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A CHARACTERIZATION OF SINGULAR GRAPHS∗
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Abstract. Characterization of singular graphs can be reduced to the non-trivial solutions of
a system of linear homogeneous equations Ax = 0 for the 0-1 adjacency matrix A. A graph G is
singular of nullity η(G) ≥ 1, if the dimension of the nullspace ker(A) of its adjacency matrix A
is η(G). Necessary and sufficient conditions are determined for a graph to be singular in terms of
admissible induced subgraphs.
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1. Introduction. A system of linear homogeneous equationsAx = 0 yields non-
trivial solutions x �= 0 when the linear transformation A is not invertible. Such a
matrix A is said to be singular. The solutions have many direct applications, for
instance, to networks in computer science and electrical circuits, to financial models
in economics, to biological models in genetics and bioinformatics as well as to the
understanding of non-bonding orbitals in carbon unsaturated molecules [2, 11, 14].

Once A is determined for a particular model, the eigenvectors x satisfying Ax =
λx for the eigenvalue λ = 0 in the spectrum (or set of eigenvalues {λ}) of A are easily
calculated. A more challenging problem, and one which we discuss in this paper, is to
determine the properties of the possible linear transformationsA that satisfy Ax = 0
for a feasible non-zero x.

A graph G(V , E) having a vertex set V(G) = {1, 2, . . . , n} and a set E of m(G)
edges, joining distinct pairs of vertices, is said to be of order n(G)(= n) and size
m(G)(= m). The complete graph, the empty graph (with no edges), the cycle and
the path on n vertices are denoted by Kn, Kn, Cn and Pn respectively. The linear
transformation we choose to encode the structure of a graph G, up to isomorphism,
is the n× n adjacency matrix A(G)(= A) of G. The (i, j)th entry, aij , of A is one if
ij is an edge and zero otherwise. Since A is a 0-1 (real and symmetric) matrix, the
feasible non-zero vectors x that satisfy

Ax = 0,(1.1)

lie in ker(A) and can be standardized to have integer entries with g.c.d. equal to 1
and the first non-zero entry positive. Because x ∈ ker(A), it is referred to as a kernel
eigenvector.

Since different labelings of the vertices of G yield similar matrices and hence an
invariant spectrum, we use terminology for a graph G and its adjacency matrix (de-
noted by A or G) interchangeably. A graph with the eigenvalue zero, of multiplicity
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η ≥ 1, in the spectrum, is said to be singular of nullity (or co-rank) η. Equivalently,
a graph G is singular if there exists a non-zero vector x such that Ax = 0.

A useful result for real symmetric matrices, applied to A(G), is the Interlacing
Theorem (see e.g. [3], p. 314).

Theorem 1.1. If G is an n-vertex graph with eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn

and H is a vertex–deleted subgraph of G with eigenvalues µ1 ≤ µ2 ≤ . . . ≤ µn−1 , then
λi ≤ µi ≤ λi+1 , i = 1, 2, . . . , n− 1.

This means that the multiplicity of an eigenvalue can change by at most one with
the addition or deletion of a vertex to a graph.

The problem of characterizing singular graphs is proving to be hard. The struc-
ture of certain classes of singular graphs has been studied for the last sixty years,
not only as an interesting problem in mathematics but also in connection with non-
bonding molecular orbitals in chemistry, coding theory and more recently in networks;
see for instance [2, 4, 5, 6, 7, 8, 9, 10, 12, 13].

In searching for the substructures that are found in singular graphs, we found
it effective to define a singular configuration (SC) as a singular graph of nullity one
with a minimal number of vertices and its spanning minimal configuration (MC). In
Section 2, we describe the construction of a SC, built from a core graph by adding a
periphery. The concept of a minimal basis, explained in Section 3, is utilized in the
following section to establish necessary and sufficient conditions for a graph G to be
singular. We present, in Section 5, an algorithm that determines singularity, while
constructing SCs sharing a common core in G.

