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INTERLACING FOR WEIGHTED GRAPHS USING THE
NORMALIZED LAPLACIAN∗
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Abstract. The problem of relating the eigenvalues of the normalized Laplacian for a weighted
graph G and G − H, for H a subgraph of G is considered. It is shown that these eigenvalues
interlace and that the tightness of the interlacing is dependent on the number of nonisolated vertices
of H. Weak coverings of a weighted graph are also defined and interlacing results for the normalized
Laplacian for such a covering are given. In addition there is a discussion about interlacing for the
Laplacian of directed graphs.
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1. Introduction. Given a graph G there are several matrices associated with
it. The most commonly studied is the 0-1 adjacency matrix A where Au,v = 1 if and
only if vertex u is adjacent to vertex v. Another commonly studied matrix is the
combinatorial Laplacian L = D −A where D is the diagonal degree matrix and A is
the adjacency matrix. Chung [2] popularized the notion of a normalized Laplacian,
defined by, L = D−1/2LD−1/2 (with the convention that when the degree of v is 0
that

(
d(v)

)−1/2 = 0).
The normalized Laplacian has gotten increased attention in the last decade due

(among other things) to its connections with random walks. Chen et al. [1] (and
more recently Li [8]) established the following interlacing results for the normalized
Laplacian.

Theorem 1.1. Let G be a simple graph without loops or parallel edges, let H = e
be an edge of G, and G−H the graph G with edge e removed. If λ0 ≤ λ1 ≤ · · · ≤ λn−1

and θ0 ≤ θ1 ≤ · · · ≤ θn−1 are the eigenvalues of L(G) and L(G − H) respectively,
then

λk−1 ≤ θk ≤ λk+1 for each k = 0, 1, . . . , n− 1,

where λ−1 = 0 and λn = 2. More generally if H is a subgraph of G with |E(H)| = t
then

λk−t ≤ θk ≤ λk+t for each k = 0, 1, . . . , n− 1,

where λ−t = · · · = λ−1 = 0 and λn = · · · = λn+t−1 = 2.
We will establish an improved version of Theorem 1.1. Our first improvement

will be to allow a broader range of graphs which include graphs with loops and
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multiple edges, more generally any weighted graph. Our second improvement will be
to show that when removing a graph from G we can use the number of vertices of the
graph being removed rather than the number of edges to control the spread of the
eigenvalues. So for instance when we are removing edges from a dense graph such as
K10 we will show that the eigenvalues spread by at most 10 (the number of vertices),
while the above result states that the eigenvalues spread by at most 45 (the number
of edges). Before we state the main result we need to introduce terminology needed
for weighted graphs.

A weighted graph is a graph (possibly with loops) with a nonnegative weight
function w : V ×V → [0,∞) with w(u, v) = w(v, u) (i.e., undirected) and w(u, v) > 0
if and only if there is an edge joining u and v. Using the weight function we define
the adjacency matrix by Au,v = w(u, v) and the diagonal degree matrix uses degrees
defined by d(u) =

∑
v w(u, v). With the adjacency matrix and the diagonal degree

matrix we can then define the normalized Laplacian of such a graph as before, i.e.,
L = D−1/2(D −A)D−1/2.

A simple graph is the special case when all weights are either 0 or 1 and w(v, v) = 0
for all v. However, by allowing the weights to vary we can model more graphs. For
instance, multigraphs can be modeled by letting w(u, v) be the number of edges
connecting u to v.

Given a weighted graphG we say thatH is a subgraph ofG if wH(u, v) ≤ wG(u, v)
for all u, v. When H is a subgraph of G we let G−H be the graph which has weight
function wG−H(u, v) = wG(u, v)−wH(u, v) for all u, v. From this definition it follows
that dG−H(u) = dG(u)− dH(u). The graph G+H , where the two graphs are on the
same set of vertices, is defined analogously. Our main result is as follows.

