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POWER-ASSOCIATIVE ALGEBRAS∗

MOSHE GOLDBERG†

Abstract. Let A be a finite-dimensional power-associative algebra over a field F, either R or

C, and let S, a subset of A, be closed under scalar multiplication. A real-valued function f on S is

called a subnorm if f(a) > 0 for all 0 �= a ∈ S, and f(αa) = |α|f(a) for all a ∈ S and α ∈ F. If in

addition, S is closed under raising to powers, then a subnorm f is said to be stable if there exists a

positive constant σ so that

f(ak) ≤ σf(a)k for all a ∈ S and k = 1, 2, 3, . . . .

The purpose of this paper is to provide an updated account of our study of stable subnorms on subsets

of finite-dimensional power-associative algebras over F. Our aim is to review and discuss some of the

results in several previous papers, dealing with both continuous and discontinuous subnorms.
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Stable subnorms, Minimal polynomial, Radius of an element in a finite-dimensional power-associative

algebra.
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1. Examples of subnorms and submoduli. Let A be a finite-dimensional
algebra over a field F. Throughout this paper we shall assume that F is either R

or C. Further, we shall assume that A is power-associative, i.e., that the subalgebra
generated by any one element of A is associative, hence ensuring that powers of each
element in A are unambiguously defined.

Let S, a subset of A, be closed under scalar multiplication (i.e., a ∈ S and α ∈ F

imply αa ∈ S). Following [GL1], we call a real-valued function

f : S → R

a subnorm on S if for all a ∈ S and α ∈ F,

f(a) > 0, a �= 0,
f(αa) = |α|f(a).
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If in addition, S is closed under raising to powers (i.e., a ∈ S implies ak ∈ S, k =
1, 2, 3,. . . ), then a subnorm f on S is called a submodulus if

f(ak) = f(a)k for all a ∈ S and k = 1, 2, 3, . . . .

If S is closed under multiplication as well, we say that a submodulus f on S is a
modulus if f is multiplicative, i.e.,

f(ab) = f(a)f(b) for all a, b ∈ S.

We recall that if S, a subset of A, is closed under scalar multiplication and under
addition, then a real-valued function N is a norm on S if for all a, b ∈ S and α ∈ F,

N(a) > 0, a �= 0,
N(αa) = |α|N(a),
N(a+ b) ≤ N(a) +N(b).

Thus, in our finite-dimensional context, a norm is a subadditive continuous subnorm
on S.1

Examples of subnorms, submoduli and moduli are not hard to come by. For
instance, viewing the complex numbers,

C = {z = α+ iβ : α, β ∈ R},

as a 2-dimensional algebra over the reals, we note that for each fixed p, 0 < p ≤ ∞,

|z|p = (|α|p + |β|p)1/p, z = α+ iβ ∈ C, (1.1)

is a continuous subnorm on C. Evidently, | · |p is a norm if and only if 1 ≤ p ≤ ∞,
and a submodulus—in fact, a modulus—only for p = 2 where we get

|z| ≡ |z|2 =
√
α2 + β2. (1.2)

Similarly, considering the quaternions

H = {q = α+ iβ + jγ + kδ : α, β, γ, δ ∈ R}, i2 = j2 = k2 = ijk = −1,

as a 4-dimensional algebra over R, we observe that

|q|p = (|α|p + |β|p + |γ|p + |δ|p)1/p, q = α+ iβ + jγ + kδ ∈ H, (1.3)

1Of course, a subnorm f on a finite-dimensional algebra A is said to be continuous if it is

continuous with respect to the (unique) finite-dimensional norm-topology on A.
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is a continuous subnorm for 0 < p ≤ ∞, a norm precisely for 1 ≤ p ≤ ∞, and a
modulus,

|q| ≡ |q|2 =
√
α2 + β2 + γ2 + δ2, (1.4)

for p = 2.

