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ON THE NULLITY OF GRAPHS∗

BO CHENG† AND BOLIAN LIU‡

Abstract. The nullity of a graph G, denoted by η(G), is the multiplicity of the eigenvalue zero
in its spectrum. It is known that η(G) ≤ n − 2 if G is a simple graph on n vertices and G is not
isomorphic to nK1. In this paper, we characterize the extremal graphs attaining the upper bound
n− 2 and the second upper bound n− 3. The maximum nullity of simple graphs with n vertices and
e edges, M(n, e), is also discussed. We obtain an upper bound of M(n, e), and characterize n and e

for which the upper bound is achieved.
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1. Introduction. Let G be a simple graph. The vertex set of G is referred to
as V (G), the edge set of G as E(G). If W is a nonempty subset of V (G), then the
subgraph of G obtained by taking the vertices in W and joining those pairs of vertices
in W which are joined in G is called the subgraph of G induced by W and is denoted
by G[W ]. We write G − {v1, . . . , vk} for the graph obtained from G by removing the
vertices v1, . . . , vk and all edges incident to them.

We define the union of G1 and G2, denoted by G1 ∪ G2, to be the graph with
vertex-set V (G1)∪ V (G2) and edge-set E(G1)∪E(G2). If G1 and G2 are disjoint we
denote their union by G1 + G2. The disjoint union of k copies of G is often written
kG. As usual, the complete graph and cycle of order n are denoted by Kn and Cn,
respectively. An isolated vertex is sometimes denoted by K1.

Let r ≥ 2 be an integer. A graph G is called r-partite if V (G) admits a partition
into r classes X1, X2, . . . , Xr such that every edge has its ends in different classes;
vertices in the same partition must not be adjacent. Such a partition (X1, X2, . . . , Xr)
is called a r-partition of the graph. A complete r-partite graph is a simple r-partite
graph with partition (X1, X2, . . . , Xr) in which each vertex of Xi is joined to each
vertex of G − Xi; if |Xi|=ni, such a graph is denoted by Kn1,n2,...,nr

. Instead of
‘2-partite’ (‘3-partite’) one usually says bipartite (tripartite).

Let G and G′ be two graphs. Then G and G′ are isomorphic if there exists
a bijection ϕ : V (G) → V (G′) with xy ∈ E(G) ⇐⇒ ϕ(x)ϕ(y) ∈ E(G′) for all
x, y ∈ V (G).

The adjacency matrix A(G) of graph G of order n, having vertex-set V (G) =
{v1, v2, . . . , vn} is the n × n symmetric matrix [aij ], such that aij=1 if vi and vj

are adjacent and 0, otherwise. A graph is said to be singular (non-singular) if its
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adjacency matrix is a singular (non-singular) matrix. The eigenvalues λ1, λ2, . . . , λn

of A(G) are said to be the eigenvalues of the graph G, and to form the spectrum
of this graph. The number of zero eigenvalues in the spectrum of the graph G is
called its nullity and is denoted by η(G). Let r(A(G)) be the rank of A(G), clearly,
η(G) = n−r(A(G)). The rank of a graph G is the rank of its adjacency matrix A(G),
denoted by r(G). Then η(G) = n − r(G). Each of η(G) and r(G) determines the
other.

It is known that 0 ≤ η(G) ≤ n − 2 if G is a simple graph on n vertices and G
is not isomorphic to nK1. In [3], L.Collatz and U.Sinogowitz first posed the problem
of characterizing all graphs G with η(G) > 0. This question is of great interest in
chemistry, because, as has been shown in [4], for a bipartite graph G (corresponding
to an alternant hydrocarbon), if η(G) > 0, then it indicates the molecule which such
a graph represents is unstable. The problem has not yet been solved completely; only
for trees and bipartite graph some particular results are known (see [4] and [5]). In
recent years, this problem has been investigated by many researchers([5], [7] and [8]).

A natural question is how to characterize the extremal matrices attaining the
upper bound n−2 and the second upper bound n−3. The following theorems answer
this question.

Theorem 1.1. Suppose that G is a simple graph on n vertices and n ≥ 2. Then
η(G) = n− 2 if and only if G is isomorphic to Kn1,n2

+ kK1, where n1 + n2 + k = n,
n1, n2 > 0, and k ≥ 0.