2. Structure. Equation (1.1) is the key to discover why a graph is singular.
We identify graphs of nullity one, so that substructures corresponding to linearly
independent kernel eigenvectors do not mask one another. If A has nullity one, then
the standardized x is said to be the kernel eigenvector of G.

For a graph of nullity one, we label G so that the kernel eigenvector x is of

the form
[
xF

0

]
, where only the top r entries of x, forming xF , are non-zero. We

call xF the non-zero part of x and the subgraph F of G induced by the r vertices
corresponding to xF , the core of G. Figure 2.1 shows two graphs, of nullity one, with
the same non-zero part xF of x but different cores.

Fig. 2.1. Two MCs with the same feasible non-zero part (1, 1,−1,−1)t of the kernel eigenvector.

The set of remaining vertices, V(G)\V(F ), is said to be the periphery P (with
respect to (F,xF )). Note that if G has nullity one, then the core F and the periphery
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P are unique.
This prompts us to ask whether there exist graphs where x = xF . Indeed such

graphs exist and we call them core graphs. A singular graph, on at least two vertices,
with a kernel eigenvector having no zero entries, is said to be a core graph. The core
graphs of nullity one, are called nut graphs; the smallest one is of order 7 and size 8
[4]. Note that whereas a core of G is a subgraph associated with a kernel eigenvector
of G, a core graph F is itself a core of F .

Fig. 2.2. Core Graphs.

Examples of six core graphs in order of increasing nullity, η = 1, 2, . . . , 6, are
shown in Figure 2.2. For molecular graphs in chemistry, where the vertices represent
carbon (C) atoms while the edges represent the C-C sigma bonds, core graphs have a
special significance. A radical with the C-structure of a core graph has the π electronic
charge (proportional to the square of the kernel eigenvector entry associated with a
C center) occupying the non-bonding orbitals (for λ = 0), distributed all over the
carbon centers, and therefore would have markedly different reactivity from the more
usual type of radical, where the electron density vanishes at some sites.

2.1. Minimal configurations. The underlying idea, that leads to Definition 2.1
of a MC, is its construction. If, in line with the Interlacing Theorem, to a core graph
(F,xF ) of nullity η(F ) ≥ 1, η(F ) − 1 independent vertices (forming the periphery),
incident only to vertices of F , can be added, reducing the nullity by one with each
vertex addition, then the graph N obtained has nullity one. If we also insist on the
condition that xF remains the non-zero part of the kernel eigenvector of N , then N is
a singular graph of nullity one with a minimal number of vertices and edges, having
xF as the non-zero part of the kernel eigenvector. Figure 2.3 shows three core graphs.
The MCs grown from the first two, of order four, have a non-empty periphery; the
last core graph, of order seven, is a nut graph and hence also a MC.

Definition 2.1. Let F be a core graph on at least two vertices, with nullity
s ≥ 1 and a kernel eigenvector xF having no zero entries. If a graph N , of nullity
one, having xF as the non-zero part of the kernel eigenvector, is obtained, by adding
s− 1 independent vertices, whose neighbors are vertices of F , then N is said to be a
minimal configuration (MC).

Remark 2.2. The allusion to minimality refers to the number of peripheral
vertices required to reduce the nullity from η(F ) to one, in the construction of N ,
as well as to the number of edges for N to have core (F,xF ). The necessary and
sufficient conditions in the following theorem are often taken as the definition of MC
[5, 9].
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Fig. 2.3. Cores and MCs ‘grown’ from them.

Theorem 2.3. [9] Let N be a singular graph of order n ≥ 3. The graph N is a
MC having a core (F,xF ) and periphery P := V(N)−V(F ) if and only if the following
conditions are all satisfied:

(i) η(N) = 1,

(ii) P = ∅ or P induces a graph consisting of isolated vertices,

(iii) η(F ) = |P|+ 1.

