications in system and control [13], [14].

We start with similarity and congruence of quaternions. Quaternions x, y ∈ H are
said to be similar, resp., congruent if x = α−1yα, resp., x = αyα for some α ∈ H\{0}.

Proposition 2.1. (1) Two quaternions x and y are similar if and only if R(x) =
R(y) and |V(x)| = |V(y)|.

(2) Two quaternions x and y are congruent if and only if there exists c > 0 such
that R(x) = cR(y) and |V(x)| = c|V(y)|. In particular, any two nonzero quaternions
with zero real parts are congruent.

Part (1) here is well known, and part (2) follows easily from part (1) (see [18] for
details.)

Next, consider the well known useful embeddings of Hm×n into R4m×4n and into
C2m×2n, as follows. Write x ∈ H as a linear combination

x = a0 + a1i + a2j + a3k, a0, a1, a2, a3 ∈ R.

Then we define

�R(x) =



a0 −a1 a3 −a2
a1 a0 −a2 −a3

−a3 a2 a0 −a1
a2 a3 a1 a0


 ∈ R

4×4,

�C(x) =
[
a0 + a1i a2 + a3i
−a2 + a3i a0 − a1i

]
∈ C

2×2
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and for

X = [xα,β ]
m,n
α=1,β=1 ∈ H

m×n

define

�R(X) = [�R(xα,β)]
m,n
α=1,β=1 ∈ R

4m×4n, �C(X) = [�C(xα,β)]
m,n
α=1,β=1 ∈ C

2m×2n.

The algebraic properties of the maps �R and �C are well known:
Proposition 2.2. The maps �R and �C are one-to-one ∗-homomorphisms of

real algebras, i.e., denoting by F either R or C, we have:

�F (aX + bY ) = a�F (X) + b�F (Y ), ∀ X,Y ∈ H
m×n, a, b ∈ R;

�F (XY ) = �F (X)�F (Y ), ∀ X ∈ H
m×n, Y ∈ H

n×p;

�F (X∗) = (�F (X))∗, ∀ X ∈ H
m×n.(2.1)

Note that the equality in (2.1) takes the form �F (X∗) = (�F (X))T if F = R.

Next, consider pencils of quaternionic matrices A+ tB, where A and B are m×n
matrices with entries in H, and t is an independent real variable; in particular, t
commutes with the quaternionic matrices. Canonical form of the pencil A+ tB under
strict equivalence:

A+ tB −→ P (A+ tB)Q,

where P ∈ Hm×m and Q ∈ Hn×n are invertible matrices, is known as the Kronecker
form, or H-Kronecker form (if the skew field of quaternions is to be emphasized).
Equivalently, it is the canonical form of ordered pairs of matrices (A,B) under the
group action (A,B) −→ (PAQ,PBQ), with invertible quaternionic matrices P and
Q.

We describe the Kronecker form of quaternionic matrix pencils next.
Theorem 2.3. Every pencil A + tB, where A,B ∈ Hm×n, is strictly equivalent

to a matrix pencil in the block-diagonal form:

0u×v ⊕ Lε1×(ε1+1) ⊕ · · · ⊕ Lεp×(εp+1) ⊕ LT
η1×(η1+1) ⊕ LT

ηq×(ηq+1) ⊕
(Ik1 + tJk1(0)) ⊕ · · · ⊕ (Ikr + tJkr (0)) ⊕
(tI�1 + J�1(α1)) ⊕ · · · ⊕ (tI�s + J�s(αs)),(2.2)

where ε1 ≤ . . . ≤ εp; η1 ≤ . . . ≤ ηq; k1 ≤ . . . ≤ kr; %1 ≤ . . . ≤ %s are positive integers,
and α1, . . . , αs ∈ H.

Moreover, the integers u, v, and εi, ηj , kw are uniquely determined by the pair
A, B, and the part

(tI�1 + J�1(α1)) ⊕ · · · ⊕ (tI�s + J�s(αs))
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is uniquely determined by A and B up to a permutation of the diagonal blocks and up
to replacing each αj with any quaternion similar to αj.

The result of Theorem 2.3 is known, see [19] and [3], where it is stated in a less
explicit form. A detailed proof of Theorem 2.3, following the standard approach for
matrix pencils over fields as in [6] or [8], is given in [16].

We use the following terminology in connection with the Kronecker form (2.2) of
the matrix pencil A + tB. The integers ε1 ≤ . . . ≤ εp and η1 ≤ . . . ≤ ηq are called
the left indices and the right indices, respectively, of A+ tB. The blocks Ikj + tJkj (0)
are said to correspond to the eigenvalue at infinity, and the integers k1 ≤ . . . ≤ kr

are called the indices at infinity of A + tB. The quaternions α1, . . . , αs are called
the eigenvalues of A + tB; they are uniquely determined up to permutation and
similarity. Note that if B is invertible, then the eigenvalues of A+ tB are exactly the
eigenvalues of B−1A (or the eigenvalues of AB−1). For a fixed eigenvalue α of A+ tB,
let i1 < . . . < iw be all the subscripts in (2.2) such that αi1 , . . . , αiw are similar to
α; then the integers %i1 , . . . , %iw , with %ij repeated as many times as there are blocks
J�ij

(αij ) with αij similar to α in (2.2), are called the indices of the eigenvalue α of
A+ tB.

Let α and α′ be eigenvalues of quaternionic matrix pencils A+ tB and A′ + tB′,
respectively, with corresponding indices %i1 ≤ · · · ≤ %iw and %′i1 ≤ · · · ≤ %′iw′ , which are
assumed (without loss of generality) to be arranged in the nondecreasing order. Then
we say that the indices of α coincide with the indices of α′ (as the eigenvalues of A+tB
and A′ + tB′, respectively) if w′ = w and %j = %′j for j = 1, 2, . . . , w. Similarly, the
notion of coinciding indices at infinity of two quaternionic matrix pencils is introduced.

The connections between the Kronecker form of quaternionic pencils and the
Kronecker form of their images under the maps �R and �C will be useful. By the
real or complex Kronecker form, in short R-Kronecker form or C-Kronecker form, of
a real or complex matrix pencil X + tY we mean the canonical form of X + tY under
transformations

X + tY �→ S1(X + tY )S2,

where S1 and S2 are invertible real or complex matrices, as the case may be (see [6]
or [7, Chapter 2], for example).

Theorem 2.4. Let (2.2) be the Kronecker form of a quaternionic pencil A+ tB,
and assume without loss of generality that α1, . . . , αu are real whereas

αu+1 = au+1 + ibu+1, . . . , αs = as + ibs, aj , bj ∈ R, bj �= 0,

are nonreal complex numbers, for j = u+ 1, . . . , s. Then:
(a) The R-Kronecker form of the real pencil �R(A) + t�R(B) is given by

04u×4v ⊕
p⊕

j=1

((Lεj×(εj+1))⊕4) ⊕
q⊕

j=1

((LT
ηj×(ηj+1))

⊕4)

⊕
r⊕

j=1

[
(I + tJkj (0))

⊕4
] ⊕

u⊕
j=1

[
(tI + Jmj (αj))⊕4

] ⊕
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⊕
s⊕

j=u+1

[(tI + J2mj (aj ± ibj))⊕2].

(b) The C-Kronecker form of the complex pencil �C(A) + t�C(B) is given by

02u×2v ⊕
p⊕

j=1

((Lεj×(εj+1))⊕2) ⊕
q⊕

j=1

((LT
ηj×(ηj+1))

⊕2)

⊕
r⊕

j=1

[
(I + tJkj (0))

⊕2
] ⊕

u⊕
j=1

[
(tI + Jmj (αj))⊕2

] ⊕

⊕
s⊕

j=u+1

[
tI + Jmj (aj + ibj) 0

0 tI + Jmj (aj − ibj)

]
.

This result can be easily obtained from [16, Theorem 3.8], which gives the Jordan
forms of �R(X) and �C(X) in terms of the Jordan form of the quaternionic matrix
X .

2.1. Comparison of strict equivalence. Let F be one of R, C, or H. Two
matrix pencils A + tB and A′ + tB′, where A,B,A′, B′ ∈ Fm×n, are said to be F-
strictly equivalent if A+ tB = S(A′ + tB′)T for some invertible matrices S ∈ Fm×m,
T ∈ Fn×n.

Proposition 2.5. Two real matrix pencils are R-strictly equivalent if and only if
they are H-strictly equivalent, and hence if and only if they are C-strictly equivalent.

Proof. Let A,B,A′, B′ ∈ Rm×n, and assume that

T (A+ tB)S = A′ + tB′(2.3)

for some invertible quaternionic matrices T and S. Applying the map �R to both
sides of (2.3), and using Proposition 2.2, we see that �R(A) + t�R(B) is R-strictly
equivalent to �R(A′) + t�R(B′). It is easy to see that �R(A) + t�R(B) is R-strictly
equivalent to (A+ tB)⊕4, in fact, the R-strict equivalence matrices can be chosen to
be suitable permutation matrices. Similarly, �R(A′)+t�R(B′) is R-strictly equivalent
to (A′ + tB′)⊕4, and it remains to use a cancellation property (see [18]) to conclude
that A+ tB is R-strictly equivalent to A′ + tB′.

Note that an analogue of Proposition 2.5 for the complex field does not hold:
Two complex matrix pencils that are H-strictly equivalent need not be C-strictly
equivalent, as scalar examples t1+α, t1+α, where α ∈ C\R, show. Complex matrix
pencils with this property can be easily identified, as shown in particular in the next
proposition:

Proposition 2.6. Let there be given a complex matrix pencil A+ tB, and let

0u×v ⊕ Lε1×(ε1+1) ⊕ · · · ⊕ Lεp×(εp+1) ⊕ LT
η1×(η1+1) ⊕ LT

ηq×(ηq+1)⊕
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(Ik1 + tJk1(0)) ⊕ · · · ⊕ (Ikr + tJkr (0)) ⊕ (tI�1 + J�1(α1)) ⊕ · · · ⊕ (tI�s + J�s(αs)),

αj ∈ C,(2.4)

be the complex Kronecker form for A+ tB. Then, a complex matrix pencil A′ + tB′ is
H-strictly equivalent to A+ tB if and only if the complex Kronecker form of A′ + tB′

is obtained from (2.4) by replacing some (possibly none) of the blocks J�j (αj) with
non-real αj by the blocks J�j (αj).