Addressing the real 8-dimensional alternative2 (but not associative) algebra of
the octonions,

O = {c = γ1 + γ2e2 + · · ·+ γ8e8 : γj ∈ R},
with its intricate multiplication rule (e.g., [Ba, CS]), we remark that, by analogy with
the two previous cases,

|c|p = (|γ1|p + · · ·+ |γ8|p)1/p, c = γ1 + γ2e2 + · · ·+ γ8e8 ∈ O, (1.5)

is a continuous subnorm for 0 < p ≤ ∞, a norm if and only if 1 ≤ p ≤ ∞, and a
modulus,

|c| ≡ |c|2 =
√
|γ1|2 + · · ·+ |γ8|2, (1.6)

for p = 2 (a fact that stems from the Eight Square Theorem, [D], which implies that
|cd| = |c||d| for all c, d ∈ O).

In our next example we examine the spectral radius,

ρ(A) = max{|λ| : λ ∈ C an eigenvalue of A},
where A belongs to Fn×n, the algebra of n× n matrices over F with the usual opera-
tions. Since ρ vanishes on nonzero nilpotent matrices, it is not a subnorm on F

n×n. It
is, however, a subnorm, in fact a continuous submodulus (but usually not a modulus),
on any subset of Fn×n which is void of nonzero nilpotent matrices and closed under
scalar multiplication and under raising to powers—for instance, on Nn(F), the set of
normal n× n matrices over F.

Contrary to norms, subnorms and submoduli are often discontinuous. An example
of such submoduli is given in [GGL], where the underlying set is againNn(F). Indeed,
putting

τ(A) = min{|λ| : λ ∈ C an eigenvalue of A}, A ∈ Nn(F),

we observe that

gκ(A) =

{
ρ(A)κ+1τ(A)−κ, τ(A) > 0,

ρ(A), τ(A) = 0,
(1.7)

2An algebra A is called alternative if the subalgebra generated by any two elements in A is

associative; hence, an alternative algebra is power-associative.
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is a submodulus on Nn(F) for every real constant κ. When κ = 0, we obtain the
(continuous) spectral radius. When κ �= 0, gκ is discontinuous, since for the normal
matrix

Aε = diag(1, . . . , 1, ε), ε > 0,

we get

lim
ε→0

gκ(Aε) =

{
∞, κ > 0,

0, κ < 0,

whereas gκ(diag(1, . . . , 1, 0)) = 1.

Discontinuous subnorms can be easily constructed on arbitrary finite-dimensional
algebras (power-associative or not) with dimension at least 2. Indeed, [G3], let A be
such an algebra, and let f be a continuous subnorm on A. Select an element a0 ∈ A,
a0 �= 0, and let

V = {αa0 : α ∈ F} (1.8)

be the linear subspace of A generated by a0. Fix a real κ, κ > 1, and define

hκ(a) =

{
κf(a), a ∈ V,

f(a), a ∈ A \ V.
(1.9)

Then hκ is a subnorm on A, which is discontinuous at a0 since

lim
a→a0
a/∈V

hκ(a) = lim
a→a0
a/∈V

f(a) = f(a0) �= hκ(a0).

When dim A = 1, A is of the form of V in (1.8). Hence, in this case it is clear
that every subnorm on A is in fact a (continuous) norm.

To exhibit a subnorm which is discontinuous everywhere, consider the familiar
functional equation

ϕ(x+ y) = ϕ(x) + ϕ(y), x, y ∈ R, (1.10)

whose (real) solutions have been discussed in the literature for over a century (e.g.,
[Ham], [HLP, Section 3.20], [HR], [Bo, Section 20], and [GL2, Section 2]). It is well
known that any solution of (1.10) satisfies

ϕ(rx) = rϕ(x) for all rational r and real x. (1.11)

Hence, the only continuous solutions of (1.10) are of the form

ϕ(x) = xϕ(1), x ∈ R,
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where ϕ(1) is an arbitrary real value. It is also known that equation (1.10) has
discontinuous solutions, and that all such solutions are discontinuous everywhere and
unbounded (both from below and above) on any interval in R. Further, given a
positive number c, one may select a discontinuous solution ϕ with ϕ(c) = 0; thus,

ϕ(x + c) = ϕ(x) + ϕ(c) = ϕ(x), x ∈ R, (1.12)

and so ϕ can be chosen to be c-periodic. By (1.12), c > 0 is a period of ϕ if and only
if ϕ(c) = 0; hence, if c is a period then, by (1.11), so is every rational multiple of c.