Remark 2.4. A MC is connected [9]. In a MC N , a vertex of P is joined to
core-vertices only, N is said to be extended from F and the vertex degree of v ∈ P
is at least two [5]. Note that if η(G) = 1, then xF is uniquely determined (up to a
multiplicative constant) and therefore G has a unique core F and a unique periphery
P .
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2.2. Singular configurations. For a MC N , if the vertices of F are labeled

first, followed by those of P , then for x =
[
xF

0

]
, Nx = 0. The periphery, P , is a

set of independent vertices whose defining vectors, given by the last s− 1 columns of
N , determine the edges joining P to the core vertices. Note that if edges are added
joining some or all of the distinct pairs of vertices in P , then the graph, S, produced

still satisfies S
[
xF

0

]
= 0.

Definition 2.5. A MC, N , and all such graphs, S, are said to be singular
configurations (SCs) with underlying spanning MC N .

Proposition 2.6. A SC has nullity one.
Proof. Let S be a SC with spanning MC N . We note first that the kernel

eigenvector of N is also a kernel eigenvector of S.

If S =
[
F Bt

B P

]
, where F is r×r andP is (n−r)×(n−r), then the spanning MC

N =
[
F Bt

B 0

]
. Since P corresponds to the zero part of x, the kernel eigenvector

x =
[
xF

0

]
of N also satisfies Sx = 0.

There remains to show that S does not have a kernel eigenvector linearly inde-
pendent of x. Indeed, with each addition of a column of Bt to F, the nullity reduces
successively by one. Therefore, there are no linear combinations involving the columns
of Bt that contribute to ker([F Bt]). Since the first r columns of S and N are the
same, the only non-zero entries in a kernel eigenvector of S correspond to the vertices
of F . Thus S and N share the same unique kernel eigenvector.

The number of SCs with a particular underlying MC, N , is finite and equal to
the number of distinct possible ways edges can be inserted joining distinct pairs of
vertices of the periphery of N .

Lemma 2.7. Let N be a MC with periphery P. There exist 2k SCs having the

MC, N , as a spanning subgraph, where k is
[ |P|

2

]
.

3. Minimal basis. Let wt(u) denote the weight (that is the number of non-
zero entries) of the vector u ∈ R

n. If u1,u2, . . . ,uη are the vectors in a basis
for the nullspace ker(A) of a n × n real matrix A, in non-decreasing weight or-
der, such that

∑η
i=1 wt(ui) is a minimum, then the basis is said to be a minimal

basis denoted by Bmin. Although various Bmin may be possible, the weight se-
quence {wt(u1),wt(u2), . . . ,wt(uη)} is an invariant for ker(A). Moreover for any
basis B = {w1,w2, . . . ,wη}, wt(ui) ≤ wt(wi) [7].

A basis B for the nullspace can be transformed into another basis B′ by linear
combinations of the vectors of B. However the union of the collections of the positions
of the non-zero entries in the basis vectors is the same for all bases. Thus, if A is the
adjacency matrix of a singular graph, the partition of the vertices into core vertices
and core-forbidden vertices is independent of the basis used for the nullspace. Also,
the Bmin-vectors define a fundamental system of cores in G.
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Proposition 3.1. For all possible bases of the nullspace, the set CV of core
vertices is an invariant of a graph G. The core-forbidden vertices, V(G)\CV, are also
an invariant of G.

Remark 3.2. The same result holds for the set of vertices corresponding to the
non-zero entries of the vectors in the bases for any eigenspace of G.

This method of constructing MCs by adding a periphery to a core, using the
concept that the entries of a kernel eigenvector, corresponding to the periphery, are
forced to be zero, was introduced in [5]. A similar idea was also employed in [1], to
bound the co-rank of a real symmetric matrix from above.

4. SCs are subgraphs of singular graphs. Henceforth a singular graph with-
out isolated vertices will be denoted by H . We show, in Proposition 4.3, that a sin-
gular graph of nullity η necessarily has η SCs as induced subgraphs and therefore the
spanning MCs as subgraphs.

Proposition 4.1. If the core (F,xF ) of H, corresponding to x =
[
xF

0

]
in a

minimal basis Bmin for the nullspace ker(A) of A(H), is not itself a SC, then there
is a SC, which is a vertex-induced subgraph of H, having xF as the non-zero part of
its kernel eigenvector.