In particular, every complex matrix pencil which is H-strictly equivalent to A+tB
is also C-strictly equivalent to A+ tB if and only if all eigenvalues of A+ tB different
from the infinity are real.

Proof. Without loss of generality we may assume that A + tB is given by (2.4).
The uniqueness part of Theorem 2.3 proves the “if” part of Proposition 2.6. For the
part “only if”, assume that

A′ + tB′ = S(A+ tB)T(2.5)

for some invertible quaternionic matrices S and T . Then apply the map �C to (2.5)
and use Theorem 2.4(b) to obtain the required property of the Kronecker form of
A′ + tB′ over C.

3. Congruences of real symmetric or skewsymmetric matrix pairs. The
main result on comparison of a congruence in the sense of one of (I), (II), (III), (IV),
(V) versus another such congruence, of real matrix pairs with symmetries is given by
the following theorem:

Theorem 3.1. Fix η = ±1, τ = ±1. Let A,B,A′, B′ ∈ Rm×m be such that

AT = ηA, (A′)T = ηA′, BT = τB, (B′)T = τB′.(3.1)

Then, the statements (i), (ii), and (iii) below are equivalent. Also, the statements (iv),
(v), (vi), and (vii) are equivalent.

(i) The matrix pencils A+ tB and A′ + tB′ are (I)-congruent.
(ii) The matrix pencils A+ tB and A′ + tB′ are (III)-congruent.
(iii) The matrix pencils A+ tB and A′ + tB′ are (IV)-congruent.
(iv) The matrix pencils A+ tB and A′ + tB′ are R-strictly equivalent.
(v) The matrix pencils A+ tB and A′ + tB′ are H-strictly equivalent.
(vi) The matrix pencils A+ tB and A′ + tB′ are (II)-congruent.
(vii) The matrix pencils A+ tB and A′ + tB′ are (V)β-congruent for some β ∈ H,

equivalently every β ∈ H, such that R(β) = 0, |V(β)| = 1.
Moreover, if τ = η = −1, then all statements (i) - (vii) are equivalent.
Proof. The implications (i) =⇒ (ii) =⇒ (iii) are obvious. We prove (iii) =⇒ (i).

Let an invertible matrix S ∈ Hm×m be such that equality

S∗(A+ tB)S = A′ + tB′(3.2)

holds, and write S = S0 + iS1 + jS2+kS3, where S0, S1, S2, S3 are real matrices. Then
(3.2) takes the form

UT ((A + tB)⊕4)U = (A′ + tB′)⊕4,
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where

U :=



S0 S1 S2 S3

S1 −S0 S3 −S2

S2 −S3 −S0 S1

S3 S2 −S1 −S0


 .

Note that the matrix U is invertible. Indeed, the equality

Ux = 0, x = [x0 x1 x2 x3]T ∈ R
4,

is equivalent to S(x0− ix1− jx2−kx3) = 0, and therefore in view of the invertibility of
S, x must be the zero vector. Now apply a cancellation property [18] (which follows
easily from the canonical form of real symmetric-skewsymmetric matrix pencils under
(I)-congruence) to conclude that A+ tB and A′ + tB′ are (I)-congruent.

Next, the implications (iv) =⇒ (v), (vii) =⇒ (v), and (vi) =⇒ (vii) are obvious
(to see that (vi) =⇒ (vii), identify C with SpanR {1, q} ⊂ H, where q ∈ H is such that
q2 = −1 and σ(q) = q; existence of such q is guaranteed for every nonstandard iaa
σ). Proposition 2.5 shows that in fact (iv) and (v) are equivalent. Thus, it remains to
prove that (iv) =⇒ (vi). So, assume (iv) holds. As it follows from the canonical forms
of pairs of real symmetric or skewsymmetric matrices under the (I)-congruence and
R-strict equivalence (see [11], [12], for example), there exist real invertible matrices S
and T and pairs of matrices

Aj , Bj ∈ R
nj×nj , n1 + · · ·+ np = m,

such that

ST (A+ tB)S = ⊕p
j=1δj(Aj + tBj), T T (A′ + tB′)T = ⊕p

j=1ξj(Aj + tBj),

where for each j, the pair (Aj , Bj) satisfies

AT
j = ηAj , BT

j = τBj ,

and δ1, . . . , δp, ξ1, . . . , ξp are signs ±1. It suffices to show that ⊕p
j=1δj(Aj + tBj) and

⊕p
j=1ξj(Aj + tBj) are (II)-congruent. This is easy:

⊕p
j=1δj(Aj + tBj) =

(⊕p
j=1Wj

) (⊕p
j=1ξj(Aj + tBj)

) (⊕p
j=1Wj

)
,

where Wj = Inj if δj = ξj and Wj = iInj if δj �= ξj .
Finally, the last statement follows from the fact (see, for example, [12, Theorem

5.1]) that if τ = η = −1 then the real matrix pencils A+ tB and A′ + tB′ satisfying
(3.1) are R-strictly equivalent if and only if they are (I)-congruent.

As an application of Theorem 3.1, we obtain a comparison result for congruence
of real matrices over the reals vs congruence of real matrices over the quaternions:

Theorem 3.2. If X and Y are real matrices such that X = R∗Y R for some
invertible R ∈ Hn×n, then also X = STY S for some invertible S ∈ Rn×n.
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For the proof apply the equivalence (i) ⇐⇒ (iii) of Theorem 3.1 to the matrix
pencils (X +XT )/2 + t(X −XT )/2 and (Y + Y T )/2 + t(Y − Y T )/2.

Next, leaving aside the case τ = η = −1 which has been taken care of in Theorem
3.1, we give necessary and sufficient conditions on the pencil A+ tB for all statements
(i) - (vii) of Theorem 3.1 to be equivalent:

Theorem 3.3. (a) Let there be given symmetric matrices A,B ∈ Rm×m. Then,
the following statements are equivalent:

(i) for every pair A′, B′ ∈ Rm×m of symmetric matrices, the statements (i) -
(vii) of Theorem 3.1 are equivalent;

(ii) the H-Kronecker form of A + tB has no real eigenvalues and has no eigen-
values at infinity.

(iii) the R-Kronecker form of A+tB has no real eigenvalues and has no eigenvalues
at infinity.

(b) Let there be given matrices A,B ∈ Rm×m, where A is symmetric and B is
skewsymmetric. Then, the following statements are equivalent:

(iv) for every pair A′ = A′T , B′ = −B′T ∈ Rm×m, the statements (i) - (vii) of
Theorem 3.1 are equivalent;

(v) the H-Kronecker form of A + tB has no nonzero eigenvalues with zero real
parts, has no odd indices at infinity, and has no even indices corresponding
to the eigenvalue zero (if zero is an eigenvalue);

(vi) the R-Kronecker form of A+ tB has no nonzero pure imaginary eigenvalues,
has no odd indices at infinity, and has no even indices corresponding to the
eigenvalue zero (if zero is an eigenvalue).

Proof. By Proposition 2.5, (ii) and (iii) are equivalent, and (v) and (vi) are
equivalent. The equivalence of (i) and (iii) follows from Theorem 3.1 and from the
well known canonical forms of pairs of real symmetric matrices under (I)-congruence
and R-strict equivalence (see, e.g., [11, Theorem 9.1]). Indeed, the latter imply that
(iii) holds precisely when for every pair A′ = A′T , B′ = B′T ∈ R

m×m, the matrix
pencil A′ + tB′ is R-strictly equivalent to A + tB if and only if A′ + tB′ is (I)-
congruent to A+ tB. Finally, the equivalence of (iv) and (vi) follows from Theorem
3.1 and [12, Corollary 12.3].

The result of Theorem 3.1 may be re-cast in terms of the canonical forms of matrix
pencils under various strict equivalences and congruences. We will state explicitly only
the result pertaining to the equivalence of (i) and (ii) in Theorem 3.1 (Corollary 3.5
below). First, for convenience of reference, we recall the well known canonical form
for pairs of complex hermitian matrices under (III)-congruence (see, for example, [11],
[21]).

Proposition 3.4.

(a) Every matrix pencil A+ tB, where

A = A∗ ∈ C
n×n, B = B∗ ∈ C

n×n,
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is (III)-congruent to a complex hermitian matrix pencil of the form

0u×u ⊕

t


 0 0 Fε1

0 0 0
Fε1 0 0


 +G2ε1+1


 ⊕ · · · ⊕


t


 0 0 Fεp

0 0 0
Fεp 0 0


 +G2εp+1




⊕ δ1 (Fk1 + tGk1) ⊕ · · · ⊕ δr (Fkr + tGkr )
⊕ η1 ((t+ α1)F�1 +G�1)⊕ · · · ⊕ ηq

(
(t+ αq)F�q +G�q

)
⊕

([
0 (t+ β1)Fm1

(t+ β̄1)Fm1 0

]
+

[
0 Gm1

Gm1 0

])

⊕ · · · ⊕
([

0 (t+ βs)Fms

(t+ β̄s)Fms 0

]
+

[
0 Gms

Gms 0

])
.(3.3)

Here, ε1 ≤ · · · ≤ εp and k1 ≤ · · · ≤ kr are positive integers, αj are real numbers, βj

are complex nonreal numbers with positive imaginary parts, δ1, . . . , δr, η1, . . . , ηq are
signs, each equal to +1 or −1.

The form (3.3) is uniquely determined by A+tB up to a permutation of constituent
blocks.

(b) Every matrix pencil A + tB, where A = A∗ ∈ Cn×n, B = B∗ ∈ Cn×n, is
C-strictly equivalent to a unique (up to a permutation of constituent blocks) complex
hermitian matrix pencil of the form (3.3), with all signs taken to be +1.

The signs δ1, . . . , δr, η1, . . . , ηq form the sign characteristic of the complex hermi-
tian pencil A+ tB. Thus, the sign characteristic associates a sign ±1 to every index
of a real eigenvalue and of the eigenvalue at infinity of A+ tB.

