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1. Introduction. Throughout this paper, Cm×n denotes the set of all m × n
complex matrices; the symbols A∗, r(A) and R(A) stand for the conjugate transpose,
the rank and the range (column space) of a matrix A ∈ C

m×n, respectively. The
Moore-Penrose inverse of A, denoted by A†, is defined to be the unique solution X
to the four matrix equations

(i) AXA = A, (ii) XAX = X, (iii) (AX)∗ = AX, (iv) (XA)∗ = XA.

Further, let EA and FA stand for the two orthogonal projectors EA = I − AA† and
FA = I − A†A. A matrix X ∈ Cn×m is called an {i, . . . , j}-inverse of A, denoted by
A(i,...,j), if it satisfies the ith, . . . , jth equations of the four matrix equations above.
The set of all {i, . . . , j}-inverses of A is denoted by {A(i,...,j)}. In particular, a {1}-
inverse of A is called g-inverse of A, {1,2}-inverse of A is called reflexive g-inverse of
A, {1,3}-inverse of A is called least-squares g-inverse of A, and {1,4}-inverse of A is
called minimum-norm g-inverse of A.

Let A, B and C be three matrices such that the product ABC exists. If each
of the triple matrices is nonsingular, then the product ABC is nonsingular too, and
the inverse of ABC satisfies the reverse-order law (ABC)−1 = C−1B−1A−1. This
law, however, cannot trivially be extended to generalized inverses of ABC when the
product is a singular matrix. In other words, the reverse-order law

(ABC)(i,...,j) = C(i,...,j)B(i,...,j)A(i,...,j)(1.1)

does not automatically hold for {i, . . . , j}-inverses of matrices. One of the fundamental
research problems in the theory of generalized inverses of matrices is to give necessary
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and sufficient conditions for various reverse-order laws for {i, . . . , j}-inverses of matrix
products to hold. For the Moore-Penrose inverse of ABC, the reverse-order law
(ABC)† = C†B†A† was studied by some authors; see, e.g., [4, 6, 7].

In addition to the standard reverse-order law (ABC)−1 = C−1B−1A−1, the in-
verse of ABC can also be written as the mixed-type reverse-order law (ABC)−1 =
(BC)−1B(AB)−1. Correspondingly, the mixed-type reverse-order law for {i, . . . , j}-
inverses of a general triple matrix product ABC can be written as

(ABC)(i,...,j) = (BC)(i,...,j)B(AB)(i,...,j).(1.2)

The special case (ABC)† = (BC)†B(AB)† of (1.2) was investigated in [3, 6, 7].
Another motivation for considering (1.2) comes from the following expression for the
sum of two matrices

A+B = [ I, I ]
[

A 0
0 B

][
I
I

]
def= PNQ.(1.3)

In this case, applying (1.2) to PNQ gives the following equality for {i, . . . , j}-inverses
of A+B:

(A+B )(i,...,j) = (NQ)(i,...,j)N(PN)(i,...,j) =
[

A
B

](i,...,j)[
A 0
0 B

]
[A, B ](i,...,j).(1.4)

This equality establishes an essential relationship between {i, . . . , j}-inverses of A+B

and {i, . . . , j}-inverses of two block matrices [A, B ] and
[

A
B

]
.

Because {i, . . . , j}-inverses of a matrix are not necessarily unique, there are, in
fact, four relationships between both sides of (1.2):

{ (ABC)(i,...,j)} ∩ { (BC)(i,...,j)B(AB)(i,...,j)} �= ∅,
{ (ABC)(i,...,j)} ⊆ { (BC)(i,...,j)B(AB)(i,...,j)},
{ (ABC)(i,...,j)} ⊇ { (BC)(i,...,j)B(AB)(i,...,j)},
{ (ABC)(i,...,j)} = { (BC)(i,...,j)B(AB)(i,...,j)}.

It is a huge task to reveal the relationships for all {i, . . . , j}-inverses of matrices. In
this paper, we consider the following several special cases of (1.2):

(ABC)(1) = (BC)(1)B(AB)(1),(1.5)
(ABC)(1) = (BC)(1,i)B(AB)(1,i), i = 3, 4,(1.6)
(ABC)(1) = (BC)†B(AB)†,(1.7)
(ABC)(1,i) = (BC)†B(AB)†, i = 3, 4,(1.8)
(ABC)(1,i) = (BC)(1,i)B(AB)(1,i), i = 3, 4,(1.9)
(ABC)† = (BC)(1,4)B(AB)†,(1.10)
(ABC)† = (BC)†B(AB)(1,3),(1.11)
(ABC)† = (BC)(1,2,4)B(AB)(1,2,3).(1.12)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 16, pp. 73-89, March 2007

http://math.technion.ac.il/iic/ela



ELA

Reverse-order Laws for a Matrix Product 75

We use ranks of matrices to derive a variety of necessary and sufficient conditions for
the reverse-order laws to hold.