Theorem 1.2. Let G be a weighted graph and H a subgraph of G with t noniso-
lated vertices. If λ0 ≤ λ1 ≤ · · · ≤ λn−1 and θ0 ≤ θ1 ≤ · · · ≤ θn−1 are the eigenvalues
of L(G) and L(G−H) respectively, then for k = 0, 1, . . . , n− 1 we have

λk−t+1 ≤ θk ≤
{

λk+t−1 H is bipartite,
λk+t otherwise,

where λ−t+1 = · · · = λ−1 = 0 and λn = · · · = λn+t−1 = 2.
In the proof for Theorem 1.2 we will see that when H is bipartite that we are

(essentially) allowed one more degree of freedom than when H is not bipartite. This
accounts for the difference in the bounds given by the theorem. The statement of the
theorem is the best possible; to see this consider the two graphs shown in Figure 1.1.
The graph G has three loops of weight 1 on the three top vertices, three edges of
weight 2 (as marked) and the remaining edges of weight 1. The graph H consists of a
triangle of the three top vertices with edge weight 1 along with the loops (so t = 3).
Calculating the eigenvalues we have that θ1(G − H) = 5/4 > 8/7 = λ3(G), showing
that the bound for non-bipartite graphs cannot be improved in general.

As an example of an application of Theorem 1.2 we have the following.
Proposition 1.3. If G is a simple graph and more than n/2 of the vertices are

connected to every other vertex then n/(n− 1) is an eigenvalue of G.
This follows from the above theorem since G = Kn −H where H has fewer than

n/2 nonisolated vertices while n/(n−1) is an eigenvalue of Kn with multiplicity n−1.
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G = G−H =

Fig. 1.1. An example showing the result of Theorem 1.2 is tight.

One interesting thing to note is that the result of the theorem is independent
of the amount of weight removed. This is because the proof relies on orthogonality
conditions which are unaffected by changes in the weights. Instead of subtracting out
a graph we could also add a graph. The following result immediately follows from
Theorem 1.2 working with the graphs G+H and (G+H)−H = G.

Corollary 1.4. Let G be a weighted graph and H a graph on the vertices of G
with t nonisolated vertices. If λ0 ≤ λ1 ≤ · · · ≤ λn−1 and θ0 ≤ θ1 ≤ · · · ≤ θn−1 are the
eigenvalues of L(G) and L(G+H) respectively, then for k = 0, 1, . . . , n− 1 we have

λk+t−1 ≥ θk ≥
{

λk−t+1 H is bipartite,
λk−t otherwise,

where λ−t = · · · = λ−1 = 0 and λn = · · · = λn+t−1 = 2.
In Section 2 we will give a proof of Theorem 1.2. In Section 3 we show how to

adapt the method of proof of Theorem 1.2 to get an interlacing result for weak covers
which we will define. Finally, in Section 4 we examine interlacing for the Laplacian
of directed graphs which provided the original motivation for Theorem 1.2.

2. Proof of main result. The proof of Theorem 1.2 will be adapted from
the proof of Chen et al. [1] which follows by an application of the Courant-Fischer
Theorem (see [7]).

Theorem 2.1 (Courant-Fischer Theorem). Let M be a real symmetric matrix
with eigenvalues λ0 ≤ λ1 ≤ · · · ≤ λn−1. Let X k denote a k dimensional subspace of
Rn and x ⊥ X k signify that x ⊥ y for all y ∈ X k. Then

λi = min
Xn−i−1

(
max

x⊥Xn−i−1,x �=0

xT Mx

xTx

)
= max

X i

(
min

x⊥X i,x �=0

xTMx

xTx

)
.

We will also use the notation x ⊥ Z for a set of vectors Z to indicate that x ⊥ z
for all z ∈ Z. This is equivalent to saying that x ⊥ span(Z) (the span of the vectors
of Z).

In order to be able to use the Courant-Fischer Theorem we first note that

yT (D −A)y =
∑

u

y2
ud(u)− 2

∑
u∼v

yuyvw(u, v) =
∑
u∼v

(yu − yv)2w(u, v).