For complex matrix pencils A+ tB, where B = −B∗ and A = ±A∗, we will use in
the sequel the canonical form as set forth in Proposition 3.4 for the hermitian matrix
pencil A+ t(iB) (if A = A∗) or iA+ t(iB) (if A = −A∗). Note that complex matrix
pencils A + tB and A′ + tB′, where B = −B∗, B′ = −B′∗, A = A∗, A′ = A′∗, are
(III)-congruent if and only if the complex hermitian pencils A+ t(iB) and A′ + t(iB)′

are (III)-congruent, i.e., have the same canonical form under Proposition 3.4. In the
same vein, complex matrix pencils A+ tB and A′+ tB′, where B = −B∗, B′ = −B′∗,
A = −A∗, A′ = −A′∗, are (III)-congruent if and only if the complex hermitian pencils
(iA) + t(iB) and (iA′) + t(iB)′ have the same canonical form under Proposition 3.4.
Thus, we obtain from the equivalence of (i) and (ii) of Theorem 3.1:

Corollary 3.5. Let A,B,A′, B′ ∈ R
m×m be such that

AT = ηA, (A′)T = ηA′, BT = τB, (B′)T = τB′, η = ±1, τ = ±1.(3.4)

Then the matrix pencils A + tB and A′ + tB′ are (I)-congruent if and only if the
complex hermitian matrix pencils κ(η)A + t(κ(τ)B) and κ(η)A′ + t(κ(τ)B′), where
κ(−1) = i, κ(1) = 1, have the same canonical form under (III)-congruence.

4. Congruences of pairs of complex symmetric or skewsymmetric ma-
trices. In this section we compare strict equivalences, (II)-congruences and (V)β-
congruences of pencils of symmetric or skewsymmetric complex matrices. Throughout
this section we identify C with SpanR {1, i} ⊂ H, and we assume that β ∈ SpanR {j, k}.
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4.1. Main result: Comparison with quaternionic strict equivalence and
congruence. From the assumptions set forth at the beginning of this section, we
obviously have:

Proposition 4.1. If two complex matrix pencils A+ tB and A′ + tB′ are (II)-
congruent, then they are also (V)β-congruent.

We will be concerned in this section with the problem to what extent the converse
statement holds, for pencils of complex symmetric or skewsymmetric matrices.

The key result of this section states that for complex pencils of symmetric or
skewsymmetric matrices, H-strict equivalence is the same as (V)β -congruence:

Theorem 4.2. Fix η = ±1, τ = ±1. Let A,B,A′, B′ ∈ Cm×m be such that
AT = ηA, (A′)T = ηA′, BT = τB, (B′)T = τB′. Then the matrix pencils A + tB
and A′ + tB′ are H-strictly equivalent if and only if they are (V)β-congruent.

The lengthy proof of Theorem 4.2 is relegated to the next subsection.

Comparison of (II)- and (V)β-congruences will be given in terms of the well known
canonical form for complex symmetric matrix pencils. The form is available in many
sources, see [21], [9], for example; we follow here [21]:

Proposition 4.3. Every matrix pencil A + tB, where A = AT ∈ C
n×n, B =

BT ∈ Cn×n, is (II)-congruent to a complex symmetric matrix pencil of the form

0u×u ⊕

t


 0 0 Fε1

0 0 0
Fε1 0 0


 +G2ε1+1


 ⊕ · · · ⊕


t


 0 0 Fεp

0 0 0
Fεp 0 0


 +G2εp+1




⊕ (Fk1 + tGk1) ⊕ · · · ⊕ (Fkr + tGkr )
⊕ ((t+ α1)F�1 +G�1) ⊕ · · · ⊕ (

(t+ αq)F�q +G�q

)
,(4.1)

where ε1 ≤ · · · ≤ εp and k1 ≤ · · · ≤ kr are positive integers, and αj are complex
numbers. The form (4.1) is uniquely determined by A + tB up to a permutation of
constituent blocks.

A complete characterization of canonical forms of complex symmetric matrix
pencils that are (V)β-congruent to a fixed complex symmetric matrix pencil in a
canonical form is given in the next theorem.

Theorem 4.4. Let A + tB be a complex symmetric matrix pencil, and let (4.1)
be its canonical form under (II)-congruence. Then a complex symmetric matrix pencil
A′+tB′ is (V)β-congruent to A+tB if and only if the canonical form of A′+tB′ under
(II)-congruence is obtained from (4.1) by replacing some (or none) of the nonreal
numbers αj among α1, . . . , αq with their complex conjugates αj.

For the proof observe that the canonical form of A + tB under (V)β-congruence
is (4.1), up to permutation of blocks, and replacement of each αj with its complex
conjugate (see, for example, [16, Theorem 7.1]).

Results analogous to Theorem 4.4, with essentially the same proofs (using canon-
ical forms of symmetric-skewsymmetric complex matrix pencils given in Proposition
4.7 below), hold also for pairs of complex skewsymmetric matrices, and for pairs of
complex matrices, one of them being symmetric and the other skewsymmetric. We
leave statements and proofs of these results to the interested readers.
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The following corollary is immediate from Theorem 4.4 and its analogues for
pairs of complex skewsymmetric matrices and pairs of mixed complex symmetric-
skewsymmetric matrices:

Corollary 4.5. Fix η = ±1, τ = ±1. A complex matrix pencil A + tB, where
A = ηAT , B = τBT , has the property that any complex symmetric pencil A′ + tB′

with A′ = ηA′T , B′ = τB′T is (II)-congruent to A + tB precisely when A′ + tB′ is
(V)β-congruent to A+ tB, if and only if A+ tB has no nonreal complex eigenvalues
in its C-Kronecker form.

In contrast to Theorem 3.2, the equivalence relation of congruence (using trans-
position) of complex matrices over C is generally different from the φ-congruence of
complex matrices over H (here, the iaa φ is such that φ(i) = i). We characterize those
complex matrices for which the two congruence relations turn out to be the same:

Theorem 4.6. The following properties are equivalent for a complex matrix
Y ∈ C

n×n:
(1) For some fixed nonstandard iaa φ such that φ(i) = i, if there exists an invert-

ible quaternionic matrix R ∈ Hn×n such that X := RφY R is complex, then
X = STY S = SφY S for some invertible complex matrix S.

(2) If there exist (a) an invertible quaternionic matrix R ∈ Hn×n, and (b) a
nonstandard iaa φ with φ(i) = i such that X := RφY R is complex, then
X = STY S = SφY S for some invertible complex matrix S.

(3) The matrix pencil (Y + Y T )/2 + t(Y − Y T )/2 has no nonreal complex eigen-
values.

(4) The rank of the matrix (Y +Y T )/2+z(Y −Y T )/2 is the same for all z ∈ C\R.
For the proof, apply Corollary 4.5 to the pencil (Y +Y T )/2+ t(Y −Y T )/2, taking

η = 1, τ = −1. The equivalence of (3) and (4) is obvious from the C-Kronecker form
of (Y + Y T )/2 + t(Y − Y T )/2.

4.2. Proof of Theorem 4.2. We start with recalling the well known canonical
forms for complex symmetric or skewsymmetric matrix pencils (for symmetric com-
plex matrix pencils see Proposition 4.3). The expository paper [21] is the source for
the next proposition.

Proposition 4.7.
(a) Every matrix pencil A + λB, where A and B are complex skew-symmetric

matrices, is (II)-congruent to a pencil of skew-symmetric matrices of the form

0u×u ⊕
p⊕

j=1


t


 0 0 Fεj

0 01 0
−Fεj 0 0


 +


 0 Fεj 0

−Fεj 0 0
0 0 0






⊕
r⊕

j=1

([
0 Fkj

−Fkj 0

]
+ t

[
0 Gkj

−Gkj 0

])
⊕

⊕
q⊕

j=1

(
(t+ αj)

[
0 F�j

−F�j 0

]
+

[
0 G�j

−G�j 0

])
,(4.2)

where the positive integers εj’s satisfy ε1 ≤ · · · ≤ εp, and αj ∈ C. The form (4.2) is
uniquely determined by A+ tB up to permutations of diagonal blocks.
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(b) Every matrix pencil A + tB, where A = AT , B = −BT ∈ Cn×n, is (II)-
congruent to a direct sum of blocks of the following seven primitive types; several
blocks of the same primitive type and/or the same size may be present in the direct
sum:
(sss0)

a square size zero matrix.

(sss1)

G2ε+1 + t


 0 0 Fε

0 01 0
−Fε 0 0


 .

(sss2)

Fk + t


 01 0 0

0 0 F k−1
2

0 −F k−1
2

0


 , k odd.

(sss3)

Fk + t




01 0 0 0
0 0 0 F k−2

2

0 0 01 0
0 −F k−2

2
0 0


 , k even and k/2 even.

(sss4)

G� + t
[

0 F�/2

−F�/2 0

]
, % even.

(sss5)
[

0 G�/2

G�/2 0

]
+ t

[
0 F�/2

−F�/2 0

]
, % even and %/2 odd.

(sss6)
[

0 αF�/2 +G�/2

αF�/2 +G�/2 0

]
+ t

[
0 F�/2

−F�/2 0

]
,

where % even, α ∈ C \ {0}.
Moreover, the direct sum is uniquely determined by the pencil A + tB, up to

permutation of the primitive blocks.

(d) Fix η = ±1, τ = ±1. Let A,B,A′, B′ ∈ Cm×m be such that AT = ηA,
(A′)T = ηA′, BT = τB, (B′)T = τB′. Then the matrix pencils A+ tB and A′ + tB′

are C-strictly equivalent if and only if the matrix pencils are (II)-congruent.
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Proof of Theorem 4.2. Clearly, we need to prove only the “only if” part. In the
case τ = η = 1 this is clear in view of fact that symmetric quaternionic pencils are
H-strictly equivalent if and only if they are (V)β -congruent ([16, Theorem 7.1]).

Consider the case τ = η = −1. Assume that A + tB and A′ + tB′ are H-
strictly equivalent. Since by Proposition 4.7 the relation of C-strict equivalence of
complex skew-symmetric pencils is the same as the relation of (II)-congruence, we
may further replace A + tB with its canonical form under (II)-congruence. In other
words, we assume that A+ tB is given by (4.2). Note the following (V)β -congruence
relations (here σ is a nonstandard iaa such that σ(β) = −β; recall that we assume
β ∈ SpanR(j, k)):

Sσ
kj

[
0 Fkj + tGkj

−Fkj − tGkj 0

]
Skj

= (−(βFkj + tβGkj )) ⊕ (βFkj + tβGkj );(4.3)

Sσ
�j

(
(t+ αj)

[
0 F�j

−F�j 0

]
+

[
0 G�j

−G�j 0

])
S�j

= (− (
(t+ αj)βF�j + βG�j

)
)⊕ (

(t+ αj)βF�j + βG�j

)
, αj ∈ R,(4.4)

where

Sm =
1√
2

[
βIm −βIm
Im Im

]
, Sσ

m =
1√
2

[ −βIm Im
βIm Im

]
.