Recall that the rank of a matrix is defined to the dimension of the row (column)
space of the matrix. Also recall that A = 0 if and only if r(A) = 0. From this
simple fact, we see that two matrices A and B of the same size are equal if and only
if r(A − B ) = 0; two sets S1 and S2 consisting of matrices of the same size have a
common matrix if and only if

min
A∈S1, B∈S2

r(A − B ) = 0;

the set inclusion S1 ⊆ S2 holds if and only if

max
A∈S1

min
B∈S2

r(A − B ) = 0.

If some formulas for the rank of A − B can be derived, they can be used to char-
acterize the equality A = B, as well as relationships between the two matrix sets.
This method has widely been applied to characterize various reverse-order laws for
{i, . . . , j}-inverses of matrix products, see, e.g., [6, 7, 10, 11, 12].

In order to use the rank method to characterize (1.5)–(1.12), we need the following
formulas for ranks of matrices.

Lemma 1.1. [5] Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n and D ∈ Cl×k. Then

r[A, B ] = r(A) + r(B − AA(1)B) = r(B) + r(A − BB(1)A),(1.13)

r

[
A
C

]
= r(A) + r(C − CA(1)A) = r(C) + r(A − AC(1)C),(1.14)

r

[
A B
C 0

]
= r(B) + r(C) + r[ (Im − BB(1))A(In − C(1)C) ],(1.15)

where the ranks are invariant with respect to the choices of A(1), B(1) and C(1). If
R(B) ⊆ R(A) and R(C∗) ⊆ R(A∗), then

r

[
A B
C D

]
= r(A) + r(D − CA†B ).(1.16)

The following lemma provides a group of formulas for the minimal and maximal
ranks of the Schur complement D − CA(i,...,j)B with respect to {i, . . . , j}-inverses of
A.

Lemma 1.2. [8, 9] Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n and D ∈ Cl×k. Then

min
A(1)

r(D − CA(1)B ) = r(A) + r[C, D ] + r

[
B
D

]
+ r

[
A B
C D

]
(1.17)

−r

[
A 0 B
0 C D

]
− r


 A 0
0 B
C D


,
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max
A(1)

r(D − CA(1)B ) = min
{

r[C, D ], r

[
B
D

]
, r

[
A B
C D

]
− r(A)

}
,(1.18)

min
A(1,3)

r(D − CA(1,3)B ) = r

[
A∗A A∗B
C D

]
+ r

[
B
D

]
− r


 A 0
0 B
C D


,(1.19)

max
A(1,3)

r(D − CA(1,3)B ) = min
{

r

[
A∗A A∗B
C D

]
− r(A), r

[
B
D

]}
,(1.20)

min
A(1,4)

r(D − CA(1,4)B ) = r[C, D ] + r

[
AA∗ B
CA∗ D

]
− r

[
A 0 B
0 C D

]
,(1.21)

max
A(1,4)

r(D − CA(1,4)B ) = min
{

r[C, D ], r

[
AA∗ B
CA∗ D

]
− r(A)

}
,(1.22)

r(D − CA†B ) = r

[
A∗AA∗ A∗B
CA∗ D

]
− r(A).(1.23)

In particular, if A ∈ C
m×n, B ∈ C

m×k, C ∈ C
l×m and D ∈ C

l×k, then

r(D − CAA†B ) = r

[
A∗A A∗B
CA D

]
− r(A).(1.24)

The following results are derived from (1.19) and (1.21).
Lemma 1.3. Let A ∈ C

m×n and G ∈ C
n×m. Then:

(a) G ∈ {A(1,3)} if and only if A∗AG = A∗.
(b) G ∈ {A(1,4)} if and only if GAA∗ = A∗.
Lemma 1.4. [13] Let P, Q ∈ Cm×m, and suppose P 2 = P and Q2 = Q. Then

r(P − Q ) = r

[
P
Q

]
+ r[P, Q ]− r(P )− r(Q).(1.25)

Lemma 1.5. [1] Let A ∈ Cm×n and B ∈ Cn×p. Then

r(AB − ABB†A†AB ) = r[A∗, B ] + r(AB) − r(A) − r(B).(1.26)

In particular, B†A† ∈ {(AB)(1)} if and only if r[A∗, B ] = r(A) + r(B) − r(AB).
Lemma 1.6. [8] Let A ∈ C

m×n, Bi ∈ C
m×ki and Ci ∈ C

li×n be given, i = 1, 2,
and let Xi ∈ Cki×li be variable matrices, i = 1, 2. Then

min
X1, X2

r(A − B1X1C1 − B2X2C2 ) = r


 A

C1

C2


+ r[A, B1, B2 ] + max{s1, s2},(1.27)

where

s1 = r

[
A B1

C2 0

]
− r

[
A B1 B2

C2 0 0

]
− r


 A B1

C1 0
C2 0


,

s2 = r

[
A B2

C1 0

]
− r

[
A B1 B2

C1 0 0

]
− r


 A B2

C1 0
C2 0


.
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Lemma 1.7. [7] Let A ∈ Cm×n, B ∈ Cm×k and C ∈ Cl×n. Then the product
B†AC† can be written as