Aided by these facts, it was proven in Theorem 2.1(c) of [GL2] that if f is a
continuous subnorm (submodulus, modulus) on C, the 2-dimensional real algebra of
the complex numbers over the reals, and if ϕ is a discontinuous π-periodic solution of
(1.10), then

gϕ(z) = f(z)eϕ(arg z), z ∈ C, (1.13)

(arg z denoting the principal argument of z, i.e., 0 ≤ arg z < 2π and arg 0 = 0) is a
subnorm (submodulus, modulus) which is ubiquitously discontinuous on C.

Similar pathological constructions, where the resulting subnorms and submoduli
lack any shred of continuity, were obtained in [GL2] for the quaternions as well as for
Nn(F).

2. Stable subnorms. We begin this section by recalling two elementary obser-
vations that pertain to continuous subnorms on closed sets.

Proposition 2.1. [GL1, Lemma 1.1]. Let S, a closed subset of a finite-
dimensional power-associative algebra A over F, be closed under scalar multiplication.
Let f and g be continuous subnorms on S. Then f and g are equivalent; i.e., there
exist constants µ > 0, ν > 0, such that

µg(a) ≤ f(a) ≤ νg(a) for all a ∈ S. (2.1)

Proposition 2.2. [GL1, Lemma 1.2]. Let S, a closed subset of a finite-
dimensional power-associative algebra A over F, be closed under scalar multiplication
and under raising to powers. Let f be a continuous subnorm on S and let g be a
continuous submodulus on S. Then,

lim
k→∞

f(ak)1/k = g(a) for all a ∈ S. (2.2)

Note that g in Proposition 2.2 need not be a norm, even when f is. Further, as
the limit in (2.2) is unique, we may register:
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Corollary 2.3. [GL1, Corollary 1.1]. Let S, a closed subset of a finite-
dimensional power-associative algebra A over F, be closed under scalar multiplication
and under raising to powers. Let g be a continuous submodulus on S. Then g is the
only continuous submodulus on S.

The definition of submodulus gives rise to another simple, yet basic result:

Proposition 2.4. [GGL, Proposition 3]. Let S, a subset of a power-associative
algebra A over F, be closed under scalar multiplication and under raising to powers.
If S contains nonzero nilpotent elements, then S has no submodulus.

This observation (which holds for finite- as well as for infinite-dimensional alge-
bras) implies, for example, that Fn×n has no submodulus.

After the preliminaries in this and the previous sections, we are finally ready to
address the main theme of this paper. Let S, a subset of A, be closed under scalar
multiplication and under raising to powers. Following [GL1], we say that a subnorm
f is stable on S if for some positive constant σ,

f(ak) ≤ σf(a)k for all a ∈ S and k = 1, 2, 3, . . . . (2.3)

If (2.3) holds for σ = 1, we say that f is strongly stable. Hence, for instance, all
submoduli on S are strongly stable.

It is not difficult to show that every finite-dimensional power-associative algebra
has stable subnorms, even stable norms. This will readily follow by proving that
every finite-dimensional algebra (power-associative or not) can be endowed with sub-
multiplicative norms.

Indeed (compare [AGL, Theorem 1.3]), let N be a norm on an arbitrary finite-
dimensional algebra A, and let µ > 0 be a constant. Then obviously, Nµ ≡ µN is a
norm too. Put

µN = sup{N(ab) : N(a) = N(b) = 1}.

Since N is continuous and A is finite-dimensional, an elementary compactness argu-
ment shows that µN < ∞. Moreover, µN can be written as

µN = max
a,b�=0

N(ab)
N(a)N(b)

.

Hence, if µ ≥ µN , then for all a, b ∈ A,

Nµ(ab) = µN(ab) ≤ µµNN(a)N(b) ≤ µ2N(a)N(b) = Nµ(a)Nµ(b);

so Nµ is sub-multiplicative on A, and we are done.
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We can now quote the main result in [GL1] which characterizes stable subnorms
on closed subsets that contain no nonzero nilpotents:

Theorem 2.5. [GL1, Theorem 1.1(a)]. Let S, a closed subset of a finite-
dimensional power-associative algebra A over F, be closed under scalar multiplication
and under raising to powers. Let f be a continuous subnorm on S, and let g be a
continuous submodulus on S. Then f is stable on S if and only if f ≥ g on S.