Comparing with the canonical form under (V)β-congruence (see [16, Theorem 8.1]),
we see that the canonical form of A + tB under (V)β -congruence is given by (4.2),
where each block [

0 Fkj

−Fkj 0

]
+ t

[
0 Gkj

−Gkj 0

]

is replaced with the right hand side of (4.3), and each block

(t+ αj)
[

0 F�j

−F�j 0

]
+

[
0 G�j

−G�j 0

]

is replaced with the right hand side of (4.4). In other words, the blocks in the canonical
form of A + tB under (V)β-congruence that correspond to the real eigenvalues and
to the eigenvalue at infinity appear in pairs, and in each such pair the two blocks
have opposite signs. Of course, the same property is valid also for the canonical
form of A′ + tB′ under (V)β-congruence. Notice that A + tB and A′ + tB′ have
the same canonical form under H-strict equivalence, and that the canonical forms
of quaternionic skewsymmetric (with respect to a nonstandard iaa) matrix pencils
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under (V)β -congruence and under H-strict equivalence can differ only in the signs
associated with blocks corresponding to the real eigenvalues and to the eigenvalue at
infinity (see [16, Theorem 8.1]). We obtain therefore that A+ tB and A′ + tB′ have
the same canonical form under (V)β -congruence. In other words, A+ tB and A′+ tB′

are (V)β -congruent, as claimed.
Finally, consider the case η = 1, τ = −1 (the remaining case η = −1, τ = 1 can

be easily reduced to the case under consideration by interchanging the roles of A and
B). First of all, we will transform the primitive blocks (sss2) - (sss6) into different
forms using (V)β-congruence, so that the obtained forms are easily comparable to
the canonical form of quaternionic symmetric-skewsymmetric pencils under (V)β -
congruence.

Claim 1. The block (sss5) is (V)β-congruent to

(G+ tβF ) ⊕ (−(G+ tβF )),(4.5)

where we let G = G�/2, F = F�/2, and recall that %/2 is odd.
For the proof of the claim consider the matrix pencil

[
0 G
G 0

]
+ t

[
0 −βF
βF 0

]
.(4.6)

The matrix pencil (4.6) may be considered as a pencil of complex hermitian matri-
ces, under the real linear map Ψ of SpanR {1, β} onto C via 1 �→ 1 and β �→ i.
Transformations of the matrix pencil (4.6) of the form

[
0 G
G 0

]
+ t

[
0 −βF
βF 0

]
�→ Sσ

([
0 G
G 0

]
+ t

[
0 −βF
βF 0

])
S,

where S is an invertible matrix with entries in SpanR {1, β}, amount to (III)- congru-
ences under the map Ψ. We verify that the canonical form under (III)-congruence of
(4.6), understood as a pencil of complex hermitian matrices, is equal to

(G+ tF ) ⊕ (−(G+ tF )).(4.7)

Indeed, since the C-Kronecker form of (4.6) (again, under the map Ψ) is (tI+J�/2(0))⊕
(tI + J�/2(0)), it follows from Proposition 3.4 that the canonical form of (4.6) under
(III)-congruence is

η1(G+ tF )⊕ η2(G+ tF ),

where η1, η2 are signs ±1. However, the case η1η2 = 1 is impossible, because if
η1η2 = 1 holds then for large real values of t, the signature (= the difference between
the number of positive eigenvalues, counted with multiplicities, and the number of
negative eigenvalues, counted with multiplicities) of the hermitian matrix η1(G +
tF ) ⊕ η2(G + tF ) is not zero (this is where the hypothesis that %/2 is odd is used),
whereas for the hermitian matrix (4.6) the signature is equal to zero for all real t, a
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contradiction with the inertia theorem for hermitian matrices. Thus, the canonical
form of (4.6) under (III)-congruence must be (4.7). In particular,

Sσ

[
0 G
G 0

]
S =

[
G 0
0 −G

]
, Sσ

[
0 −βF
βF 0

]
S =

[
F 0
0 −F

]
,

for some invertible matrix S with entries in SpanR {1, β}. Thus,

Sσ

[
0 F

−F 0

]
S =

[
βF 0
0 −βF

]
,

and the claim follows.

In a completely analogous way, the next claim is verified:
Claim 2.
(a) The block (sss2) is (V)β-congruent to Fk + tβGk; recall that k is odd.
(b) The block (sss3) is (V)β-congruent to

(Fk/2 + tβGk/2) ⊕ (−(Fk/2 + tβGk/2));(4.8)

recall that k/2 is even.
(c) The block (sss4) is (V)β-congruent to G� + tβF�; recall that % is even.
Our final claim concerns (sss6) with α ∈ C \ {0} having zero real part:
Claim 3. The block[

0 αFq +Gq

αFq +Gq 0

]
+ t

[
0 Fq

−Fq 0

]
,

where α ∈ C \ {0} has zero real part, is (V)β-congruent to a block of the form

(A0 + tB0) ⊕ (−(A0 + tB0)),

where A0 = Aσ
0 ∈ Hq×q and B0 = −Bσ

0 ∈ Hq×q. Moreover, the H-Kronecker form of
the quaternionic pencil A0 + tB0 consists of only one Jordan block of size q × q with
eigenvalue α (or any similar eigenvalue).

Proof of Claim 3. First of all notice the equality (recall that β ∈ SpanR {j, k},
α ∈ SpanR {i})

αβ = −βα.(4.9)

Define the matrix

Z = diag (1,−1, . . . , (−1)q−1).(4.10)

We obviously have Z−1 = ZT = Z. In what follows, we denote F = Fq, G = Gq for
short.

Assume first that q is odd. Then

Z(FG)Z = −FG, Z = FZF, ZGZ = −G.
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One now verifies that[
βIq −βZ
Z Iq

]σ ([
0 αFq +Gq

αFq +Gq 0

]
+ t

[
0 Fq

−Fq 0

]) [
βIq −βZ
Z Iq

]
=

2(αβZF + ZGβ − (βZF )t) ⊕ 2(−αβZF + ZGβ + (βZF )t),

and

Z(−αβZF + ZGβ + (βZF )t)Z = −(αβZF + ZGβ − (βZF )t).

Assume now that q is even. Then

ZFZ = −F, ZGZ = G,

where Z is defined by (4.10). Since σ is a nonstandard iaa, it is easy to see that there
exists γ ∈ H such that γ2 = −1, αγ = −γα, and σ(γ) = γ. Now a straightforward
verification shows that[

Iq γZ
γZ Iq

]σ ([
0 αFq +Gq

αFq +Gq 0

]
+ t

[
0 Fq

−Fq 0

]) [
Iq γZ
γZ Iq

]
=

(2(γαZF + γZG− γtZF ))⊕ (2(γαZF + γZG+ γtZF )),

and furthermore (note that (γZ)σ = γZ)

(γZ)(γαZF + γZG+ γtZF )(γZ) = −(γαZF + γZG− γtZF ).

This completes verification of Claim 3.

Assume now that the complex pencils A + tB and A′ + tB′, where A = AT ,
B = −BT , A′ = A′T B′ = −B′T , are H-strictly equivalent. Since by Proposition 4.7
the relation of C-strict equivalence of complex symmetric-skewsymmetric pencils is
the same as the relation of (II)-congruence, we may replace A+ tB with its canonical
form under (II)-congruence, in other words, we may assume that A + tB is a direct
sum of primitive blocks of types (sss0) - (sss6). In view of Claims 1 - 3, under
the (V)β-congruence, the blocks with eigenvalue zero having odd sizes, the blocks
with eigenvalue at infinity having even sizes, and the blocks with nonzero complex
eigenvalues having zero real parts, appear in pairs with opposite signs for each of the
two blocks in every such pair. The same statement holds for A′ + tB′ as well.

Now observe that the canonical form under (V)β-congruence and the canonical
form under H-strict equivalence of a quaternionic matrix pencil

X + tY, X = Xσ ∈ H
m×m, Y = −Y σ ∈ H

m×m, σ nonstandard iaa(4.11)

may differ, apart from a permutation of blocks, only in signs ±1 that attached pre-
cisely to the blocks with eigenvalue zero having odd sizes, the blocks with eigenvalue
at infinity having even sizes, and the blocks with nonzero eigenvalues having zero real
parts. (See, for example, [4] or [17, Theorem 3.1] for canonical forms under (V)β-
congruence vs canonical forms under H-strict equivalence for quaternionic matrix
pencils with the symmetry property 4.11.) In view of the statement in the preceding
paragraph, we are done.
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5. Congruences of pairs of complex hermitian or skewhermitian ma-
trices I. In this and the next section we deal with comparison of (III)-congruence
and congruences over the quaternions for matrix pencils A + tB, where A = ±A∗

and B = ±B∗ are complex matrices. In all cases, we use the canonical form for
(III)-congruence of complex hermitian matrix pencils; if A = A∗ and B = −B∗, the
canonical from for A+t(iB) will be used, and if A = −A∗ and B = −B∗, the canonical
form for iA+ t(iB) will be used. (We will not consider separately the case A = −A∗

and B = B∗ as it can be reduced to the case A = A∗ and B = −B∗ by interchanging
the roles of A and B.) For congruences over quaternions in this and the next section
we use (IV)-congruence; in Section 7 the (V)i-congruence will be used.