B†AC† = −[ 0, B∗ ]
[

B∗AC∗ B∗BB∗

C∗CC∗ 0

]†[ 0
C∗

]
def= −PJ†Q,(1.28)

where the block matrices P, J and Q satisfy

r(J) = r(B) + r(C), R(Q) ⊆ R(J) and R(P ∗) ⊆ R(J∗).(1.29)

The following simple results are widely used in the context to simplify various
operations on ranks and ranges of matrices:

R(A) = R(AA∗) = R(AA†), R(A∗) = R(A∗A) = R(A†A),(1.30)

R(ABB†) = R(ABB∗) = R(AB), R(AC†C) = R(AC∗C) = R(AC∗),(1.31)

r(ABB†) = r(ABB∗) = r(AB), r(AC†C) = r(AC∗C) = r(AC∗),(1.32)

R(A) ⊆ R(B)⇔ r[A, B ] = r(B)⇔ BB†A = A,(1.33)

R(A) ⊆ R(B) and r(A) = r(B)⇒ R(A) = R(B),(1.34)

R(A) ⊆ R(B)⇒ R(PA) ⊆ R(PB),(1.35)

R(A1) = R(A2) and R(B1) = R(B2)⇒ r[A1, B1 ] = r[A2, B2 ].(1.36)

2. The reverse-order law (ABC)(1) = (BC)(1)B(AB)(1) . In this section, we
investigate the reverse-order law in (1.5).

Theorem 2.1. Let A ∈ Cm×n, B ∈ Cn×p, C ∈ Cp×q, and let M = ABC. Then:
(a) For any (AB)(1), there exists a (BC)(1) so that (BC)(1)B(AB)(1) ∈ {M (1)}.
(b) For any (BC)(1), there exists a (AB)(1) so that (BC)(1)B(AB)(1) ∈ {M (1)}.
(c) The set inclusion {(BC)(1)B(AB)(1)} ⊆ {M (1)} holds if and only if M = 0

or r(M) = r(AB) + r(BC) − r(B).
Proof. It can be seen from the definition of {1}-inverse that a matrix X is a

{1}-inverse of A if and only if r(A − AXA ) = 0. Also recall that elementary matrix
operations do not change the rank of the matrix. Applying (1.17) to the differenceM−
M(BC)(1)B(AB)(1)M and then simplifying by elementary block matrix operations,
we obtain

min
(AB)(1)

r[M − M(BC)(1)B(AB)(1)M ]

= r(AB) − r[AB, M ]− r

[
AB

M(BC)(1)B

]
+ r

[
AB M

M(BC)(1)B M

]

= r(AB) − r[AB, 0 ]− r

[
AB

M(BC)(1)B

]
+ r

[
AB 0

M(BC)(1)B 0

]
= 0.
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This rank formula implies that for any (BC)(1), there exists a (AB)(1) such that
M(BC)(1)B(AB)(1)M = M , so that the result in (b) is true. Similarly, we can show
that

min
(BC)(1)

r[M − M(BC)(1)B(AB)(1)M ] = 0

holds for any (AB)(1), so that (a) follows.
Also from the definition of {1}-inverse, the set inclusion {(BC)(1)B(AB)(1)} ⊆

{M (1)} holds if and only if
max

(AB)(1), (BC)(1)
r[M − M(BC)(1)B(AB)(1)M ] = 0.

Applying (1.18) to the difference M − M(BC)(1)B(AB)(1)M and simplifying by ele-
mentary block matrix operations, we obtain

max
(AB)(1)

r[M − M(BC)(1)B(AB)(1)M ](2.1)

= min
{

r(M), r

[
AB M

M(BC)(1)B M

]
− r(AB)

}

= min
{

r(M), r

[
AB

M(BC)(1)B

]
− r(AB)

}
.

Further, applying (1.18) to the column block matrix in (2.1) and simplifying by ele-
mentary block matrix operations and r(M) ≤ r(BC) give

max
(BC)(1)

r

[
AB

M(BC)(1)B

]
(2.2)

= max
(BC)(1)

r

([
AB
0

]
−

[
0

−M

]
(BC)(1)B

)

= min


r

[
AB 0
0 −M

]
, r


 AB
0
B


, r


 BC B

0 AB
−M 0


 − r(BC)




= min{ r(AB) + r(M), r(B), r(B) + r(M) − r(BC) }
= min{ r(AB) + r(M), r(B) + r(M)− r(BC) }.

Combining (2.1) and (2.2) yields

max
(AB)(1), (BC)(1)

r[M − M(BC)(1)B(AB)(1)M ](2.3)

= min
{

r(M), max
(BC)(1)

r

[
AB

M(BC)(1)B

]
− r(AB)

}
= min { r(M), r(M)− r(AB) − r(BC) + r(B) } .

Let the right-hand side of (2.3) be zero. Then we obtain the result in (c).
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3. Relationships between (BC)†B(AB)† and {i, . . . , j}-inverses of ABC.
In this section, we investigate the three reverse-order laws in (1.7) and (1.8).