Since a submodulus is always stable, Theorem 2.5 provides a second short proof
of Corollary 2.3: If g and g′ are continuous submodulus on S then, by the theorem,
we have g ≥ g′ and g′ ≥ g, which forces the desired result.

Theorem 2.5 has another immediate consequence:

Corollary 2.6. [GL1, Corollary 1.2]. Let A, S and g be as in Theorem 2.5.
Then g is the smallest of all stable continuous subnorms on S.

Using Corollary 2.3 we find, for example, that the modulus functions in (1.2), (1.4)
and (1.6) are the only continuous submoduli on C, H and O, respectively. Hence, by
Theorem 2.5, a continuous subnorm f is stable on C, H or O if and only if f majorizes
the corresponding modulus function; so in particular, the subnorms in (1.1), (1.3) and
(1.5) are stable precisely when 0 < p ≤ 2.

To further illustrate Theorem 2.5, let µ and ν be positive constants, and consider
the weighted sup norm on C,

|z|µ,ν,∞ = max{µ|α|, ν|β|}, z = α+ iβ ∈ C.

Since the only continuous submodulus on C is given by (1.2), Theorem 2.5 implies
that this norm is stable if and only if

max{µ|α|, ν|β|} ≥
√
α2 + β2 for all α, β ∈ R,

which, by Theorem 3.1 in [GL1], is equivalent to the simple inequality

µ2ν2 ≥ µ2 + ν2.

A similar illustration is obtained by considering the weighted l1 norm

|z|µ,ν,1 = µ|α|+ ν|β|, z = α+ iβ ∈ C,

where as before, µ > 0, ν > 0, are fixed. Appealing again to Theorem 2.5, we find
that this norm is stable on C if and only if

µ|α|+ ν|β| ≥
√
α2 + β2 for all α, β ∈ R,
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a condition which, by Theorem 3.3 in [GL1], is equivalent to

µ ≥ 1, ν ≥ 1.

By Proposition 2.4, Theorem 2.5 does not apply to the case when S contain
nonzero nilpotent elements. If S is closed and consists only of nilpotents, then the
question of stability for continuous subnorms becomes a triviality:

Proposition 2.7. [GGL, Proposition 4]. Let S, a closed subset of nilpotent
elements in a finite-dimensional power-associative algebra A over F, be closed under
scalar multiplication and under raising to powers. Then all continuous subnorms on
S are stable.

3. Stable subnorms on matrices. Since every finite-dimensional associative
algebra over F is algebraically isomorphic to a matrix algebra over F, we take special
interest in F

n×n, the algebra of n× n matrices over F with the usual operations.

We recall that the spectral radius is a continuous submodulus on any subset of
Fn×n which is void of nonzero nilpotents and closed under scalar multiplication and
under raising to powers. Combining this fact with Proposition 2.4 and Corollary 2.3,
we obtain:

Theorem 3.1. [GL1, Theorem 1.2]. Let S, a subset of Fn×n, be closed under
scalar multiplication and under raising to powers. Then:

(a) The set S has a submodulus if and only if S is void of nonzero nilpotents.
(b) If S is void of nonzero nilpotents, then ρ, the spectral radius, is a submodulus

on S.
(c) If S is closed and void of nonzero nilpotents, then ρ is the only continuous

submodulus on S.

Just as for norms, we use standard nomenclature and say that a subnorm f on a
subset S of F

n×n is spectrally dominant if f majorizes the spectral radius, i.e.,

f(A) ≥ ρ(A) for all A ∈ S.

Hence, Theorems 2.5 and 3.1(c) yield:

Theorem 3.2. [GL1, Theorem 1.3(a)]. Let S, a closed subset of Fn×n, be void of
nonzero nilpotents and closed under scalar multiplication and under raising to powers.
Let f be a continuous subnorm on S. Then f is stable on S if and only if f is spectrally
dominant on S.