If we make the substitution x = D1/2y, then we have

(2.1)
xTLx

xT x
=
(D1/2y)TL(D1/2y)
(D1/2y)T (D1/2y)

=
yTLy

yTDy
=

∑
u∼v(yu − yv)2w(u, v)∑

u y2
ud(u)

.
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Remark 2.2. Here we run into a small problem when there are isolated vertices,
in which case there might be no y for which x = D1/2y. We will address this in the
proof of Theorem 1.2 below, but for now will assume there are no isolated vertices in
the graph.

We now have

λi = min
Xn−i−1

(
max

x⊥Xn−i−1,x �=0

xTLx

xT x

)
= min

Xn−i−1

(
max

D1/2y⊥Xn−i−1,D1/2y �=0

yTLy

yTDy

)

= min
Yn−i−1

(
max

y⊥Yn−i−1,y �=0

∑
u∼v(yu − yv)2w(u, v)∑

u y2
ud(u)

)
,(2.2)

and similarly

(2.3) λi = max
Yi

(
min

y⊥Yi,y �=0

∑
u∼v(yu − yv)2w(u, v)∑

u y2
ud(u)

)
.

We are now ready to give the proof for Theorem 1.2.
Proof. Without loss of generality we may assume that the graph G has no isolated

vertices. We first will consider the case when G − H also has no isolated vertices.
Since the eigenvalues of the normalized Laplacian always lie in the interval between
0 and 2 inclusive (see [2]), the lower bound for θk trivially holds for k ≤ t − 1 while
the upper bound trivially holds for k ≥ n− t− 1 (k ≥ n− t if H is bipartite). So for
the lower bound we may assume k > t− 1 while for the upper bound we may assume
k < n − t− 1 (or n − t for H bipartite).

We now show that θk ≥ λk−t+1. Suppose that {u1, u2, . . . , ut} are the nonisolated
vertices of H , and let Z = {eu1 − eu2 , eu1 − eu3 , . . . , eu1 − eut}. Then using (2.2) we
have

θk = min
Yn−k−1

(
max

y⊥Yn−k−1,y �=0

∑
u∼v(yu − yv)2wG−H(u, v)∑

u y2
udG−H(u)

)

= min
Yn−k−1

(
max

y⊥Yn−k−1,y �=0

∑
u∼v(yu − yv)2wG(u, v)−

∑
u∼v(yu − yv)2wH(u, v)∑

u y2
udG(u)−

∑
u y2

udH(u)

)

≥ min
Yn−k−1

(
max

y⊥Yn−k−1,y⊥Z,y �=0

∑
u∼v(yu − yv)2wG(u, v)∑

u y2
udG(u)−

∑
u y2

udH(u)

)

≥ min
Yn−k−1

(
max

y⊥Yn−k−1,y⊥Z,y �=0

∑
u∼v(yu − yv)2wG(u, v)∑

u y2
udG(u)

)

≥ min
Yn−k+t−2

(
max

y⊥Yn−k+t−2,y �=0

∑
u∼v(yu − yv)2wG(u, v)∑

u y2
udG(u)

)
= λk−t+1.

In going from the second to the third line we added the condition that y also be
perpendicular to Z so that we are maximizing over a smaller set. With the condition
that y ⊥ Z then yu = yv for all u, v in H , in particular the second term in the
numerator drops out. While in going from the fourth to the fifth line we consider a
broader optimization that would include the fourth line as a case.
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Next we show that θk ≤ λk+t for general H . Suppose that u1, . . . , ut are the
nonisolated vertices of H , and let Z = {eu1 , eu2 , . . . , eut}. Then using (2.3) we have

θk = max
Yk

(
min

y⊥Yk,y �=0

∑
u∼v(yu − yv)2wG(u, v)−

∑
u∼v(yu − yv)2wH(u, v)∑

u y2
udG(u)−

∑
u y2

udH(u)

)

≤ max
Yk

(
min

y⊥Yk,y⊥Z,y �=0

∑
u∼v(yu − yv)2wG(u, v)∑

u y2
udG(u)

)

≤ max
Yk+t

(
min

y⊥Yk+t,y �=0

∑
u∼v(yu − yv)2wG(u, v)∑

u y2
udG(u)

)
= λk+t.