Theorem 3.1. Let A ∈ Cm×n, B ∈ Cn×p, C ∈ Cp×q, and let M = ABC. Then
the following statements are equivalent:

(a) (BC)†B(AB)† is a {1}-inverse of M.

(b) r

([
(BC)∗

A

]
B[ (AB)∗, C ]

)
= r(AB) + r(BC) − r(M).

Proof. Applying (1.28) and (1.29) to the product (BC)†B(AB)† yields

(BC)†B(AB)† = −[ 0, (BC)∗ ]
[
(BC)∗B(AB)∗ (BC)∗BC(BC)∗

(AB)∗AB(AB)∗ 0

]†[ 0
(AB)∗

]
def=−PJ†Q,

with r(J) = r(AB) + r(BC), R(Q) ⊆ R(J) and R(P ∗) ⊆ R(J∗). In this case,
applying (1.16) to M − M(BC)†B(AB)†M = M + MPJ†QM and simplifying by
elementary block matrix operations yield

r[M − M(BC)†B(AB)†M ](3.1)
= r(M +MPJ†QM )

= r

[
J QM

MP −M

]
− r(J)

= r

[
J +QMP 0

0 −M

]
− r(J)

= r(J +QMP ) + r(M)− r(AB) − r(BC)

= r

[
(BC)∗B(AB)∗ (BC)∗(BC)(BC)∗

(AB)∗(AB)(AB)∗ (AB)∗M(BC)∗

]
+ r(M)− r(AB) − r(BC)

= r

[
(BC)∗B(AB)∗ (BC)∗(BC)
(AB)(AB)∗ M

]
+ r(M)− r(AB) − r(BC) (by (1.32))

= r

([
(BC)∗

A

]
B[ (AB)∗, C ]

)
+ r(M)− r(AB) − r(BC).

Let the right-hand side of (3.1) be zero. Then we obtain the equivalence of (a) and
(b).

Theorem 3.2. Let A ∈ Cm×n, B ∈ Cn×p, C ∈ Cp×q, and let M = ABC. Then
the following statements are equivalent:

(a) (BC)†B(AB)† is a {1, 3}-inverse of M.

(b) r

([
(BC)∗

M∗A

]
B[ (AB)∗, C ]

)
= r(BC).

Proof. From Lemma 1.3(a), (BC)†B(AB)† is a {1, 3}-inverse of M if and only if
M∗M(BC)†B(AB)† = M∗. Also note that

[M∗ − M∗M(BC)†B(AB)† ](AB)(AB)∗ = M∗(AB)(AB)∗ − M∗M(BC)†B(AB)∗,
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and

[M∗(AB)(AB)∗ − M∗M(BC)†B(AB)∗ ][(AB)∗]†(AB)† = M∗ − M∗M(BC)†B(AB)†.

Hence we find by (1.24) that

r[M∗ − M∗M(BC)†B(AB)† ] = r[M∗(AB)(AB)∗ − M∗M(BC)†B(AB)∗ ](3.2)

= r

[
(BC)∗BC (BC)∗B(AB)∗

M∗M M∗(AB)(AB)∗

]
− r(BC)

= r

[
(BC)∗B(AB)∗ (BC)∗BC
M∗(AB)(AB)∗ M∗M

]
− r(BC)

= r

([
(BC)∗

M∗A

]
B[ (AB)∗, C ]

)
− r(BC).

Let the right-hand side of (3.2) be zero. Then we obtain the equivalence of (a) and
(b).

By a similar approach, we can also show that

r[M∗ − (BC)†B(AB)†MM∗ ] = r

([
A

(BC)∗

]
B[ (AB)∗, CM∗ ]

)
− r(AB).(3.3)

Also note from Lemma 1.3(b) that (BC)†B(AB)† is a {1, 4}-inverse of M if and only
if (BC)†B(AB)†MM∗ = M∗. Let the right-hand side of (3.3) be zero, we obtain the
following result.

Theorem 3.3. Let A ∈ Cm×n, B ∈ Cn×p, C ∈ Cp×q, and let M = ABC. Then
the following statements are equivalent:

(a) (BC)†B(AB)† is a {1, 4}-inverse of M.

(b) r

([
A

(BC)∗

]
B[ (AB)∗, CM∗ ]

)
= r(AB).

The rank formula associated with the reverse-order law (ABC)† = (BC)†B(AB)†

is

r[ (ABC)† − (BC)†B(AB)† ] = r

([
(BC)∗

(ABC)∗A

]
B[ (AB)∗, C(ABC)∗ ]

)
− r(ABC),

see Tian [6, 7]. Hence,

(ABC)† = (BC)†B(AB)† ⇔ r

([
(BC)∗

(ABC)∗A

]
B[ (AB)∗, C(ABC)∗ ]

)
= r(ABC).(3.4)

4. Relationships between (BC)(1,i)B(AB)(1,i) for i = 3, 4 and {i, . . . , j}-
inverses of ABC. In this section, we investigate the reverse-order laws in (1.6) and
(1.9).