Proof. If the core (F,xF ) has core-order r, then the first r rows of A(H) may
be partitioned as [F|C] and [F|C]txF = 0. Moreover the rank of [F|C] is r − 1;
otherwise x in Bmin is equivalent to the linear combination of at least two linearly
independent vectors in the nullspace of A(H), each of which has a smaller weight
than x. This would mean that x can be reduced, (using linear combinations with
other eigenvectors of Bmin) to another eigenvector of smaller weight that can replace
x in Bmin to produce another basis B′ for ker(A), lexicographically before Bmin, a
contradiction. If F is not itself a minimal configuration, its nullity µ is more than
one. Since row rank and column rank of (A(F )|C) are equal, there exist µ − 1
column vectors of the associated matrix C which are linearly independent and form

the matrix C′, say, such that A′ =
[

F C′

(C′)t P

]
, is a submatrix of A(H) and

defines the SC, S, grown from F . The submatrix P of A corresponds to the entries
of A intersecting in the columns of C′ and the rows of (C′)t . Note that the nullity
of A′ is one and the MC spanning S has P = 0. If F is itself a MC, then C′ = 0 and
P(F ) = ∅; otherwise the successive deletions of the vertices of P(S), which therefore
correspond to the columns of C′, increase the nullity of A′ by one, with each deletion.
Thus η(F ) = |P(N)|+ 1. Noting that S is an induced subgraph of H , completes the
proof.

Remark 4.2. Since each vector in Bmin corresponds to a unique core and the
choice of x in Bmin is arbitrary, we have proved the following result on the structure
of singular graphs:

Proposition 4.3. Let H be a singular graph of nullity η. There exist η SCs as
induced subgraphs of H whose core-vertices are associated with the non-zero entries
of the η distinct vectors in a minimal basis of the nullspace of A(H).
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Fig. 4.1. MCs are subgraphs of a singular graph.

Example 4.4. An example of a singular graph, of nullity one, is shown in Figure
4.1. The core of the graph G, consists of the six black vertices, that induce the core,
G−7−8, in G. Although G has nullity one, it is not minimal, since the non-isomorphic
graphs G − 7 and G − 8 are also of nullity one and have the same core as G. These
two distinct subgraphs of G satisfy the conditions of Theorem 2.3 and are therefore
MCs. Moreover, G has a kernel eigenvector equal to (1, 1,−1,−1, 1,−1, 0, 0) and the
vertices 7 and 8, in the periphery, are core-forbidden vertices since they do not lie on
any core. For other examples of singular graphs of nullity one where the subgraphs
that are possible MCs are neither isomorphic, nor co-spectral, see [11].

Remark 4.5. The need to use Bmin as a basis becomes clear when one considers
a core graph. For instance, the core graph C4k, k ≥ 1, has a kernel eigenvector which
is a linear combination of its two Bmin–vectors but does not have an extension to a
MC within C4k itself.

Fig. 4.2. An edge-decomposition of a singular graph.
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4.1. Necessary and sufficient conditions for singularity. We have shown
that SCs are admissible induced subgraphs of a singular graph G. Indeed, the η SCs
(with spanning MCs) corresponding to Bmin may be thought of as the ‘atoms’ of G.
The graph G may be compared to a ‘molecule’. Carrying the analogy to chemical
molecular structure further, we may compare the core of a SC to the ‘nucleus of the
atom’ and the periphery to the ‘orbiting electrons’. But if η SCs with distinct cores
are induced subgraphs of G, is G singular of nullity η? Since the SC P3 is a subgraph
of triangle-free non-singular connected graphs of order three or higher, it is clear that
this condition is not sufficient and additional constraints are required.

Lemma 4.6. Let S be a SC having core F of core-order p and u = (xF, 0, . . . , 0)
be the kernel eigenvector of S (with each of the p entries of xF being non-zero).
Let S be a subgraph of a graph G, labeled such that the first p rows of A(G) are
Y =

[
A(F ) C′ Q

]
where

[
A(F ) C′ ]

are the first p rows of A(S). If xF ∈
(colsp(Q))⊥, then G is singular with core F .