An illustration of the last two theorems is obtained by recalling that Nn(F),
the closed set of normal n × n matrices over F, is void of nonzero nilpotents and
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closed under scalar multiplication and under raising to powers. Thus, ρ is the only
continuous submodulus on Nn(F), and a continuous subnorm f is stable on this set
if and only if f ≥ ρ there.

The assumption in Theorems 3.1(c) and 3.2 that S is closed, cannot be dropped.
This was established in [G1] by noting that GLn(F) ∪ {0}, the union of the general
linear group of n × n invertible matrices over F and the zero matrix, is not a closed
subset of Fn×n, and that both ρ and

τ(A) = min{|λ| : λ ∈ C an eigenvalue of A}
are continuous submoduli on this set. Hence, ρ is not the only continuous submodulus
on GLn(F) ∪ {0}, and τ is stable there without majorizing ρ.

We note that while by Theorem 3.1(c), ρ is the only continuous submodulus on
the closed set S in Theorem 3.2, such a set may have infinitely many discontinuous
submoduli, as demonstrated by the action of gκ in (1.7) on Nn(F).

The heart of Theorem 3.2 is the assertion that if a closed subset S of Fn×n is
void of nonzero nilpotents and closed under scalar multiplication and under raising
to powers, and if f is a continuous subnorm on S, then spectral dominance implies
stability. In the opposite direction one may ignore the issue of nilpotents and prove
a little more:

Proposition 3.3. [GL2, Theorem 1.5(b)]. Let S, a closed subset of F
n×n, be

closed under scalar multiplication and under raising to powers. Let f be a continuous
stable subnorm on S. Then f is spectrally dominant on S.

The converse of Proposition 3.3 is false; i.e., continuous spectrally dominant sub-
norms on subsets of Fn×n which are closed under scalar multiplication and under
raising to powers, may fail to be stable. In light of Theorem 3.2 and Proposition 2.7,
such subsets of Fn×n must contain, of course, both nonzero nilpotent matrices and
matrices which are not nilpotent.

For example, [GGL], consider the 2-dimensional matrix algebra

A = {αI + βB : α, β ∈ F}
where B is a fixed nonzero nilpotent matrix in Fn×n with B2 = 0. Define

N(αI + βB) = max{|α|, |β|}, αI + βB ∈ A.
Surely, A is a proper subalgebra of Fn×n swarming with nonzero nilpotent matrices
as well as with matrices which are not nilpotent. Further, N is a spectrally dominant
norm on A. Yet, (I +B)k = 1 + kB, so

lim
k→∞

N
(
(I +B)k

)
=∞
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which explodes the possibility that N is stable on A.3

In view of the above example, it seems desirable to characterize the class of all
subalgebras A of Fn×n which contain nonzero nilpotent matrices as well as matrices
which are not nilpotent, and which possess the property that a norm on A is stable
if and only if it is spectrally dominant.

The celebrated Friedland–Zenger Theorem tells us that Cn×n belongs to this
class:

Theorem 3.4. [FZ, Theorem 1]. A norm on C
n×n is stable if and only if it is

spectrally dominant.

To illustrate Theorem 3.4, select an inner product on Cn and consider the corre-
sponding numerical radius

w(A) = max{|(Ax, x)| : x ∈ C
n, (x, x) = 1}, A ∈ C

n×n.

It is not hard to prove (e.g., [Hal, Section 173], [GT]) that w is a spectrally dominant
norm on Cn×n. Hence, by Theorem 3.4, w is stable. As a matter of fact, w is strongly
stable on C

n×n—a remarkable result due to Berger, [Be], [P], [Hal, Section 176].

We conjecture that, just like in the complex case, a norm on Rn×n is stable if
and only if it is spectrally dominant. Unable to prove this conjecture, we can post
simpler results relating to certain classes of norms on Rn×n. For example, we recall
that a norm N on Fn×n is quasimonotone if it is monotone on the cone of matrices
with positive entries, i.e.,

0 ≤ A ≤ B ⇒ N(A) ≤ N(B), A,B ∈ F
n×n,

where the inequalities 0 ≤ A ≤ B are construed entrywise. With this definition, we
can prove:

Theorem 3.5. [GL3, Theorem 3.3]. A quasimonotone norm on Rn×n is stable
if and only if it is spectrally dominant.