Theorem 4.1. Let A ∈ Cm×n, B ∈ Cn×p, C ∈ Cp×q, and let M = ABC. Then:
(a) There exist (AB)(1,3) and (BC)(1,3) such that (BC)(1,3)B(AB)(1,3) is a {1, 3}-

inverse of M if and only if

r[ (AB)∗M, B∗BC ] = r[ (AB)∗, B∗BC ] + r(M)− r(AB).
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(b) The set inclusion {(BC)(1,3)B(AB)(1,3)} ⊆ {M (1,3)} holds if and only if
R[ (AB)∗M ] ⊆ R(B∗BC).

Proof. From Lemma 1.3(a), (BC)(1,3)B(AB)(1,3) is a {1, 3}-inverse of M if and
only if M∗M(BC)(1,3)B(AB)(1,3) = M∗. Also note BC(BC)(1,3) = BC(BC)†. Ap-
plying (1.19) to M∗ − M∗M(BC)(1,3)B(AB)(1,3) gives

min
(AB)(1,3),(BC)(1,3)

r[M∗ − M∗M(BC)(1,3)B(AB)(1,3) ](4.1)

= min
(AB)(1,3)

r[M∗ − M∗M(BC)†B(AB)(1,3) ]

= r

[
(AB)∗AB (AB)∗

M∗M(BC)†B M∗

]
− r

[
AB

M∗M(BC)†B

]
.

Simplifying the two block matrices by elementary block matrix operations, we obtain

r

[
(AB)∗AB (AB)∗

M∗M(BC)†B M∗

]
(4.2)

= r

[
0 (AB)∗

M∗M(BC)†B − M∗AB 0

]
= r[M∗M(BC)†B − M∗AB ] + r(AB)

= r

[
(BC)∗BC (BC)∗B

M∗M M∗AB

]
− r(BC) + r(AB) (by (1.24))

= r

[
0 (BC)∗B
0 M∗AB

]
− r(BC) + r(AB)

= r[ (AB)∗M, B∗BC ]− r(BC) + r(AB),

and

r

[
AB

M∗M(BC)†B

]
= r

[
M(BC)†B

AB

]
(4.3)

= r

([
0

AB

]
−

[−A
0

]
(BC)(BC)†B

)

= r


 (BC)∗BC (BC)∗B

−ABC 0
0 AB


 − r(BC) (by (1.24))

= r


 0 (BC)∗B

ABC 0
0 AB


 − r(BC)

= r[ (AB)∗, B∗BC ] + r(M)− r(BC).

Substituting (4.2) and (4.3) into (4.1) yields

min
(AB)(1,3),(BC)(1,3)

r[M∗ − M∗M(BC)(1,3)B(AB)(1,3) ](4.4)

= r[ (AB)∗M, B∗BC ]− r[ (AB)∗, B∗BC ]− r(M) + r(AB).
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The result in (a) is a direct consequence of (4.4).
Also from (1.20),

max
(AB)(1,3),(BC)(1,3)

r[M∗ − M∗M(BC)(1,3)B(AB)(1,3) ](4.5)

= max
(AB)(1,3)

r[M∗ − M∗M(BC)†B(AB)(1,3) ]

= min
{

r

[
(AB)∗AB (AB)∗

M∗M(BC)†B M∗

]
− r(AB), n

}
= min{ r[ (AB)∗M, B∗BC ]− r(BC), n } (by (4.2))
= r[ (AB)∗M, B∗BC ]− r(BC)
= r[ (AB)∗M, B∗BC ]− r(B∗BC) (by (1.32)).

Let the right-hand side of (4.5) be zero, we see that {(BC)(1,3)B(AB)(1,3)} ⊆ {M (1,3)}
holds if and only if r[ (AB)∗M, B∗BC ] = r(B∗BC), which is also equivalent to
R[ (AB)∗M ] ⊆ R(B∗BC) by (1.33), as required for (b).

Theorem 4.2. Let A ∈ Cm×n, B ∈ Cn×p, C ∈ Cp×q, and let M = ABC. Then:
(a) There exist (AB)(1,4) and (BC)(1,4) such that (BC)(1,4)B(AB)(1,4) is a {1, 4}-

inverse of M if and only if r

[
M(BC)∗

ABB∗

]
= r

[
(BC)∗

ABB∗

]
+ r(M) − r(BC).

(b) The set inclusion {(BC)(1,4)B(AB)(1,4)} ⊆ {M (1,4)} holds if and only if
R(BCM∗ ) ⊆ R(BB∗A∗).

Proof. It is easy to show by (1.21) and (1.22) that

min
(AB)(1,4), (BC)(1,4)

r[M∗ − (BC)(1,4)B(AB)(1,4)MM∗ ] = r

[
M(BC)∗

ABB∗

]
− r

[
(BC)∗

ABB∗

]
−r(M) + r(BC),

max
(AB)(1,4), (BC)(1,4)

r[M∗ − (BC)(1,4)B(AB)(1,4)MM∗ ]= r

[
M(BC)∗

ABB∗

]
− r(AB).

The details are omitted. Let the right-hand sides of these two rank equalities be zero,
we obtain the results in (a) and (b).