Proof. For the r-vertex SC S, A(S) =




A(F ) C′

(C′)t P



, where P is

the (r − p) × (r − p) adjacency matrix of the subgraph, induced by P and where
C′, describes the edges between the vertices of the periphery and those of the core.
Recall that A(S)u = 0. Also the first p rows of A(G) are Y =

[
A(F ) C′ Q

]
,

so that the non-zero entries of Q describe the edges between F and R = G−V(S) as
shown in Figure 4.2. Using the premise QtxF = 0, it follows that YtxF = 0. Thus

A(G)




xF

0
...
0


 = 0 and the result follows.

Remark 4.7. Whereas Lemma 4.6 may be considered as a characterization of
singular graphs using an algebraic test for singular graphs, the following result is a
geometrical criterion for a graph to be singular.

Proposition 4.8. If the SC S with core (F,xF ) and periphery P is a subgraph
of a graph G and the graph G− P, obtained from G by deleting the vertices in P, is
also singular with core (F,xF ), then G is singular with a core (F,xF ).

Proof. Let the core-order of S be r. If

A(S) =




A(F ) C′

(C′)t 0



, and the first p rows of A(G) are

Y =
[
A(F ) C′ Q

]
, then for the same lexicographic ordering of the vertices,[

A(F ) Q
]
are the first p rows of G−P . Since (F,xF ) is a core of G−P , it follows

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 16, pp. 451-462, December 2007

http://math.technion.ac.il/iic/ela



ELA

A Characterization of Singular Graphs 459

that QtxF = 0. Thus, YtxF = 0, so that (xF ,0) is a kernel eigenvector of G.
We have established a geometrical test which may be considered as a characteri-

zation of singular graphs.
Proposition 4.9. A graph G is singular if and only if the following

conditions are both satisfied:
(i) there exists a subgraph of G which is a SC, S, with core (F,xF ) and periphery
P = V(S)\V(F );
(ii) the subgraph G− P is also singular with the same core (F,xF ).

5. Algorithm. Proposition 4.9 can be utilized iteratively to determine the in-
duced SCs for a particular core (F,xF ) in a singular graph G (= G0), perhaps with
the use of catalogues of MCs. Lists of the MCs with cores of order less than 6 are
found in [5] while in [7], MCs for selected cores of order 6 and 7 are given.

Algorithm:-to determine whether a graph G is singular

-to output SCs with common core (F,xF )
and disjoint peripheries.

Step 1: Select an induced SC, Si, with core (F,xF )
and with a partition V(F )∪̇Pi of its vertices, in Gi−1,
labelling the vertices of F first.

Step 2: Obtain Gi by deleting Pi from Gi−1.

Step 3: Increment i and repeat steps 1 and 2
until no SCs with core (F,xF ) remain.

Step4: Output S := {Si}. If S �= ∅, then
(i) G has the set S of SCs with core (F,xF );
(ii) and G is singular with a kernel eigenvector (xF ,0).

For a large |P|, it becomes easier to notice a SC in the successively smaller G−P ,
so that implementation of the algorithm becomes progressively less complex. This
routine can be repeated for other cores in G.

We conclude with some examples.

Example 5.1. The graph G in Figure 5.1 has nullity two with 6 as a core-
forbidden vertex. The kernel eigenvectors x1 = (2, 1,−2,−1, 1, 0, 0, 0)t and x2 =
(−1,−1, 1, 0, 0, 0,−1, 1)t in a minimal basis for the nullspace correspond to the MCs
G − 8 and G − 5 respectively. Note that the non-isomorphic MCs G − 7 and G − 8
have a kernel eigenvector with the same feasible non-zero part as x1. Also the non-
isomorphic MCs G − 4 and G − 5 have a kernel eigenvector with the same feasible
non-zero part as x2.

Let us test the graph G of Figure 5.1, for singularity using first the algebraic
approach of Lemma 4.6 and secondly the geometrical approach of Proposition 4.8.
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Fig. 5.1. The singular graph G.