In going from the first to the second line we added the condition that y also be
perpendicular to Z so that we are minimizing over a smaller set. With the condition
that y ⊥ Z then yu = 0 for all u in H , in particular the second terms in the numerator
and denominator drop out. Finally, we consider a broader optimization that would
include the second line as a case.

For the case when H bipartite let {u1, v1}, {u2, v2}, . . . , {ut−1, vt−1} be edges of
a spanning subgraph of H , and let Z = {eu1 + ev1 , eu2 + ev2 , . . . , eut−1 + evt−1}. Note
that if y ⊥ Z then for some γ, yu = ±γ, and in particular (yu − yv)2 = 4γ2 for all
edges {u, v} in H (here we are using that H is bipartite). So again using (2.3) we
have

θk = max
Yk

(
min

y⊥Yk,y �=0

∑
u∼v(yu − yv)2wG(u, v)−

∑
u∼v(yu − yv)2wH(u, v)∑

u y2
udG(u)−

∑
u y2

udH(u)

)

≤ max
Yk

(
min

y⊥Yk,y⊥Z,y �=0

∑
u∼v(yu − yv)2wG(u, v)− 2γ2

∑
u dH(u)∑

u y2
udG(u)− γ2

∑
u dH(u)

)

≤ max
Yk

(
min

y⊥Yk,y⊥Z,y �=0

∑
u∼v(yu − yv)2wG(u, v)∑

u y2
udG(u)

)

≤ max
Yk+t−1

(
min

y⊥Yk+t−1,y �=0

∑
u∼v(yu − yv)2wG(u, v)∑

u y2
udG(u)

)
= λk+t−1.

We went from the first to the second line as before using the above comments on γ.
In going from the second to the third line we used the following easily proved fact: let
a, b, c be real with 2b ≥ a ≥ 2c ≥ 0 and b > c ≥ 0, then (a − 2c)/(b− c) ≤ a/b. That
the assumptions on a, b, c are satisfied can be easily verified. Finally, we consider a
broader optimization that would include the third line as a case.

We now turn to the case when G − H has isolated vertices u1, u2, . . . , um. We
approach this by considering the graph Gε which has loops of weight ε added to the
vertices u1, u2, . . . , um. A simple calculation shows that L(Gε −H) = L(G−H), and
in particular has the same eigenvalues, but now with the added loops has no isolated
vertices. If we let λε

k denote the kth eigenvalue of L(Gε), then the above derivation
shows that

λε
k−t+1 ≤ θk ≤

{
λε

k+t−1 H is bipartite,
λε

k+t otherwise.

We now let ε → 0, since L(Gε)→ L(G) then λε
k → λk, and the result follows.
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3. Weak coverings and eigenvalues. The technique used to prove Theo-
rem 1.2 can be used to prove other results. In this section we give an interlacing
result for weak coverings. We say that G is a weak cover of H if there is some onto
mapping π : V (G)→V (H) such that for all u, v ∈ V (H),

wH(u, v) =
∑

x∈π−1(u)
y∈π−1(v)

wG(x, y).

From this definition it follows that dH(v) =
∑

x∈π−1(v) dG(x). Alternatively, for a
weak covering we group the vertices of G in some manner then collapse the individual
groups of vertices into single vertices of H . To find the edge weights of H we add the
weights of any resulting parallel edges that are formed.

Remark 3.1. The idea of coverings for weighted graphs was previously consid-
ered by Chung and Yau [5]. In their definition of a cover they required additional
structure which allows eigenvalues from H to be “lifted” up to G. Here we make
fewer assumptions and so might no longer have eigenvalues lifting up (hence we give
the name “weak cover”).