We also recall that a norm N on Fn×n is monotone if

A+ ≤ B+ ⇒ N(A) ≤ N(B), A,B ∈ F
n×n,

where A+ is the matrix obtained by taking the absolute values of the entries of A.
So it follows that monotonicity implies quasimonotonicity. Further, N is said to be
absolute if

N(A) = N(A+) for all A ∈ F
n×n.

3A similar example, exhibiting a closed subset S of Fn×n which is not an algebra, and a contin-

uous unstable spectrally dominant subnorm on S which is not a norm, can be found in [GGL, pp.

216–217].
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And it is well known (e.g., [Z, Theorem 108.1], [HJ, Theorem 5.5.10]; compare [BSW])
that a norm on Fn×n is monotone if and only if it is absolute. Thus, Theorem 3.5
implies:

Corollary 3.6. [GGL, Theorem 5]. An absolute norm on Rn×n is stable if and
only if it is spectrally dominant.

To conclude this section we point out that the Friedland–Zenger theorem cannot
be extended to subnorms, not even to continuous subnorms. More precisely, we assert
that not all continuous spectrally dominant subnorms on C

n×n are stable.

Indeed (compare [GL3, Section 3]), let N be a norm on Cn×n, and define

f(A) = max{ρ(A), N(A−DA)}, A ∈ C
n×n,

where DA is the diagonal part of A. Clearly, f is a continuous spectrally dominant
subnorm on Cn×n. Let Jκ be the n × n matrix all of whose entries are zero, except
for its upper-right entry, κ, which is chosen so that N(Jκ) = 1. Then for Aκ = I +Jκ

we have f(Aκ) = 1. Yet,

lim
k→∞

f(Ak
κ) = lim

k→∞
f(I + kJκ) = lim

k→∞
N(kJκ) =∞,

so f is not stable on Cn×n. Of course, f is not a norm on Cn×n; for if it were, then
by the Friedland–Zenger Theorem, it would be stable.

4. Subnorms and radii. Let a be an element of a finite-dimensional power-
associative algebra over F. As usual, by a minimal polynomial of a, we mean a monic
polynomial of lowest positive degree with coefficients in F that annihilates a. With
this familiar definition, and taking into account that A may or may not have a unit,
one can prove:

Theorem 4.1. [G2, Theorem 1.1(a)]. Let A be a finite-dimensional power-
associative algebra over F. Then every element a in A possesses a unique minimal
polynomial.

As pointed out in [G2], pa, the minimal polynomial of a, may depend not only
on a, but also on the underlying algebra. For example, fix an idempotent matrix
M ∈ F

n×n, M �= I, and consider the matrix algebra

A = {MAM : A ∈ F
n×n}

with the usual operations. Surely, M belongs to A. Further, M is the unit in A;
hence the minimal polynomial of M in A is pM (t) = t− 1. On the other hand, since
the unit in Fn×n is I, it is not hard to verify that the minimal polynomial of M in
Fn×n is qM (t) = t2 − t.
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This example, as well as others which can be found in [G2], are but special cases
of a more general phenomenon:

Theorem 4.2. [G2, Theorem 1.2]. Let A and B be finite-dimensional power-
associative algebras over F, such that A is a subalgebra of B. Let a be an element of
A, and let pa and qa denote the minimal polynomials of a in A and in B, respectively.
Then either pa = qa or qa(t) = tpa(t).

Having established the existence and uniqueness of pa, the minimal polynomial
of an element a in A, we proceed to define the radius of a as

r(a) = max{|λ| : λ ∈ C a root of pa}.

We emphasize that, unlike the minimal polynomial of a, the radius r(a) is in-
dependent of A in the sense that if B is another finite-dimensional power-associative
algebra over F, such that A is contained in B, then the radii of a in A and in B
coincide.