We recognize (perhaps by using the catalogue in [5]) that G− 8 is a MC with kernel
eigenvector (2, 1,−2,−1, 1, 0, 0)t, which is x1 restricted to G−8. Vertex 8 is adjacent
to 1, 3, 4 and 5, so that it has a defining vector v8 = ( 1, 0, 1, 1, 1, 0, 0, 0)t. Since
v8 ∈ x1

⊥, G is singular with kernel eigenvector x1, thus completing the algebraic
test.

On the other hand, for the geometric test, we identify the MC G− 8 and delete
its periphery {6, 7} from G. The subgraph L := G− 6− 7 of G, obtained, is singular
with core (F,x1) as required. Indeed L has nullity two, with two linearly independent
kernel eigenvectors, whose linear combination gives x1. A fundamental system of
cores for L corresponds to MCs P3 and P5 with core-vertices {1, 3} and {2, 4, 5}
respectively.

Example 5.2. Let us now apply the same tests to C6. The 5-vertex path
P5 is a MC with core (F,xF ) = (K3, (1,−1, 1)t) and is an induced subgraph of the
non-singular graph C6.

For a labeling of the vertices of C6 in cyclic order, vertex 6 is adjacent to 1 and 5,
so that it has a defining vector v6 = ( 1, 0, 0, 0, 1, 0 )t. The kernel eigenvector of P5 is
(1, 0,−1, 0, 1)t. If C6 were to be singular and share the same non-zero part of the kernel
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eigenvector as P5, then a kernel eigenvector of C6 would be y = (1, 0,−1, 0, 1, 0)t.
Since v6 �∈ y⊥, C6 is not singular with core (F,xF ). Note that the periphery of
P5 consists of vertices 2 and 4. When these are deleted, the remaining subgraph is
P3∪̇K1, which does not have a core (F,xF ). We deduce that C6 does not have core
(F,xF ).

Fig. 5.2. Two SCs with core K5 and overlapping peripheries.

Example 5.3. The connected graph H in Figure 5.2 has nullity two. The
induced subgraphs N1 = H − 9 and N2 = H − 10 are MCs with the same core
(F,xF ) = (K5, (1, 1,−1,−1, 1)t). Removing the periphery {6, 7, 8, 10} of N1 from
H leaves P3∪̇3K1 which has core (F,xF ). Similarly for N2 which has periphery
{6, 7, 8, 9}. Thus H has two induced SCs, N1 and N2, with core (F,xF ) but in this
case, the peripheries are not disjoint. Note that isolated vertices in a core admit any
real values as corresponding entries in a kernel eigenvector.

Fig. 5.3. Two SCs with the same core K2,4 and disjoint peripheries.

Example 5.4. For the connected graph K in Figure 5.3, we apply the above
algorithm for a selected core corresponding to a Bmin-vector. The nullity of K is one.
The subgraph S = K − {10, 11, 12} is a SC. Its core (F,xF ) = (K2,4, (−1, 1,−3,−1,
2, 2)t) induced by the set {1, 2, 3, 4, 5, 6} of vertices, has nullity four. Removing the
periphery P1 = {7, 8, 9} of S from K, leaves L, which is a MC with core (F,xF )
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and periphery P2 = {10, 11, 12}. The algorithm outputs the two SCs of K with core
(F,xF ) and disjoint peripheries P1 and P2.

6. Conclusion. We have seen that SCs are the essential elements of singular
graphs. Lemma 4.6 tells us that the presence of a SC S with core (F,xF ) as an induced
subgraph must be complemented by another condition on the edges between F and
the vertices of the graph not belonging to S, to ensure that the graph is singular with
core (F,xF ). Furthermore, Proposition 4.9 provides a geometrical characterization
of singular graphs in terms of admissible induced subgraphs. Having identified a SC
with spanning MC N (having core (F,xF ) and periphery P := VN\VF ) as an induced
subgraph of a given graph G, testing the smaller graph G − P not only determines
whether G is singular or otherwise, but also constructs other induced SCs with core
(F,xF ).
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