Theorem 1.2. Suppose that G is a simple graph on n vertices and n ≥ 3. Then
η(G) = n−3 if and only if G is isomorphic to Kn1,n2,n3

+kK1, where n1+n2+n3+k =
n, n1, n2, n3 > 0, and k ≥ 0.

We now introduce the definition of maximum nullity number, which is closely
related to the upper bound of η(G). Let Γ(n, e) be the set of all simple graphs with n
vertices and e edges. The maximum nullity number of simple graphs with n vertices
and e edges, M(n, e), is max{η(A) : A ∈ Γ(n, e)}, where n ≥ 1 and 0 ≤ e ≤

(

n
2

)

.

This paper is organized as follows. Theorem 1.1 and Theorem 1.2 are proved in
section 3. In order to prove them, we obtain some inequalities concerning η(G) in
section 2. In section 4, we obtain an upper bound of M(n, e), and characterize n and
e for which the upper bound is achieved.

2. Some inequalities concerning η(G). A path is a graph P of the form
V (P ) = {v1, v2, . . . , vk} and E(P ) = {v1v2, v2v3, . . . , vk−1vk}, where the vertices
v1, v2, . . . , vk are all distinct. We say that P is a path from v1 to vk, or a (v1,vk)-path.
It can be denoted by Pk. The number of edges of the path is its length. The distance
d(x, y) in G of two vertices x, y is the length of a shortest (x, y)-path in G; if no such
path exists, we define d(x, y) to be infinite. The greatest distance between any two
vertices in G is the diameter of G, denoted by diam(G).
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Lemma 2.1. (see [6]) (i) The adjacency matrix of the complete graph Kn, A(Kn),
has 2 distinct eigenvalues n − 1, −1 with multiplicities 1, n − 1 where n > 1.

(ii) The eigenvalues of Cn are λr = 2cos 2πr
n

, where r = 0, . . . , n − 1.
(iii) The eigenvalues of Pn are λr = 2cos πr

n+1 , where r = 1, 2, . . . , n.

Lemma 2.2. (i) r(Kn) =

{

0 if n = 1;
n if n > 1.

(ii) r(Cn) =

{

n − 2, if n ≡ 0(mod4);
n, otherwise.

(iii) r(Pn) =

{

n − 1, if n is odd;
n, otherwise.

Proof. (i) and (iii) are direct consequences from Lemma 2.1.

(ii) We have λr = 0 if and only if 2cos 2πr
n

= 0 if and only if 2πr
n

= π/2 or 3π/2.
Therefore λr = 0 if and only if r = n/4 or r = 3n/4. Hence (ii) holds.

The following result is straightforward.

Lemma 2.3. (i) Let H be an induced subgraph of G. Then r(H) ≤ r(G).
(ii) Let G = G1 + G2, then r(G) = r(G1) + r(G2), i.e., η(G) = η(G1) + η(G2).

In the remainder of this section, we give some inequalities concerning η(G).

Proposition 2.4. Let G be a simple graph on n vertices and Kp be a subgraph
of G, where 2 ≤ p ≤ n. Then η(G) ≤ n − p.

Proof. Immediate from Lemma 2.2(i) and Lemma 2.3(i).

A clique of a simple graph G is a subset S of V (G) such that G[S] is complete.
A clique S is maximum if G has no clique S ′ with |S′| > |S|. The number of vertices
in a maximum clique of G is called the clique number of G and is denoted by ω(G).
The following inequality is clear from the above result.

Corollary 2.5. Let G be a simple graph on n vertices and G is not isomorphic
to nK1. Then η(G) + ω(G) ≤ n.

Proposition 2.6. Let G be a simple graph on n vertices and let Cp be an induced
subgraph of G, where 3 ≤ p ≤ n. Then

η(G) ≤
{

n − p + 2, if p ≡ 0(mod4);
n − p, otherwise.

Proof. This follows from Lemma 2.2(ii) and Lemma 2.3(i).

The length of the shortest cycle in a graph G is the girth of G, denoted by gir(G).
A relation between gir(G) and η(G) is given here.

Corollary 2.7. If G is simple graph on n vertices and G has at least one cycle,
then

η(G) ≤
{

n − gir(G) + 2, if gir(G) ≡ 0(mod4);
n − gir(G), otherwise.
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Proposition 2.8. Let G be a simple graph on n vertices and let Pk be an induced
subgraph of G, where 2 ≤ k ≤ n. Then

η(G) ≤
{

n − k + 1, if k is odd;
n − k, otherwise.