An analogue of Theorem 3.1 (for η = τ = 1) holds in the complex case, with the
transposes replaced by conjugate transposes:

Theorem 5.1. Let A,B,A′, B′ ∈ Cm×m be hermitian matrices. Then:
(a) The complex matrix pencils A + tB and A′ + tB′ are (IV)-congruent if and

only if they are (III)-congruent.
(b) A+tB and A′+tB′ are H-strictly equivalent if and only if A+tB and A′+tB′

are C-strictly equivalent.
It will be convenient to prove a lemma first.
Lemma 5.2. Every complex hermitian matrix pencil A0 + tB0 is (III)-congruent

to its conjugate A0 + tB0.
Proof. It is easy to see that we need to consider only the case when A0 + tB0 is in

the canonical form of complex hermitian matrix pencils under (III)-congruence, and
then we may assume that A0 + tB0 coincides with a primitive block. The primitive
blocks for this canonical form are given in Proposition 3.4; they are either real, in

which case the statement of the lemma is trivial, or they have the form
[

0 X
X 0

]
,

where X is a square size complex matrix, in which case the congruence[
0 I
I 0

] [
0 X

X 0

] [
0 I
I 0

]
=

[
0 X
X 0

]

completes the proof.
Proof of Theorem 5.1. Part (a). Again, we only prove the “only if” part; thus,

suppose that A+ tB and A′ + tB′ are (IV)-congruent. Using the map �C and Propo-
sition 2.2, we see (applying the congruence with a suitable permutation matrix) that
the complex hermitian 2m× 2m matrix pencils

(A+ tB)⊕ (A+ tB) and (A′ + tB′) ⊕ (A′ + tB′)

are (III)-congruent. Using Lemma 5.2, it follows that (A + tB)⊕2 is (III)-congruent
to (A′ + tB′)⊕2. Now apply a cancellation property (see [18]).

Part (b). Assume that A+ tB and A′ + tB′ are H-strictly equivalent. By Propo-
sition 2.6, the C-Kronecker form of A + tB is obtained from the C-Kronecker form
of A′ + tB′ by replacing some of Jordan blocks Jm(α) corresponding to non-real
eigenvalues α with Jm(α).

On the other hand, it follows from Proposition 3.4 that for a complex matrix
pencil of hermitian matrices, the C-Kronecker form of the pencil is symmetric with
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respect to complex conjugation: If α is an eigenvalue, then so is also α, and the indices
of α coincide with the indices of α. Combining this fact with the observation in the
preceding paragraph, we conclude that C-Kronecker forms of A + tB and A′ + tB′

must be the same.

If at least one of η and τ is equal to −1, then the situation with the complex
analogues of Theorem 3.1 is more involved. We present here the case when η = τ =
−1, and relegate the remaining case when ητ = −1 to a later section 6.

Theorem 5.3. (a) Let A,A′, B,B′ ∈ Cn×n be complex skew-hermitian matrices.
Then, if the complex matrix pencils A+ tB and A′+ tB′ are H-strictly equivalent, and
if (3.3) is the canonical form of the hermitian pencil iA+t(iB) under (III)-congruence,
then the canonical form of the hermitian pencil iA′ + t(iB′) under (III)-congruence is

0u×u ⊕

t


 0 0 Fε1

0 0 0
Fε1 0 0


 +G2ε1+1


 ⊕ · · · ⊕


t


 0 0 Fεp

0 0 0
Fεp 0 0


 +G2εp+1




⊕ δ′1 (Fk1 + tGk1) ⊕ · · · ⊕ δ′r (Fkr + tGkr )
⊕ η′1 ((t+ α1)F�1 +G�1) ⊕ · · · ⊕ η′q

(
(t+ αq)F�q +G�q

)

⊕
([

0 (t+ β1)Fm1

(t+ β̄1)Fm1 0

]
+

[
0 Gm1

Gm1 0

])

⊕ · · · ⊕
([

0 (t+ βs)Fms

(t+ β̄s)Fms 0

]
+

[
0 Gms

Gms 0

])
(5.1)

for some choice of the signs

δ′1, · · · , δ′r, η′1, . . . , η′q ∈ {1,−1}.

(b) The complex skew-hermitian pencils obtained from (5.1) by multiplying with
−i are (IV)-congruent to each other, for any choice of the signs δ′1, · · · , δ′r, η′1, . . . , η′q.

(c) Let A,A′, B,B′ ∈ Cn×n be complex skew-hermitian matrices. Then the com-
plex matrix pencils A + tB and A′ + tB′ are H-strictly equivalent if and only if they
are C-strictly equivalent if and only if they are (IV)-congruent.

Proof. Part (a). The complex hermitian pencils iA + t(iB) and iA′ + t(iB′) are
clearly H-strictly equivalent, therefore by Proposition 2.6 the C-Kronecker forms of
iA + t(iB) and iA′ + t(iB′) are obtained from each other by replacing some Jordan
blocks J�j (αj) with J�j (αj), for complex nonreal αj . On the other hand, as follows
from Proposition 3.4, the C-Kronecker form of any complex hermitian pencil has the
property that for every complex nonreal eigenvalue β and every positive integerm the
number of blocks tIm + Jm(β) in the C-Kronecker form coincides with the number of
blocks tIm + Jm(β). Therefore, the C-Kronecker forms of iA+ t(iB) and iA′ + t(iB′)
must be the same. Now the direct part of (a) follows from Proposition 3.4(b).

Part (b). We need only to check that the pencils (−i)(Fk + tGk) and i(Fk + tGk)
are (IV)-congruent, and that the pencils (−i)((t+ α)F� +G�) and i((t+ α)F� +G�),
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where α is real, are also (IV)-congruent. Indeed,

(−jIk)(i(Fk + tGk))(jIk) = (−i)(Fk + tGk),

(−jIk)(i((t+ α)F� +G�))(jIk) = (−i)((t+ α)F� +G�).

Part (c). Assume that A + tB and A′ + tB′ are H-strictly equivalent. By part
(a), the canonical forms of iA + t(iB) and of iA′ + t(iB′) under (III)-congruence are
given by (3.3) and (5.1), respectively. Clearly, A + tB and A′ + tB′ are C-strictly
equivalent. Conversely, if A+tB and A′+tB′ are C-strictly equivalent, then so are the
complex hermitian pencils iA+ t(iB) and of iA′ + t(iB′). It follows (see [11, Theorem
5.1], for example) that the canonical forms of iA + t(iB) and of iA′ + t(iB′) under
(III)-congruence can possibly differ only in the signs in their sign characteristics. Now
the result of part (b) yields the (IV)-congruence of A+ tB and A′ + tB′.

6. Comparison of congruence: mixed hermitian - skewhermitian com-
plex pairs. In this section we compare strict equivalences, (III)-congruences and
(IV)-congruences of complex matrix pencils A+ tB, or equivalently, pairs of complex
matrices (A,B), where A is hermitian and B is skewhermitian. We state the main
results in the next subsection. The rather long proofs are relegated to Subsection 6.2.

6.1. Main results. We state our main theorem for comparison of strict equiv-
alences:

Theorem 6.1. Let A,A′ ∈ Cn×n be complex hermitian matrices and let B,B′ ∈
Cn×n be complex skew-hermitian matrices. Assume that the complex matrix pencils
A + tB and A′ + tB′ are H-strictly equivalent, and that the hermitian matrix pencil
A+ t(iB) is C-strictly equivalent to the form (3.3), where

α1 = α2 = · · · = αq′ = 0, αw ∈ R \ {0} for w = q′ + 1, q′ + 2, . . . , q

for some q′ (the case q′ = 0 is not excluded), and where we may take all signs δj’s
and ηj’s equal to 1.

Then the hermitian pencil A′+t(iB′) is C-strictly equivalent to a hermitian matrix
pencil of the following form:

0u×u ⊕

t


 0 0 Fε1

0 0 0
Fε1 0 0


 +G2ε1+1


 ⊕ · · · ⊕


t


 0 0 Fεp

0 0 0
Fεp 0 0


 +G2εp+1




⊕ (Fk1 + tGk1) ⊕ · · · ⊕ (Fkr + tGkr )

⊕ (tF�1 +G�1) ⊕ · · · ⊕
(
tF�q′ +G�q′

)

⊕
((
t+ κ′q′+1αq′+1

)
F�q′+1

+G�q′+1

)
⊕ · · · ⊕ ((

t+ κ′qαq

)
F�q +G�q

)

⊕
([

0 (t+ β′1)Fm1

(t+ β′1)Fm1 0

]
+

[
0 Gm1

Gm1 0

])

⊕ · · · ⊕
([

0 (t+ β′s)Fms

(t+ β′s)Fms 0

]
+

[
0 Gms

Gms 0

])
,(6.1)
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where

for each j = 1, . . . , s, either β′j = βj or β′j = −βj, and κ′q′+1, . . . , κ
′
q ∈ {1,−1}.(6.2)

Conversely, suppose that A′ + tB′ and A′′ + tB′′ are pencils of the form (6.1),
with the parameters

{κ′q′+1, . . . , κ
′
q;β

′
1, . . . , β

′
s}

subject to (6.2) for A′ + tB′, and with the corresponding parameters

{κ′′q′+1, . . . , κ
′′
q ;β

′′
1 , . . . , β

′′
s },

again subject to conditions analogous to (6.2), for A′′ + tB′′. Then the complex
hermitian-skewhermitian matrix pencils A′ + t(−i)B′ and A′′ + t(−i)B′′ are H-strictly
equivalent.

By inspection of the form (6.1), the following corollary is immediate:
Corollary 6.2. Let

A,B ∈ C
n×n, A = A∗, B = −B∗.

Then the following two statements are equivalent:
(1) Every hermitian-skewhermitian complex matrix pencil A′ + tB′, A′ = A′∗,

B′ = −B′∗ which is H-strictly equivalent to A+tB is also C-strictly equivalent
to A+ tB.

(2) All eigenvalues of A+ tB different from the infinity are real.
Comparing with Proposition 2.6, we see that the additional hypothesis of

hermitian-skewhermitian property of complex matrix pencils does not alter the crite-
rion for the property that H-strict equivalence implies C-strict equivalence.

Next, we state the main result on comparing (III)-congruences and (IV)- congru-
ences for hermitian-skewhermitian matrix pairs.