Theorem 3.2. Let G be a weak cover of H with |V (G)| = n and |V (H)| = m,
and further let λ0 ≤ λ1 ≤ · · · ≤ λn−1 and θ0 ≤ θ1 ≤ · · · ≤ θm−1 be the eigenvalues of
L(G) and L(H) respectively. Then for k = 0, 1, . . . ,m− 1 we have the following

λk ≤ θk ≤ λk+(n−m).

Proof. For i = 1, . . . ,m let Vi = π−1(vi), i.e., these are the groupings of the ver-
tices ofG, and let Zi = {ei1−ei2 , ei1−ei3 , . . . , ei1−eij} where Vi = {vi1 , vi2 , . . . , vij} ⊆
V (G). Further we will let Z =

⋃
i Zi. It is easy to check that the dimension of the

span of Z is n−m. Now using (2.3) we have

θk = max
Yk⊆Rm

(
min

y⊥Yk,y �=0

∑
u∼v(yu − yv)2wH(u, v)∑

u y2
udH(u)

)

= max
Yk⊆Rn

(
min

y⊥Yk,y⊥Z,y �=0

∑
u∼v(yu − yv)2wG(u, v)∑

u y2
udG(u)

)
.(3.1)

In the second step we used the defining property of weak covers to lift vectors from H
to G so that we still satisfy the same Rayleigh quotient. Our only condition in lifting
is that yi = yπ(i); in particular if π(vi) = π(vj), then we need yπ(i) = yπ(j). This last
condition is easily achieved by requiring that the lifted vector be perpendicular to Z.

We now bound (3.1) in two ways. First, we can drop the requirement that we
remain perpendicular to Z, thus we are minimizing over a larger set and so we have

θk ≥ max
Yk

(
min

y⊥Yk,y �=0

∑
u∼v(yu − yv)2wG(u, v)∑

u y2
udG(u)

)
= λk.

The second approach is to maximize over some larger set that will also consider the
case given in (3.1), i.e.,

θk ≤ max
Yk+n−m

(
min

y⊥Yk+n−m,y �=0

∑
u∼v(yu − yv)2wG(u, v)∑

u y2
udG(u)

)
= λk+n−m.
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Combining the two inequalities above concludes the proof.
Alternatively it is easy to show that Theorem 3.2 follows from a result of Haemers

[6] on interlacing of eigenvalues of matrices. We have given the proof above to em-
phasize the nature of the approach.

4. Comments on interlacing for directed graphs. Recently Chung [3] de-
fined a Laplacian for aperiodic strongly connected directed graphs and showed con-
nections of its spectrum to mixing rates of random walks and isoperimetric properties,
and in a subsequent paper gave a further connection to the diameter of the graph [4].
A natural question is whether a similar interlacing result to Theorem 1.2 holds for the
Laplacian of a directed graph. In this section we will partially answer this question
in the negative.

Definition for the directed Laplacian. To define the Laplacian for a directed
graph $G we start with P the probability transition matrix with Pu,v the probability
of moving from u to v (for a weighted directed graph Pu,v = w(u, v)/dout(u) where
dout(u) =

∑
t w(u, t) is the out-degree of u). If we let 1 denote the all 1s vector then

P1 = 1. If we assume that the graph is strongly connected and aperiodic it follows
from the Perron-Frobenius Theorem (see [7]) that there is a unique (row) vector φ for
which φP = φ with φ(v) > 0 for all v and

∑
v φ(v) = 1. This vector φ is called the

Perron vector of P .
If Φ is the diagonal matrix with Φ(v, v) = φ(v), then the directed Laplacian is

defined by Chung [3] as

L($G) = I − 1
2
(
Φ1/2PΦ−1/2 +Φ−1/2P ∗Φ1/2

)
,

where P ∗ denotes the transpose of P .
With this definition it is not too difficult to construct counterexamples to the cor-

responding statement of Theorem 1.1 for directed graphs. For example if we consider
the simple directed graphs given in Figure 4.1 we have that λ2($G) = 0.324609 . . . <

0.362281 . . . = λ1($G− $H).