The proof of this assertion, given in [G2], is short: By Theorem 4.2, pa and qa, the
minimal polynomials of a in A and in B, are either identical or satisfy qa(t) = tpa(t).
Hence, the nonzero roots of pa and qa are equal; so

max{|λ| : λ ∈ C a root of pa} = max{|λ| : λ ∈ C a root of qa}

and the proof is complete.

In view of the above assertion, and since the roots of the minimal polynomial of
a matrix A ∈ Fn×n are its eigenvalues, we get:

Proposition 4.3. [G2, (2.2)]. If A belongs to a subalgebra of Fn×n, then

r(A) = ρ(A) (4.1)

where ρ denotes the spectral radius.

As it is, the radius r retains some of the familiar properties of the spectral radius
not only for matrices, but in general as well:

Theorem 4.4. [G2, Theorems 2.1 and 2.4]. Let A be a finite-dimensional power-
associative algebra over F. Then:

(a) The radius r is a nonnegative function on A.
(b) For all a ∈ A and α ∈ F,

r(αa) = |α|r(a).
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(c) For all a ∈ A and all positive integers k,

r(ak) = r(a)k.

(d) The radius r vanishes only on nilpotent elements of A.
(e) The radius r is a continuous function on A.

With Theorem 4.4 at hand, we refer to Corollary 2.3 and to the definition of
submodulus in order to obtain the following observation which brings us back to the
realm of Section 2:

Theorem 4.5. [G2, Theorem 3.3]. Let S, a subset of a finite-dimensional power-
associative algebra A over F, be void of nonzero nilpotents and closed under scalar
multiplication and under raising to powers. Then:

(a) The radius r is a continuous submodulus on S.
(b) If S is closed, then r is the only continuous submodulus on S.

By analogy with spectral dominance, we say that a subnorm f on a subset S of
A is radially dominant if

f(A) ≥ r(A) for all A ∈ S.

Hence, combining Theorems 4.5(b) and 2.5, we can state:

Theorem 4.6. [G2, Theorem 3.4]. Let S, a closed subset of a finite-dimensional
power-associative algebra A over F, be void of nonzero nilpotents and closed under
scalar multiplication and under raising to powers. Let f be a continuous subnorm on
S. Then f is stable on S if and only if f is radially dominant on S.

Because of the fundamental role that the radius r plays in Theorem 4.6, it seems
useful to determine this radius on various algebras. By formula (4.1), we already
know that the radius on Fn×n is the classical spectral radius. Similarly, appealing
to Theorem 4.5(b) and to the first three examples in Section 1, we observe that the
radii on C, H and O, are given by the modulus functions in (1.2), (1.4) and (1.6),
respectively.

We remark that the radii on C and H can be also obtained by using the definition
in a more direct way. First, revisiting the complex numbers, it has been noticed in
[GL3] that the minimal polynomial of z = α+ iβ ∈ C is

pz(t) = t2 − 2αt+ α2 + β2.

And since the roots of pz are z and z, we immediately get r(z) = |z|.
As for the quaternions, we need an additional result that hardly requires a proof:
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Proposition 4.7. [G2, Proposition 1.1]. Let A and B be algebraically isomorphic
finite-dimensional power-associative algebras over F, with an algebra isomorphism
ϕ : A → B. Let a be an element of A, and let pa and qϕ(a) denote the minimal
polynomials of a in A and of ϕ(a) in B, respectively. Then pa = qϕ(a); so the radii of
a in A and of ϕ(a) in B coincide.

Now, coming back to the quaternions, we recall the well-known mapping

q → Aq ≡



α −β −γ −δ
β α −δ γ

γ δ α −β
δ −γ β α


 , q = α+ iβ + jγ + kδ ∈ H,

which implies that H is algebraically isomorphic to the 4-dimensional subalgebra of
R4×4,

A = {Aq : q ∈ H}.
Since for every q = α+ iβ+ jγ + kδ ∈ H the eigenvalues of the corresponding matrix
Aq are α ± i

√
β2 + γ2 + δ2 (each with multiplicity 2), we employ Propositions 4.3

and 4.7 to obtain

r(q) = r(Aq) = ρ(Aq) =
√
α2 + β2 + γ2 + δ2, q = α+ iβ + jγ + kδ ∈ H;

hence r(q) = |q|.
Hinging on the concept of radius, one can extend Proposition 2.2 as follows:

Theorem 4.8. Let S, a closed subset of a finite-dimensional power-associative
algebra A over F, be closed under scalar multiplication and under raising to powers.
Let f be a continuous subnorm on S. Then,

lim
k→∞

f(ak)1/k = r(a) for all a ∈ S. (4.2)

To prove this result, take a continuous subnorm g on A, and refer to Theorem
2.1 in [G3] by which,

lim
k→∞

g(ak)1/k = r(a) for all a ∈ A.