Theorem 6.3. Let A,A′ ∈ Cn×n be complex hermitian matrices and let B,B′ ∈
C

n×n be complex skew-hermitian matrices. Let (3.3) be the canonical form of the
hermitian pencil A+ t(iB) under (III)-congruence, where

α1 = α2 = · · · = αq′ = 0, αw ∈ R \ {0} for w = q′ + 1, q′ + 2, . . . , q

for some q′ (the case q′ = 0 is not excluded). Assume that the complex matrix pencils
A + tB and A′ + tB′ are (IV)-congruent. Then the canonical form of the hermitian
pencil A′ + t(iB′) under (III)-congruence has the following structure:

0u×u ⊕

t


 0 0 Fε1

0 0 0
Fε1 0 0


 +G2ε1+1


 ⊕ · · · ⊕


t


 0 0 Fεp

0 0 0
Fεp 0 0


 +G2εp+1




⊕ δ′1 (Fk1 + tGk1) ⊕ · · · ⊕ δ′r (Fkr + tGkr )

⊕ η′1 (tF�1 +G�1) ⊕ · · · ⊕ η′q′

(
tF�q′ +G�q′

)
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⊕ η′q′+1

((
t+ κ′q′+1αq′+1

)
F�q′+1

+G�q′+1

)
⊕ · · · ⊕ η′q

((
t+ κ′qαq

)
F�q +G�q

)

⊕
([

0 (t+ β′1)Fm1

(t+ β′1)Fm1 0

]
+

[
0 Gm1

Gm1 0

])

⊕ · · · ⊕
([

0 (t+ β′s)Fms

(t+ β′s)Fms 0

]
+

[
0 Gms

Gms 0

])
,(6.3)

where for each j = 1, . . . , s, either β′j = βj or β′j = −βj, and δ′1, . . . , δ′r, η′1, . . . , η′q,
and κ′q′+1, . . . , κ

′
q are signs ±1 subject to the following restrictions (1), (2), and (3):

(1) δ′j = δj if kj is odd (j = 1, 2, . . . , r),
(2) η′w = ηw if %w is even (w = 1, 2, . . . , q′),
(3) for every nonzero real eigenvalue α of A+ t(iB) and for every index % of α,

the following holds: if w1, . . . , wk are the distinct integers between q′+1 and q
such that αwj = α and %wj = %, j = 1, 2, . . . , k, then there exists a permutation
λ of {1, 2, . . . , k} such that the integers %+ 1

2 ((1+κ′wλ(j)
)%+ η′wλ(j)

− ηwj ) are
even for j = 1, 2, . . . , k.

Conversely, suppose that A′ + tB′ and A′′ + tB′′ are pencils of the form (6.3),
with the parameters

{δ′1, . . . , δ′r; η′1, . . . , η′q;κ′q′+1, . . . , κ
′
q;β

′
1, . . . , β

′
s}

for A′ + tB′ (subject to the restrictions (1), (2), and (3)), and with the corresponding
parameters

{δ′′1 , . . . , δ′′r ; η′′1 , . . . , η
′′
q ;κ

′′
q′+1, . . . , κ

′′
q ;β

′′
1 , . . . , β

′′
s }, δ′′j , η

′′
k , κ

′′
� ∈ {1,−1},

for A′′ + tB′′ subject to the conditions:
(a) δ′′j = δj if kj is odd (j = 1, 2, . . . , r);
(b) η′′w = ηw if %w is even (w = 1, 2, . . . , q′);
(c) for every nonzero real eigenvalue α of A+ t(iB) and for every index % of α,

the following holds: if w1, . . . , wk are the distinct integers between q′+1 and q
such that αwj = α and %wj = %, j = 1, 2, . . . , k, then there exists a permutation
λ of {1, 2, . . . , k} such that the integers %+ 1

2 ((1+κ′′wλ(j)
)%+ η′′wλ(j)

− ηwj ) are
even for j = 1, 2, . . . , k.

(d) for each j = 1, . . . , s, either β′′j = βj or β′′j = −βj.
Then the complex hermitian-skewhermitian matrix pencils A′ + t(−i)B′ and A′′ +
t(−i)B′′ are (IV)-congruent.

The following corollary is noteworthy; its proof is immediate from Theorem 6.3.
Corollary 6.4. The following two statements are equivalent for a complex

hermitian pencil A+ tB, A = A∗, B = B∗ ∈ Cn×n:
(1) For every complex hermitian pencil A′ + tB′, the pencils A′ + tB′ and A+ tB

are (III)-congruent if and only if the hermitian-skewhermitian pencils A′ +
t(−i)B′ and A+ t(−i)B are (IV)-congruent.

(2) All eigenvalues of A + tB different from infinity are real, and in addition,
in the complex Kronecker form of A + tB there are no even multiplicities
corresponding to the eigenvalue at infinity and there are no odd multiplicities
corresponding to the eigenvalue zero.
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It is interesting to compare to Corollary 6.2: In contrast to the strict equivalences
comparison in Corollary 6.2, the congruences comparison in Corollary 6.4 involves
additional hypotheses concerning the eigenvalues at zero and at infinity.

6.2. Proofs of Theorems 6.1 and 6.3. It will be convenient to collect sepa-
rately several facts that will be used in the proof:

Lemma 6.5. In the statements (C)-(G) below, η, η′, κ′ are signs ±1 and α is a
nonzero real number. We have:

(A) Fk + t(−i)Gk is not (IV)-congruent to −Fk + tiGk for odd k;
(A′) Fk + t(−i)Gk is (IV)-congruent to −Fk + tiGk for even k;
(B) t(−i)F� +G� is not (IV)-congruent to tiF� −G� for even %;
(B′) t(−i)F� +G� is (IV)-congruent to tiF� −G� for odd %;
(C) For η′ �= η and κ′ = 1, the pencil

η′ ((−it+ κ′α)F� +G�)(6.4)

is not (IV)-congruent to

η ((−it+ α)F� +G�) ;(6.5)

(D) For κ′ = −1, % even, and η′ = η, the pencil (6.4) is (IV)-congruent to (6.5);
(E) For κ′ = −1, % even, and η′ = −η, the pencil (6.4) is not (IV)-congruent to

(6.5);
(F) For κ′ = −1, % odd and η′ = −η, the pencil (6.4) is (IV)-congruent to (6.5);
(G) For κ′ = −1, % odd and η′ = η, (6.4) is not (IV)-congruent to (6.5);
(H) If β ∈ C \ R, then the matrix pencil

[
0 (−it+ β)Fm +Gm

(−it+ β)Fm +Gm 0

]

is (IV)-congruent to
[

0 (−it− β)Fm +Gm

(−it− β)Fm +Gm 0

]
.

Proof. Statements (A) and (B) are contained in [18, Lemma 5.5(2),(4)]. State-
ments (A′) and (B′) follow from the equalities

diag (j,−j, . . . , j,−j) (Fk + tiGk) diag (−j, j, . . . ,−j, j) = −(Fk + tiGk)

for even k and

diag (j,−j, . . . ,−j, j) (G� + tiF�) diag (−j, j, . . . , j,−j) = −(G� + tiF�)

for odd %. Statement (C) is a consequence of [18, Lemma 5.5(5), Theorem 5.3]; indeed,
it follows from these results that any matrix pencil of mixed hermitian-skewhermitian
quaternionic matrices whose H-Kronecker form consists of exactly one Jordan block
and the eigenvalue of this block is nonzero with zero real part, is not (IV)-congruent

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 16, pp. 248-283, September 2007

http://math.technion.ac.il/iic/ela



ELA

274 Leiba Rodman

to its negative. For the statement (D) note the equality (taking η′ = η = 1 without
loss of generality)

diag (−j, j, . . . ,−j, j) ((−it− α)F� +G�) diag (j,−j, . . . , j,−j) = ((−it+ α)F� +G�) ,

where α ∈ R \ {0} and % is even.
Consider (E). By the already proved statement (D), the matrix pencils

η′ ((−it− α)F� +G�) and η′ ((−it+ α)F� +G�)

are (IV)-congruent; but

η′ ((−it+ α)F� +G�) = −η ((−it+ α)F� +G�) ,

which is not (IV)-congruent to (6.5) by statement (C). Statement (F) is proved by
the equality

(diag (j,−j, j, . . . ,−j, j)) ((it+ α)F� −G�) (diag (−j, j,−j, . . . , j,−j)) = (−it+α)F�+G�,

where % is odd. For the proof of (G) observe that the real symmetric matrices η′κ′αF�+
η′G� and ηαF� + ηG� (the values of the pencils (6.4) and (6.5) when t = 0) have
different inertia, therefore these two matrices cannot be (IV)-congruent. For the
statement (H), let α and γ be nonzero quaternions satisfying the properties

α(−i)α−1 = i, α(−1)mγ∗ = 1,

and let

X := (diag (α,−α, . . . , (−1)m−1α)) ⊕ (diag (γ,−γ, . . . , (−1)m−1γ)) ∈ H
2m×2m.

Then a straightforward computation shows that

X

[
0 (−it+ β)Fm +Gm

(−it+ β)Fm +Gm 0

]
X∗ =

[
0 (−it− β)Fm +Gm

(−it− β)Fm +Gm 0

]
.

This completes the proof of Lemma 6.5.

Statements (C) through (G) of Lemma 6.5 can be conveniently summarized as
follows.

Corollary 6.6. For signs η, η′, κ′ ∈ {1,−1}, positive integer %, and α ∈ R\{0},
the matrix pencils (6.4) and (6.5) are (IV)-congruent if and only if the integer

%+
1
2
((1 + κ′)%+ η′ − η)
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is even.
Proof of Theorem 6.3. The direct statement: The pencils A + tB and A′ + tB′

clearly have the same H-Kronecker form. Therefore, denoting by A′
0 + tB′

0 the C-
Kronecker form of A′ + tB′, and denoting by A0 + tB0 the C-Kronecker form of
A+ tB, we obtain in view of Proposition 2.6 that A′

0 + tB′
0 is obtained from A0 + tB0

by replacing some blocks J�j (αj) with J�j (αj), for nonreal αj . Note that A′
0 + t(iB′

0)
is C-strictly equivalent to A′ + t(iB′), whereas A0 + t(iB0) is C-strictly equivalent to
A+ t(iB). Note also that

x = y + iz, y, z ∈ R, is an eigenvalue of A0 + t(iB0) ⇐⇒

iy − z is an eigenvalue of A0 + tB0 ⇐⇒

iy − z and/or − iy − z is an eigenvalue of A′
0 + tB′

0 ⇐⇒

−y + iz and/or y + iz is an eigenvalue of A′
0 + t(iB′

0).