$G = $G− $H =

Fig. 4.1. An example of a directed graph where the eigenvalues do not interlace.

Connecting directed Laplacians with undirected Laplacians. To under-
stand why the corresponding statement of Theorem 1.1 could fail for directed graphs
we connect the Laplacian for a directed graph with the Laplacian for a corresponding
undirected graph.

Lemma 4.1. Let $G be an aperiodic strongly connected weighted directed graph
and let H be a weighted undirected graph on the same vertex set with weights defined
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by

w(u, v) = φ(u)P (u, v) + φ(v)P (v, u).

Then L($G) = L(H).
Proof. We note first that since φ is a right eigenvector of P and

∑
v P (u, v) = 1,

it follows that dH(v) =
∑

v w(v, t) = 2φ(v).
For terms on the diagonal we have

L($G)v,v = 1− P (v, v) = 1− w(v, v)
2φ(v)

= 1− w(v, v)
dH(v)

= L(H)v,v,

while for the off-diagonal terms

L($G)u,v = −1
2

(√
φ(u)
φ(v)

P (u, v) +

√
φ(v)
φ(u)

P (v, u)
)

= −
(
φ(u)P (u, v) + φ(v)P (v, u)

)
√
(2φ(u))(2φ(v))

= − w(u, v)√
dH(u)dH(v)

= L(H)u,v.

Establishing the equality.
Remark 4.2.
• This connection between directed and undirected Laplacians can be used
to establish several results. For instance it can be shown that the Cheeger
inequality established for the directed graph $G in Chung [3] is equivalent to
the already known Cheeger inequality for the undirected graph H defined in
Lemma 4.1.

• The underlying principle of the directed Laplacian is based on circulations,
i.e., a nonnegative function F : V × V → [0,∞) with the property that at
each vertex u ∑

v

F (v, u) =
∑

t

F (u, t).

If we think of the circulation F as a flow then the above equality can be
interpreted as saying that at each vertex the in-flow equals the out-flow.
Chung [3] showed that F (u, v) = φ(u)P (u, v) is a circulation and uses this
to establish the directed Laplacian. It is easy to adapt Lemma 4.1 to give
new definitions for directed Laplacians using different types of circulations,
and then establish some corresponding Cheeger inequalities and other similar
results.

Applying Lemma 4.1 to the graphs in Figure 4.1 we get the weighted undirected
graphs shown in Figure 4.2, where unspecified edges have weight 1. [We have scaled
the weights in Figure 4.2 to more easily compare the two graphs; it is simple to see
by (2.1) that scaling all the weights by some constant factor does not change the
spectrum.]

Now we see that the removal of a single edge in the directed graph in Figure 4.1
had an effect on many edges in the underlying undirected graph in Figure 4.2. So by
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Fig. 4.2. The corresponding undirected graphs for graphs given in Figure 4.1.

Theorem 1.2 the eigenvalues could spread by more than just 1, and in our case could
spread by at most 3.

In general the removal of a single edge in a directed graph can have a tremendous
impact on the underlying undirected graph. Using the results of Theorem 1.2 for the
underlying undirected graph then we cannot in general guarantee a tight spread of the
eigenvalues between the two graphs. Although for some special cases it can be shown
that the removal of a single edge has a small impact on the underlying undirected
graph in which case we can get a similar result.

This does not conclusively say that there is no corresponding statement such as
Theorem 1.1, but only illustrates the difficulty of using the approach given by use
of the Courant-Fischer Theorem. It would be interesting to see if there were some
construction such that for each k there exists an aperiodic strongly connected directed
graph $G such that the removal of a single edge leaves an aperiodic strongly connected
directed graph $G− $H and either λm+k($G) < λm($G− $H) or λm−k($G) > λm($G− $H)
for some m.
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