Proof. This is a direct consequence of Lemma 2.2(iii) and Lemma 2.3(i).

Corollary 2.9. Suppose x and y are two vertices in G and there exists an
(x, y)-path in G. Then

η(G) ≤
{

n − d(x, y), if d(x, y) is even;
n − d(x, y) − 1, otherwise.

Proof. Let Pk be the shortest path between x and y. Suppose v1, v2, . . . , vk are
the vertices of Pk. Then G[v1, v2, . . . , vk] is Pk. From Proposition 2.8, we have

η(G) ≤
{

n − d(x, y), if d(x, y) is even;
n − d(x, y) − 1, otherwise.

Corollary 2.10. Suppose G is simple connected graph on n vertices. Then

η(G) ≤
{

n − diam(G), if diam(G) is even;
n − diam(G) − 1, otherwise.

3. Extremal matrices and graphs. For any vertex x ∈ V (G), define Γ(x) =
{v : v ∈ V (G) and v is adjacent to x}. We first give the following lemma.

Lemma 3.1. Suppose that G is a simple graph on n vertices and G has no
isolated vertex. Let x be an arbitrary vertex in G. Let Y = Γ(x) and X = V (G)− Y .
If r(G) ≤ 3, then
(i) No two vertices in X are adjacent.
(ii) Each vertex from X and each vertex from Y are adjacent.

Proof. (i) Suppose x1 ∈ X , x2 ∈ X , and x1 and x2 are adjacent. Since x1 ∈ X ,
x1 and x are not adjacent. Similarly we have x2 and x are not adjacent. Since G has
no isolated vertex, x is not an isolated vertex. Then Y is not an empty set. Select
any vertex y in Y . Then G[x1, x2, y] is isomorphic to K2 + K1, K1,2 or K3.

If G[x1, x2, y] is isomorphic to K2+K1, then G[x, x1, x2, y] is isomorphic to P2+P2.
Since r(P2 + P2) = r(P2) + r(P2) = 2 + 2 = 4 by Lemma 2.3, we have r(G) ≥ 4, a
contradiction.

If G[x1, x2, y] is isomorphic to K1,2, then G[x, x1, x2, y] is isomorphic to P4. There-
fore r(G) ≥ r(P4) = 4, a contradiction.

If G[x1, x2, y] is isomorphic to K3, then using the fact that neither x1 nor x2 is
adjacent to x, we can verify that r(G[x, x1, x2, y]) = 4, a contradiction.

Therefore no two vertices in X are adjacent.

(ii) Suppose not, then there exist x1 ∈ X and y1 ∈ Y such that x1 and y1 are not
adjacent. Since x and y1 are adjacent, we have x and x1 are distinct. Due to the fact
that G has no isolated vertex, we can choose a vertex z in G which is adjacent to x1.
By (i) we see z ∈ Y . Then x and z are adjacent.
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If y1 and z are not adjacent, then G[x, x1, y1, z] is isomorphic to P4. Hence
r(G[x, x1, y1, z]) > 3, a contradiction.

If y1 and z are adjacent, then using the fact that neither y1 nor x is adjacent to
x1, we can verify that r(G[x, x1 , y1, z]) = 4, a contradiction. Thus each vertex from
X and each vertex from Y are adjacent.

In order to prove Theorem 1.1, we prove the following lemma.

Lemma 3.2. Suppose that G is a simple graph on n vertices (n ≥ 2) and G has
no isolated vertex. Then η(G) = n − 2 if and only if G is isomorphic to a complete
bipartite graph Kn1,n2

, where n1 + n2 = n, n1, n2 > 0.

Proof. The sufficiency is clear.

To prove the necessity, choose an arbitrary vertex x in G. Let Y = Γ(x) and
X = V (G) − Y . Since G has no isolated vertex, x is not an isolated vertex. Then Y
is not an empty set. Since x ∈ X , X is not empty.

We now prove any two vertices in Y are not adjacent. Suppose that there exist
y1 ∈ Y and y2 ∈ Y such that y1 and y2 are adjacent. Then G[x, y1, y2] is a triangle.
By Proposition 2.4, we have η(G) ≤ n − 3, a contradiction.

From Lemma 3.1, we know that
(i) any two vertices in X are not adjacent, and
(ii) any vertex from X and any vertex from Y are adjacent. Hence G is isomorphic
to a complete bipartite graph.