Taking into account Proposition 3.4 we see that the canonical form of the complex
hermitian pencil A′+ t(iB′) under (III)-congruence must have the following structure:

0u×u ⊕

t


 0 0 Fε1

0 0 0
Fε1 0 0


 +G2ε1+1


 ⊕ · · · ⊕


t


 0 0 Fεp

0 0 0
Fεp 0 0


 +G2εp+1




⊕ δ′1 (Fk1 + tGk1) ⊕ · · · ⊕ δ′r (Fkr + tGkr )

⊕ η′1 (tF�1 +G�1) ⊕ · · · ⊕ η′q′

(
tF�q′ +G�q′

)

⊕ η′q′+1

((
t+ η′′q′+1αq′+1

)
F�q′+1

+G�q′+1

)
⊕ · · · ⊕ η′q

((
t+ η′′qαq

)
F�q +G�q

)

⊕
([

0 (t+ β′1)Fm1

(t+ β′1)Fm1 0

]
+

[
0 Gm1

Gm1 0

])

⊕ · · · ⊕
([

0 (t+ β′s)Fms

(t+ β′s)Fms 0

]
+

[
0 Gms

Gms 0

])
,(6.6)

where for each j = 1, . . . , s, either β′j = βj or β′j = −βj , and

δ′1, . . . , δ
′
r, η′1, . . . , η

′
q, η

′′
q′+1, . . . , η

′′
q

are signs ±1. Denote by A1 + tB1 the hermitian pencil (3.3), and by A′
1 + tB′

1 the
hermitian pencil (6.6). Then the pencils A1 + t(−i)B1 and A′

1 + t(−i)B′
1 are (IV)-

congruent. In view of the canonical form for hermitian-skewhermitian quaternionic
pencils under (IV)-congruence (the canonical form describes the primitive blocks for
such pencils, see, for example, [18, Theorem 5.3]), the direct statement of Theorem
6.3 follows from Lemma 6.5 (A), (B), (H), and from Corollary 6.6.
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The converse statement follows by analogous arguments using Lemma 6.5 (A′),
(B′) and Corollary 6.6 again.

Proof of Theorem 6.1. The direct statement: Arguing as in the proof of the
direct statement of Theorem 6.3, we see that the canonical form of the complex
hermitian pencil A′ + t(iB′) under (III)-congruence must have the structure as in
(6.6). Evidently, (6.6) is C-strictly equivalent to (6.1).

The converse statement: The H-strict equivalence ofA′+t(−i)B′ andA′′+t(−i)B′′

follows by observing that every pair of corresponding constituent blocks in A′+t(−i)B′

and A′′ + t(−i)B′′ has the same H-Kronecker form.

7. Congruences of pairs of complex hermitian or skewhermitian ma-
trices II. In this section we study comparison of (III)-congruence and congruences
over the quaternions for matrix pencils A + tB, where A = ±A∗ and B = ±B∗

are complex matrices. As in Section 5, in all cases, we use the canonical form for
(III)-congruence of complex hermitian matrix pencils given in Proposition 3.4. To
compare with congruence over the quaternions, in contrast to Sections 5 and 6, the
(V)i-congruence will be used in this section, in other words, the congruence defined
by transformations A+ tB �→ Sσ(A + tB)S with invertible quaternionic matrix A,
where a nonstandard iaa σ is determined by the property that σ(i) = −i; in fact, a
nonstandard iaa with this property is unique.

We clearly have A∗ = Aσ for every complex matrix A. Thus:
Proposition 7.1. If complex matrix pencils are (III)-congruent, then they are

(V)i-congruent. We explore in this section to what extent the converse is true, for
complex matrix pencils with symmetries.

7.1. Hermitian and skewhermitian matrix pencils. We start with complex
hermitian matrix pencils:

Theorem 7.2. Let A+tB and A′+tB′ be complex matrix pencils, with hermitian
matrices A,A′, B,B′. Then the following statements are equivalent:

(a) A+ tB and A′ + tB′ are H-strictly equivalent;
(b) A+ tB and A′ + tB′ are C-strictly equivalent;
(c) A+ tB and A′ + tB′ are (V)i-congruent;
(d) The canonical forms of A+ tB and A′ + tB′ under (III)-congruence (Propo-

sition 3.4) may differ only in the sum of signs corresponding to any real
eigenvalue (or the eigenvalue at infinity) in their respective sign characteris-
tic.

Proof. The equivalence of (a) and (c) follows from Theorem 7.1 in [16]. By
combining Propositions 3.4(b) and 2.6 we see that (a) and (b) are equivalent. Finally,
(b) and (d) are equivalent in view of Proposition 3.4(b) again.

Next, consider skewhermitian complex matrix pencils.
Theorem 7.3. Let A+ tB and A′+ tB′ be complex matrix pencils, with skewher-

mitian m×m matrices A,A′, B,B′. Then:
(a) The pencils A+ tB and A′ + tB′ are C-strictly equivalent if and only if they

are H-strictly equivalent.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 16, pp. 248-283, September 2007

http://math.technion.ac.il/iic/ela



ELA

Comparison of Congruences, Strict Equivalences for Symmetric Pencils 277

(b) The pencils A + tB and A′ + tB′ are (III)-congruent if and only if they are
(V)i-congruent.

Proof. Part (a): Note that in view of Proposition 3.4, the C-Kronecker forms of
A + tB and of A′ + tB′, which are the same as the C-Kronecker forms of complex
hermitian matrix pencils iA+ tiB and iA′ + tiB′, respectively, are symmetric relative
to the real axis: If α ∈ C is a nonreal eigenvalue of A+tB, then so is α, and the indices
of α coincide with the indices of α; an analogous statement holds for A′ + tB′. In
view of Proposition 2.6 it follows that if the pencils A+ tB and A′+ tB′ are H-strictly
equivalent then they are also C-strictly equivalent.

Part (b): LetA+tB and A′+tB′ be (V)i-congruent. Then in particular the pencils
are H-strictly equivalent, hence by the part (a) also C-strictly equivalent. Therefore,
the hermitian matrix pencils −iA+t(−i)B and −iA′+t(−i)B′ are C-strictly equivalent
as well. Arguing by contradiction, and assuming that −iA+t(−i)B and −iA′+t(−i)B′

are not (III)-congruent, we obtain (by using the canonical form of Proposition 3.4 for
complex hermitian matrix pencils −iA+ t(−i)B and −iA′ + t(−i)B′) that there exist
invertible complex matrices S and T with the following properties:

S∗(A+ tB)S = 0u×u ⊕
p⊕

j=1


ti


 0 0 Fεj

0 0 0
Fεj 0 0


 + iG2εj+1




⊕
r⊕

j=1

(
δj

(
iFkj + tiGkj

)) ⊕
q⊕

j=1

(
ηj

(
(t+ αj) iF�j + iG�j

))

⊕
s⊕

j=1

([
0 (t+ βj)iFmj

(t+ β̄j)iFmj 0

]
+

[
0 iGmj

iGmj 0

])
;(7.1)

T ∗(A′ + tB′)T = 0u×u ⊕
p⊕

j=1


ti


 0 0 Fεj

0 0 0
Fεj 0 0


 + iG2εj+1




⊕
r⊕

j=1

(
δ′j

(
iFkj + tiGkj

)) ⊕
q⊕

j=1

(
η′j

(
(t+ αj) iF�j + iG�j

))

⊕
s⊕

j=1

([
0 (t+ βj)iFmj

(t+ β̄j)iFmj 0

]
+

[
0 iGmj

iGmj 0

])
;(7.2)

where in (7.1) and (7.2), ε1 ≤ · · · ≤ εp and k1 ≤ · · · ≤ kr are positive integers, αj are
real numbers, βj are complex nonreal numbers with positive imaginary parts,

δ1, . . . , δr, η1, . . . , ηq, δ′1, . . . , δ
′
r, η′1, . . . , η

′
q

are signs, each equal to +1 or −1, and in addition we have

δ1 + · · ·+ δr �= δ′1 + · · · + δ′r(7.3)
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or there exists a real number α such that
∑

{j:αj=α}
ηj �=

∑
{j:αj=α}

η′j .(7.4)

(Equalities (7.3) and (7.4) express the assumption that the pencils −iA+ t(−i)B and
−iA′ + t(−i)B′ are not (III)-congruent.) Now a comparison with the canonical form
of Theorem 8.1 of [16] for σ-skewsymmetric quaternionic matrix pencils shows that
the right hand sides of (7.1) and (7.2) are not (V)i-congruent, a contradiction with
the (V)i-congruence of A+ tB and A′ + tB′.

7.2. Mixed hermitian-skewhermitian matrix pencils. We consider here
in a separate subsection the more difficult case of mixed hermitian-skewhermitian
complex matrix pencils. Thus, the pencils under consideration will be of the form A+
tB, where A is a complex hermitian matrix, and B is a complex skewhermitian matrix.
As in the preceding subsection, we compare (III)-congruence and (V)i-congruence of
such pencils, where the (V)i-congruence is determined by the nonstandard iaa σ such
that σ(i) = −i.

The main result and its corollary are parallel to Theorem 6.3 and Corollary 6.4:
Theorem 7.4. Let A,A′ ∈ Cn×n be complex hermitian matrices and let B,B′ ∈

Cn×n be complex skew-hermitian matrices. Let (3.3) be the canonical form of the
hermitian pencil A+ t(iB) under (III)-congruence, where

α1 = α2 = · · · = αq′ = 0, αw ∈ R \ {0} for w = q′ + 1, q′ + 2, . . . , q

for some q′ (the case q′ = 0 is not excluded). Assume that the complex matrix pencils
A + tB and A′ + tB′ are (V)i-congruent. Then the canonical form of the hermitian
pencil A′ + t(iB′) under (III)-congruence has the following structure:

0u×u ⊕

t


 0 0 Fε1

0 0 0
Fε1 0 0


 +G2ε1+1


 ⊕ · · · ⊕


t


 0 0 Fεp

0 0 0
Fεp 0 0


 +G2εp+1




⊕ δ′1 (Fk1 + tGk1) ⊕ · · · ⊕ δ′r (Fkr + tGkr )

⊕ η′1 (tF�1 +G�1) ⊕ · · · ⊕ η′q′

(
tF�q′ +G�q′

)

⊕ η′q′+1

((
t+ κ′q′+1αq′+1

)
F�q′+1

+G�q′+1

)
⊕ · · · ⊕ η′q

((
t+ κ′qαq

)
F�q +G�q

)

⊕
([

0 (t+ β′1)Fm1

(t+ β′1)Fm1 0

]
+

[
0 Gm1

Gm1 0

])

⊕ · · · ⊕
([

0 (t+ β′s)Fms

(t+ β′s)Fms 0

]
+

[
0 Gms

Gms 0

])
,(7.5)

where for each j = 1, . . . , s, either β′j = βj or β′j = −βj, and δ′1, . . . , δ′r, η′1, . . . , η′q,
and κ′q′+1, . . . , κ

′
q are signs ±1 subject to the following restrictions (1), (2), and (3):

(1) δ′j = δj if kj is even (j = 1, 2, . . . , r),
(2) η′w = ηw if %w is odd (w = 1, 2, . . . , q′),

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 16, pp. 248-283, September 2007

http://math.technion.ac.il/iic/ela



ELA

Comparison of Congruences, Strict Equivalences for Symmetric Pencils 279

(3) for every nonzero real eigenvalue α of A + t(iB) and for every index % of
α, the following holds: if w1, . . . , wk are the distinct integers between q′ + 1
and q such that αwj = α and %wj = %, j = 1, 2, . . . , k, then there exists a
permutation λ of {1, 2, . . . , k} with the property that the integers % + 1

2 ((1 +
κ′wλ(j)

)(%+ 1) + η′wλ(j)
− ηwj ) are odd for j = 1, 2, . . . , k.