Theorem 4.3. Let A ∈ C
m×n, B ∈ C

n×p, C ∈ C
p×q, and let M = ABC. Then:

(a) There always exist (AB)(1,3) and (BC)(1,3) such that (BC)(1,3)B(AB)(1,3) is
a {1}-inverse of M.

(b) There always exist (AB)(1,4) and (BC)(1,4) such that (BC)(1,4)B(AB)(1,4) is
a {1}-inverse of M.

(c) The set inclusion {(BC)(1,3)B(AB)(1,3)} ⊆ {M (1)} holds if and only if

r

[
AB

(BC)∗B

]
= r(AB) + (BC) − r(M).

(d) The set inclusion {(BC)(1,4)B(AB)(1,4)} ⊆ {M (1)} holds if and only if

r[B(AB)∗, BC ] = r(AB) + (BC)− r(M).
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Proof. From the definition of {1}-inverse, (BC)(1,3)B(AB)(1,3) is a {1}-inverse of
M if and only if M(BC)(1,3)B(AB)(1,3)M = M . Applying (1.19) and BC(BC)(1,3) =
BC(BC)† to M −M(BC)(1,3)B(AB)(1,3)M and simplifying by elementary block ma-
trix operations, we have

min
(AB)(1,3),(BC)(1,3)

r[M − M(BC)(1,3)B(AB)(1,3)M ](4.6)

= min
(AB)(1,3)

r[M − M(BC)†B(AB)(1,3)M ]

= r

[
(AB)∗AB (AB)∗M
M(BC)†B M

]
+ r

[
M
M

]
− r


 AB 0

0 M
M(BC)†B M




= r

[
(AB)∗AB (AB)∗M
M(BC)†B M

]
− r

[
AB

M(BC)†B

]

= r

[
(AB)∗AB 0
M(BC)†B 0

]
− r

[
AB

M(BC)†B

]
= 0 (by (1.32)).

Result (a) follows from (4.6). Also by (1.20), BC(BC)(1,3) = BC(BC)† and elemen-
tary block matrix operations,

max
(AB)(1,3),(BC)(1,3)

r[M − M(BC)(1,3)B(AB)(1,3)M ](4.7)

= max
(AB)(1,3)

r[M − M(BC)†B(AB)(1,3)M ]

= min
{

r

[
(AB)∗AB (AB)∗M
M(BC)†B M

]
− r(A), r

[
M
M

]}

= min
{

r

[
AB

M(BC)†B

]
− r(AB), r(M)

}

= r

[
AB

(BC)∗B

]
+ r(M)− r(AB) − r(BC) (by (4.3)).

Result (c) follows from (4.7). Similarly, we can show that

min
(AB)(1,4),(BC)(1,4)

r[M − M(BC)(1,4)B(AB)(1,4)M ] = 0,(4.8)

max
(AB)(1,4), (BC)(1,4)

r[M − M(BC)(1,4)B(AB)(1,4)M ] = r

[
ABB∗

(BC)∗

]
+ r(M)(4.9)

− r(AB) − r(BC).

Results (b) and (d) are direct consequences of (4.8) and (4.9).
Rewriting ABC as ABC = (ABB†)(BC) and applying (1.26) to it, we obtain

r[ABC − ABC(BC)†(ABB†)†ABC ](4.10)
= r[ (ABB†)∗, BC ] + r(ABC) − r(ABB†)− r(BC)
= r[BB†A∗, BC ] + r(ABC) − r(AB) − r(BC)
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= r[B∗A∗, B∗BC ] + r(ABC) − r(AB) − r(BC) (by (1.32))

= r

[
AB

(BC)∗B

]
+ r(ABC) − r(AB) − r(BC).

Similarly, we have

r[ABC − ABC(B†BC)†(AB)†ABC ](4.11)
= r[B(AB)∗, BC ] + r(ABC) − r(AB) − r(BC).

Comparing (4.10) and (4.11) with Theorem 4.3(c) and (d), we obtain the following
two equivalences

{(BC)(1,3)B(AB)(1,3)} ⊆ {(ABC)(1)} ⇔ (BC)†(ABB†)† ∈ {(ABC)(1)},
{(BC)(1,4)B(AB)(1,4)} ⊆ {(ABC)(1)} ⇔ (B†BC)†(AB)† ∈ {(ABC)(1)}.

5. The reverse-order laws (ABC)† = (BC)†B(AB)(1,3) and (ABC)† =
(BC)(1,4)B(AB)†. In this section, we investigate the two reverse-order laws in (1.10)
and (1.11).

Theorem 5.1. Let A ∈ Cm×n, B ∈ Cn×p, C ∈ Cp×q, and let M = ABC. Then:
(a) There exists a (AB)(1,3) such that M † = (BC)†B(AB)(1,3) if and only if

r

[
M∗AB
(BC)∗B

]
= r

[
AB

(BC)∗B

]
+ r(M)− r(AB).

(b) There exists a (BC)(1,4) such that M † = (BC)(1,4)B(AB)† if and only if

r[BCM∗, B(AB)∗ ] = r[BC, B(AB)∗ ] + r(M) − r(BC).