Theorem 1.1 is immediate from the above lemma.

Two matrices A1 and A2 that are related by B = P−1AP where P is a permuta-
tion matrix, are said to be permutation similar. Graphs G1 and G2 are isomorphic if
and only if A(G1) and A(G2) are permutation similar.

We denote by Jp,q the p × q matrix of all 1’s. Sometimes we simply use J to
denote an all 1’s matrix of appropriate or undetermined size. Similar conventions are
used for zeros matrices with O replacing J . Let A1 and A2 be two matrices. Define

A1 ⊕ A2 =

[

A1 O
O A2

]

and A1⊕A2 =

[

A1 J
J A2

]

.

Then Theorem 1.1 can be written in the following equivalent form.

Theorem 3.3. Suppose that G is a simple graph on n vertices and n ≥ 2. Then
η(G) = n − 2 if and only if A(G) is permutation similar to matrix On1,n1

⊕On2,n2
⊕

Ok,k, where n1 + n2 + k = n, n1, n2 > 0, and k ≥ 0.

Some lemmas are given before we prove Theorem 1.2.

Lemma 3.4. Let A be a symmetric n×n matrix and let the rank of A be k. Then
there exists a nonsingular principal minor of order k.

Lemma 3.5. Suppose that G is a simple graph on n vertices (n ≥ 3) and G has
no isolated vertex. Then η(G) = n − 3 if and only if G is isomorphic to a complete
tripartite graph Kn1,n2,n3

, where n1, n2, n3 > 0.
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Proof. If G is isomorphic to a complete tripartite graph, then A(G) is permutation
similar to O⊕O⊕O. Thus we can verify that r(G) = 3, i.e., η(G) = n − 3. The
sufficiency follows.

To prove the necessity, choose an arbitrary vertex x in G. Let Y = Γ(x) and
X = V (G) − Y . Since G has no isolated vertex, x is not an isolated vertex. Then Y
is not an empty set. Since x ∈ X , X is not empty.

By Lemma 3.1, we have the following results.

Claim 3.6. Any two vertices in X are not adjacent.

Claim 3.7. Any vertex from X and any vertex from Y are adjacent.

We now consider G − X , and prove

Claim 3.8. r(G − X) ≤ 2.
Proof. Suppose r(G−X) > 2. Due to the fact that r(G−X) ≤ r(G) = 3, we see

r(G − X) = 3. By Lemma 3.4, there exists an induced subgraph H of G − X such
that H is order 3 and r(H) = 3. Then H is a triangle. Since x is adjacent to each
vertex of H , K4 is a subgraph of G. Therefore η(G) ≤ n − 4, a contradiction.

Furthermore, we can show
Claim 3.9. r(G − X) = 2.
Proof. Suppose r(G−X) < 2, then r(G−X) = 0. Hence G−X = O. Therefore

r(G) = 2, which contradicts η(G) = n − 3.

By Theorem 1.1, G − X is isomorphic to Kn1,n2
+ kK1, where n1, n2 > 0, and

k ≥ 0.

If k > 0, then A(G) is permutation similar to









O J J J
J O J O
J J O O
J O O O









.

Then r(G) = 4, a contradiction. Thus k = 0. So G − X is isomorphic to Kn1,n2
.

By Claim 3.6 and 3.7, we see G is isomorphic to a complete tripartite graph
Kn1,n2,n3

, where n1, n2, n3 > 0.

Theorem 1.2 is immediate from the above lemma. Theorem 1.2 also has the
following equivalent form.

Theorem 3.10. Suppose that G is a simple graph on n vertices and n ≥ 3. Then
η(G) = n − 3 if and only if A(G) is permutation similar to matrix

On1,n1
⊕On2,n2

⊕On3,n3
⊕ Ok,k ,

where n1 + n2 + n3 + k = n, n1, n2, n3 > 0, and k ≥ 0.
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4. Maximum nullity number of graphs. In the first section, we define

M(n, e) = max{η(A) : A ∈ Γ(n, e)}

where Γ(n, e) is the set of all simple graphs with n vertices and e edges. In this section
an upper bound of M(n, e) is given. Let g(m) = max{k : k | m and k ≤ √

m}, where
m is a positive integer, e.g., g(1) = 1, g(2) = 1, g(4) = 2.