Conversely, suppose that hermitian-skewhermitian matrix pencils A′ + tB′ and
A′′ + tB′′ are of the form (6.3), with the parameters

{δ′1, . . . , δ′r; η′1, . . . , η′q;κ′q′+1, . . . , κ
′
q;β

′
1, . . . , β

′
s}

for A′ + tB′ (subject to the restrictions (1), (2), and (3)), and with the corresponding
parameters

{δ′′1 , . . . , δ′′r ; η′′1 , . . . , η
′′
q ;κ

′′
q′+1, . . . , κ

′′
q ;β

′′
1 , . . . , β

′′
s }, δ′′j , η

′′
k , κ

′′
� ∈ {1,−1},

for A′′ + tB′′ subject to the conditions:
(a) δ′′j = δj if kj is even (j = 1, 2, . . . , r);
(b) η′′w = ηw if %w is odd (w = 1, 2, . . . , q′);
(c) for every nonzero real eigenvalue α of A + t(iB) and for every index % of

α, the following holds: if w1, . . . , wk are the distinct integers between q′ + 1
and q such that αwj = α and %wj = %, j = 1, 2, . . . , k, then there exists a
permutation λ of {1, 2, . . . , k} with the property that the integers % + 1

2 ((1 +
κ′′wλ(j)

)(%+ 1) + η′′wλ(j)
− ηwj ) are odd for j = 1, 2, . . . , k.

(d) for each j = 1, . . . , s, either β′′j = βj or β′′j = −βj.
Then the complex hermitian-skewhermitian matrix pencils A′ + t(−i)B′ and A′′ +
t(−i)B′′ are (V)i-congruent.

The proof of Theorem 7.4 will be given separately in the next subsection.
Analogously to Corollary 6.4, we indicate a necessary and sufficient condition

for the situation when (III)-congruence of complex hermitian pencils A′ + tB′ and
A + tB is equivalent to the (V)i-congruence of the hermitian-skewhermitian pencils
A′ + t(−i)B′ and A+ t(−i)B:

Corollary 7.5. The following two statements are equivalent for a complex
hermitian pencil A+ tB, A = A∗, B = B∗ ∈ Cn×n:

(1) For every complex hermitian pencil A′ + tB′, the pencils A′ + tB′ and A+ tB
are (III)-congruent precisely when the hermitian-skewhermitian pencils A′ +
t(−i)B′ and A+ t(−i)B are (V)i-congruent.

(2) All eigenvalues of A + tB different from infinity are real, and in addition,
in the complex Kronecker form of A + tB there are no odd multiplicities
corresponding to the eigenvalue at infinity and there are no even multiplicities
corresponding to the eigenvalue zero.

The proof of Corollary 7.5 is obvious from Theorem 7.4.

As an application of Corollary 7.5 we present a result concerning comparison
of the congruence over the complexes with the congruence over the quaternions, for
complex matrices.
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Theorem 7.6. Let Y ∈ Cn×n, and write Y = Y0 + iY1, where Y0 and Y1 are
complex hermitian matrices. The following statements are equivalent, where σ is the
nonstandard iaa such that σ(i) = −i:

(a) For any X ∈ Cn×, if SσXS = Y holds for some invertible quaternionic
matrix S, then R∗XR = Y for some invertible complex matrix R;

(b) All complex eigenvalues of the hermitian matrix pencil Y0 + tY1 are real,
and in addition, in the complex Kronecker form of Y0 + tY1 there are no odd
multiplicities corresponding to the eigenvalue at infinity and there are no even
multiplicities corresponding to the eigenvalue zero.

Proof. The proof follows by applying Corollary 7.5 to the matrix pencil Y1 + tY2,
i.e., we take A = Y1, B = Y2. Let us provide some details. Assume (b) holds, and let
X ∈ Cn×n be such that SσXS = Y for some invertible quaternionic matrix S. Write
X = X1+iX2, whereX1 and X2 are complex hermitian. Note that every quaternionic
matrix admits a unique decomposition as the sum of a σ-symmetric matrix and of a
σ-skewsymmetric matrix. As a result, it follows from SσXS = Y that

Sσ(X1 + t(−i)X2)S = Y1 + t(−i)Y2, ∀ t ∈ R,

in other words, the matrix pencils X1 + t(−i)X2 and Y1 + t(−i)Y2 are (V)i-congruent.
By Corollary 7.5, there exists an invertible complex matrix R such that

R∗(X1 + tX2)R = Y1 + tY2, ∀ t ∈ R.(7.6)

But then equality (7.6) holds also for all t ∈ C, in particular, it holds for t = i, and
the statement (a) follows.

7.3. Proof of Theorem 7.4. The proof will be patterned on that of Theorem
6.3. We start with an analogue of Lemma 6.5.

Lemma 7.7. In the statements (C)-(G) below, η, η′, κ′ are signs ±1 and α is a
nonzero real number. We have:

(A) Fk + t(−i)Gk is (V)i-congruent to −Fk + tiGk for odd k;
(A′) Fk + t(−i)Gk is not (V)i-congruent to −Fk + tiGk for even k;
(B) t(−i)F� +G� is (V)i-congruent to tiF� −G� for even %;
(B′) t(−i)F� +G� is not (V)i-congruent to tiF� −G� for odd %;
(C) For η′ �= η and κ′ = 1, the pencil

η′ ((−it+ κ′α)F� +G�)(7.7)

is not (V)i-congruent to

η ((−it+ α)F� +G�) ;(7.8)

(D) For κ′ = −1, % even, and η′ = −η, the pencil (7.7) is (V)i-congruent to (7.8);
(E) For κ′ = −1, % even, and η′ = η, the pencil (7.7) is not (V)i-congruent to

(7.8);
(F) For κ′ = −1, % odd and η′ = η, the pencil (7.7) is (V)i-congruent to (7.8);
(G) For κ′ = −1, % odd and η′ = −η, (7.7) is not (V)i-congruent to (7.8);
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(H) If β ∈ C \ R, then the matrix pencil
[

0 (−it+ β)Fm +Gm

(−it+ β)Fm +Gm 0

]

is (V)i-congruent to
[

0 (−it− β)Fm +Gm

(−it− β)Fm +Gm 0

]
.

Proof. Parts (A), (A′), (B), (B′), (C) follow from [17, Theorem 3.1]; note that
the H-Kronecker form of (7.7), as well as that of (7.8), consists of one Jordan block
with eigenvalue iα (up to similarity). For the part (D) observe the equality

diag (−j, j, . . . ,−j, j) ((−it− α)F� +G�) diag (−j, j, . . . ,−j, j) = − ((−it+ α)F� +G�) .

Consider (E). By the already proved part (D), the matrix pencils

η′ ((−it− α)F� +G�) and − η′ ((−it+ α)F� +G�)

are (V)i-congruent; but

−η′ ((−it+ α)F� +G�) = −η ((−it+ α)F� +G�) ,

which is not (V)i-congruent to (7.8) by the same [17, Theorem 3.1]. Statement (F)
(where we take η = η′ = −1 without loss of generality) is proved by the equality

diag (j,−j, j, . . . ,−j, j) ((it+ α)F� −G�) diag (j,−j, j, . . . ,−j, j) = −((−it+ α)F� +G�),

where % is odd. Next, consider (G), taking η = 1, η′ = −1. Then

η′ ((−it+ κ′α)F� +G�) = (it+ α)F� −G�

is (V)i-congruent to the negative of (7.8), in view of the already proved part (F). But
(7.8) is not (V)i-congruent to its negative by [17, Theorem 3.1], as the block (7.8) is
H-strictly equivalent to a Jordan block with eigenvalue αi (up to similarity).

It remains to prove (H). Let X ∈ Hm×m be an invertible matrix such that

X−1(iβI + iFG)X = −iβI + iFG,

where we set F = Fm and G = Gm for short, and define Y ∈ Hm×m by the equality

Y σ = −iFX−1iF.

Then the following equation is easily verified:
[
Xσ 0
0 Y σ

] [
0 (−it+ β)F +G

(−it+ β)F +G 0

] [
X 0
0 Y

]
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=
[

0 (−it− β)F +G
(−it− β)F +G 0

]
,

which proves (H).
Summarizing the parts (C) - (G) of Lemma 7.7, we obtain:
Corollary 7.8. For signs η, η′, κ′ ∈ {1,−1}, positive integer %, and α ∈ R\{0},

the matrix pencils (7.7) and (7.8) are (V)i-congruent if and only if the integer

%+
1
2
((1 + κ′)(%+ 1) + η′ − η)

is odd.
Proof of Theorem 7.4. The direct statement: As in the proof of Theorem 6.3,

we see that the canonical form of the complex hermitian matrix pencil A′ + t(iB′)
under (III)-congruence must have the structure as in (6.6). Now the proof proceeds
analogously to the proof of Theorem 6.3, using Lemma 7.7 and the canonical form
for symmetric-skewsymmetric quaternionic pencils under (V)i-congruence (see [17,
Theorem 3.1]) instead of Theorem 5.3 in [18].

The converse statement follows easily from Lemma 7.7 and Corollary 7.8.
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