Proof. Applying (1.19) to M † − (BC)†B(AB)(1,3) and simplifying by elementary
block matrix operations, we obtain

min
(AB)(1,3)

r[M † − (BC)†B(AB)(1,3) ](5.1)

= r

[
(AB)∗AB (AB)∗

(BC)†B M †

]
− r

[
AB

(BC)†B

]

= r

[
0 (AB)∗

(BC)†B − M †AB 0

]
− r

[
AB

(BC)∗B

]
= r[ (BC)†B − M †AB ] + r(AB) − r[ (AB)∗, B∗BC ].

Note that (BC)†BC[ (BC)†B − M †AB ] = (BC)†B − M †AB. Hence

r[ (BC)†B − M †AB ] = r[C(BC)†B − CM †AB ].(5.2)

It is easy to verify that [C(BC)†B]2 = C(BC)†B and (CM †AB)2 = CM †AB, and
from (1.31) that

R[C(BC)†B] = R[C(BC)∗], R(CM †AB) = R(CM∗),(5.3)
R{[C(BC)†B]∗} = R(B∗BC), R[(CM †AB)∗] = R[(AB)∗M ].(5.4)
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In this case, applying (1.25) to the right-hand side of (5.2) and simplifying by (5.3),
(5.4) and (1.36) yields

r[C(BC)†B − CM †AB ](5.5)

= r

[
C(BC)†B
CM †AB

]
+ r[C(BC)†B, CM †AB ]− r[C(BC)†B ]− r(CM †AB)

= r

[
(BC)∗B
M∗AB

]
+ r[C(BC)∗, CM∗ ]− r(BC) − r(M)

= r

[
M∗AB
(BC)∗B

]
− r(M).

Substituting (5.5) into (5.2), and then (5.2) into (5.1) gives

min
(AB)(1,3)

r[M † − (BC)†B(AB)(1,3) ] = r

[
M∗AB
(BC)∗B

]
− r

[
AB

(BC)∗B

]
(5.6)

− r(M) + r(AB).

Let the right-hand side of (5.6) be zero, we obtain the result in (a). Similarly, we can
show by (1.21) that

min
(BC)(1,4)

r[M † − (BC)(1,4)B(AB)† ] = r[BCM∗, B(AB)∗ ]− r[BC, B(AB)∗ ](5.7)

− r(M) + r(BC).

Result (b) is a direct consequence of (5.7).

6. The reverse-order law (ABC)† = (BC)(1,2,4)B(AB)(1,2,3). For the product
AB, Wibker, Howe and Gilbert [14] showed that there exist A(1,2,3) and B(1,2,4) such
that the Moore-Penrose inverse of AB can be expressed as (AB)† = B(1,2,4)A(1,2,3).
In this section, we extend this result to the Moore-Penrose inverse of ABC.

Theorem 6.1. Let A ∈ Cm×n, B ∈ Cn×p and C ∈ Cp×q. Then there exist
(AB)(1,2,3) and (BC)(1,2,4) such that (ABC)† = (BC)(1,2,4)B(AB)(1,2,3) holds.

Proof. It is well known that the general expressions of A(1,2,3) and A(1,2,4) can be
written as A(1,2,3) = A† + FAV AA† and A(1,2,4) = A† + A†AWEA, where V and W
are two arbitrary matrices; see, e.g., [2]. Hence, the general expressions of (AB)(1,2,3)

and (BC)(1,2,4) can be written as

(AB)(1,2,3) = (AB)† + FABV AB(AB)†, (BC)(1,2,4) = (BC)† + (BC)†BCWEBC ,

where V and W are two arbitrary matrices. By elementary block matrix operations,
we first obtain

(6.1)
r[M † − (BC)(1,2,4)B(AB)(1,2,3) ]
= r{M † − [ (BC)† + (BC)†BCWEBC ]B[ (AB)† + FABV AB(AB)† ] }
= r

[
M † [ (BC)† + (BC)†BCWEBC ]B

B[ (AB)† + FABV AB(AB)† ] B

]
− r(B)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 16, pp. 73-89, March 2007

http://math.technion.ac.il/iic/ela



ELA

86 Y. Tian and Y. Liu

= r

([
M † (BC)†B

B(AB)† B

]
+

[
0

BFAB

]
V [AB(AB)†, 0 ] +

[
(BC)†BC

0

]
W [ 0, EBCB ]

)
− r(B).

Further by (1.27),

(6.2)

min
V, W

r

([
M † (BC)†B

B(AB)† B

]
+

[
0

BFAB

]
V [AB(AB)†, 0 ]+

[
(BC)†BC

0

]
W [ 0, EBCB ]

)

= r




M † (BC)†B
B(AB)† B

AB(AB)† 0
0 EBCB


+ r

[
M † (BC)†B 0 (BC)†BC

B(AB)† B BFAB 0

]

+max{ s1, s2 },
where

s1 = r


 M † (BC)†B 0

B(AB)† B BFAB

0 EBCB 0


 − r


 M † (BC)†B 0 (BC)†BC

B(AB)† B BFAB 0
0 EBCB 0 0




− r




M † (BC)†B 0
B(AB)† B BFAB

0 EBCB 0
AB(AB)† 0 0


,

s2 = r


 M † (BC)†B (BC)†BC

B(AB)† B 0
AB(AB)† 0 0




− r


 M † (BC)†B (BC)†BC 0

B(AB)† B 0 BFAB

AB(AB)† 0 0 0




− r




M † (BC)†B (BC)†BC
B(AB)† B 0

AB(AB)† 0 0
0 EBCB 0


.