Theorem 4.1. The following results hold:
(i) M(n, 0) = n. M(n,

(

n
2

)

) = 0.
(ii) M(n, 1) = n − 2 for n ≥ 2.
(iii) M(n,

(

n
2

)

− 1) = 1 for n > 2.
(iv) M(n, e) ≤ n − 2 for e > 0.
(v) M(n, e) = n − 2 if e > 0 and g(e) + e/g(e) ≤ n.
(vi) M(n, e) ≤ n − 3 if e > 0 and g(e) + e/g(e) > n.

Proof. (i) and (ii) are immediate from the definition.

(iii) Suppose G ∈ Γ(n,
(

n

2

)

− 1). Then G is isomorphic to Kn with one edge
deleted. Thus there exist two identical rows (columns) in A(G). Therefore A(G) is
singular and η(G) ≥ 1.

Since G contains Kn−1, by Proposition 2.4, we have η(G) ≤ 1. Hence η(G) = 1.
Therefore M(n,

(

n

2

)

− 1) = 1.

(iv) From the fact that η(G) ≤ n − 2 if G is a simple graph on n vertices and G
is not isomorphic to nK1, we see that M(n, e) ≤ n − 2 for e > 0.

(v) Let n1 = g(e), n2 = e/g(e) and k = n − n1 − n2. Then G = Kn1,n2
+ kK1 ∈

Γ(n, e) and η(G) = n − 2. Hence M(n, e) = n − 2.

(vi) Suppose M(n, e) > n − 3. Since M(n, e) ≤ n − 2, we have M(n, e) = n − 2.
Then there exists G ∈ Γ(n, e) such that η(G) = n − 2. Hence G = Kn1,n2

+ kK1.
Therefore n1×n2 = e and n1+n2+k = n. Without loss of generality, we may assume
n1 ≤ n2. Then n1 ≤ √

e. Since n1 | n, n1 ≤ g(e).

Since n1 ≤ √
e and g(e) ≤ √

e, g(e)n1 ≤ e. Then 1 − e
g(e)n1

≤ 0.

Since

g(e) + e/g(e) − n1 − n2 = g(e) − n1 + e/g(e)− n2 = g(e) − n1 + e/g(e)− e/n1

= g(e) − n1 + e
n1 − g(e)

g(e)n1
= (g(e) − n1)(1 − e

g(e)n1
) ≤ 0,

g(e) + e/g(e) ≤ n1 + n2 ≤ n, which contradicts to g(e) + e/g(e) > n.

The following immediate corollary gives an upper bound for M(n, e) and charac-
terizes when the upper bound is achieved.

Corollary 4.2. Suppose e > 0. Then M(n, e) ≤ n− 2 and the equality holds if
and only if g(e) + e/g(e) ≤ n.
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Here we give a necessary condition for M(n, e) = n − 3.

Theorem 4.3. If M(n, e) = n − 3, then e ≤ n2/3.

Proof. Due to the fact that M(n, e) = n − 3, there exists G ∈ Γ(n, e) such
that η(G) = n − 3. Hence G = Kn1,n2,n3

+ kK1. Therefore n1 + n2 + n3 ≤ n and
n1n2 + n2n3 + n1n3 = e.

Since

(n1 + n2 + n3)
2 = n2

1 + n2
2 + n2

3 + 2(n1n2 + n2n3 + n1n3)

≥ n1n2 + n2n3 + n1n3 + 2(n1n2 + n2n3 + n1n3) = 3e,

then n2 ≥ 3e, i.e., e ≤ n2/3.

The following corollary is immediate.

Corollary 4.4. If n2/3 < e ≤
(

n

2

)

, then M(n, e) ≤ n − 4.

Finally we give a table for the exact values of M(n, e), where 1 ≤ n ≤ 5.

n e = 0 1 2 3 4 5 6 7 8 9 10
1 1 - - - - - - - - - -
2 2 0 - - - - - - - - -
3 3 1 1 0 - - - - - - -
4 4 2 2 2 2 1 0 - - - -
5 5 3 3 3 3 2 3 2 2 1 0

M(5, 5) = 2 is obtained by Theorem 4.1(vi) and the fact that η(K1,1,2 +K1) = 2.
M(5, 7) = 2 is from Theorem 4.1(vi) and the fact that η(K1,1,3) = 2, and M(5, 8) = 2
is from Theorem 4.1(vi) and the fact that η(K1,2,2) = 2.
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