Simplifying the block matrices in (6.2) by (1.13), (1.14), (1.15) and elementary block
matrix operations, and substituting (6.2) into (6.1) yield

min
V, W

r{M † − [ (BC)† + (BC)†BCWEBC ]B[ (AB)† + FABV AB(AB)† ]}(6.3)

= max{ 0, r(AB) + r(BC) − r(B) − r(ABC) }.
The manipulations are omitted. Also by the Frobenius rank inequality r(ABC) ≥
r(AB) + r(BC) − r(B), the right-hand side of (6.3) becomes zero. Hence the result
of the theorem is true.
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7. {i, . . . , j}-inverses of sums of matrices. Applying the results in the previ-
ous sections to (1.3) and (1.4) may produce a variety of results on {i, . . . , j}-inverses
of A+B, some of which are given in the following three theorems.

Theorem 7.1. Let A, B ∈ Cm×n. Then:
(a) The following statements are equivalent:

(i)
[

A
B

]†[
A 0
0 B

]
[A, B ]† is a {1}-inverse of A+B.

(ii) r

[
A+B AA∗ +BB∗

A∗A+B∗B A∗AA∗ +B∗BB∗

]
= r

[
A
B

]
+ r[A, B ]− r(A +B ).

(b) The following statements are equivalent:

(i)
[

A
B

]†[
A 0
0 B

]
[A, B ]† is a {1, 3}-inverse of A+B.

(ii) r

([
A B
In In

][
A∗ 0
0 B∗

][
A B
B A

])
= r

[
A
B

]
.

(c) The following statements are equivalent:

(i)
[

A
B

]†[
A 0
0 B

]
[A, B ]† is a {1, 4}-inverse of A+B.

(ii) r

([
A B
B A

][
A∗ 0
0 B∗

][
A Im

B Im

])
= r[A, B ].

(d) The following statements are equivalent:

(i) (A+B )† =
[

A
B

]†[
A 0
0 B

]
[A, B ]†.

(ii) r

([
A B
B A

][
A∗ 0
0 B∗

][
A B
B A

])
= r(A+B ).

Proof. It follows from Theorems 3.1, 3.2 and 3.3, and (3.4).
Theorem 7.2. Let A, B ∈ Cm×n. Then:

(a) There exist [A, B ](1,3) and
[

A
B

](1,3)

such that

[
A
B

](1,3)[
A 0
0 B

]
[A, B ](1,3) ∈ {(A+B )(1,3)}

if and only if r

[
B∗A A∗B
A∗A B∗B

]
= r

[
A B

A∗A B∗B

]
+ r(A +B )− r[A, B ].

(b) The set inclusion

{[
A
B

](1,3)[
A 0
0 B

]
[A, B ](1,3)

}
⊆ {(A+B )(1,3)} holds if

and only if R

[
A∗B
B∗A

]
⊆ R

[
A∗A
B∗B

]
.

(c) There exist [A, B ](1,4) and
[

A
B

](1,4)

such that

[
A
B

](1,4)[
A 0
0 B

]
[A, B ](1,4) ∈ {(A+B )(1,4)}
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if and only if r

[
AB∗ AA∗

BA∗ BB∗

]
= r

[
A AA∗

B BB∗

]
+ r(A+B )− r

[
A
B

]
.

(d) The set inclusion

{[
A
B

](1,4)[
A 0
0 B

]
[A, B ](1,4)

}
⊆ {(A+B )(1,4)} holds if

and only if R

[
AB∗

BA∗

]
⊆ R

[
AA∗

BB∗

]
.

Proof. It follows from Theorems 4.1 and 4.2.

Theorem 7.3. Let A, B ∈ Cm×n. Then there exist [A, B ](1,2,3) and
[

A
B

](1,2,4)

such that

(A+B )† =
[

A
B

](1,2,4)[
A 0
0 B

]
[A, B ](1,2,3).

Proof. It follows from Theorem 6.1.
The results in Theorems 7.1, 7.2 and 7.3 can be extended to the sum of k matrices.

In fact, the sum A1 + · · · + Ak of matrices A1, . . . , Ak ∈ Cm×n can be rewritten as
the product

A1 + · · ·+Ak = [ I, . . . , I ]




A1 . . . 0
...

. . .
...

0 . . . Ak






I
...
I


 def= PNQ.

Hence, a group of results on {i, . . . , j}-inverses of PNQ = A1 + · · ·+Ak can trivially
be derived from the theorems in the previous sections.
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