Further, let ν and µ be positive constants for which (2.1) holds, so that

µ1/kg(ak)1/k ≤ f(ak)1/k ≤ ν1/kg(ak)1/k, a ∈ S.
Whence, for a ∈ S,

lim
k→∞

f(ak)1/k = lim
k→∞

g(ak)1/k = r(a),
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and the theorem is in the bag.

With Theorem 4.8 at our disposal, we conclude the section by recording the
following generalization of Proposition 3.3:

Proposition 4.9. Let S, a closed subset of a finite-dimensional power-
associative algebra A over F, be closed under scalar multiplication and under raising
to powers. Let f be a continuous stable subnorm on S. Then f is radially dominant
on S.

The proof is almost trivial: Since f is stable, there exists a constant σ > 0 which
satisfies (2.3). Thus,

f(a) ≥ lim
k→∞

σ−1/kf(ak)1/k, a ∈ S,

and (4.2) completes the proof.

We note in passing that the results in this section do not extend to infinite-
dimensional algebras. For in this case, minimal polynomials usually fail to exist,
rendering the notion of radius meaningless.

5. Discontinuous subnorms. We begin our last section by extending Theorem
4.8 and Proposition 4.9 to subnorms which are not necessarily continuous.

Proposition 5.1. Let S, a closed subset of a finite-dimensional power-
associative algebra A over F, be closed under scalar multiplication and under raising
to powers. Let g, a subnorm on S, be equivalent to a continuous subnorm on S. Then:

(a) (compare [G3, Theorem 3.1])

lim
k→∞

g(ak)1/k = r(a) for all a ∈ S. (5.1)

(b) If g is stable then g is radially dominant.

Again, the proof is brief: By hypothesis, there exist a continuous subnorm f and
constants µ > 0, ν > 0, such that for all a in S,

µ1/kf(ak)1/k ≤ g(ak)1/k ≤ ν1/kf(ak)1/k, k = 1, 2, 3, . . . ;

thus, taking limits, (a) follows by Theorem 4.8. As for (b), the stability of g ensures
a constant σ > 0 for which

g(a) ≥ lim
k→∞

σ−1/kg(ak)1/k, a ∈ S;

and (5.1) concludes the proof.
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To illustrate Proposition 5.1, let f be a continuous subnorm on an arbitrary
finite-dimensional power-associative algebra A over F, and let us fall back on hκ, the
discontinuous subnorm in (1.9). Since κ > 1, we have

f(a) ≤ hκ(a) ≤ κf(a), a ∈ A; (5.2)

so by part (a) of the proposition,

lim
k→∞

hκ(ak)1/k = r(a).

Further, let f be stable. Then, by (2.3) and (5.2),

hκ(ak) ≤ κf(ak) ≤ σκf(a)k ≤ σκhκ(a)k, a ∈ A, k = 1, 2, 3, . . . .

Hence, hκ is stable; so by part (b) of the proposition, hκ is radially dominant.

To put Proposition 1.5 in perspective, we conclude this paper by noting that there
exist discontinuous subnorms on finite-dimensional power-associative algebras which
(i) violate formula (5.1), and (ii) are stable without being radially dominant.

For example, let f be a continuous subnorm on C, let ϕ be a discontinuous π-
periodic solution of the functional equation (1.10), and let gϕ be the ubiquitously
discontinuous subnorm in (1.13). Then, Theorem 2.2(a) in [GL2] tells us that

lim
k→∞

gϕ(zk)1/k = |z|eϕ(arg z). (5.3)

Since r(z) = |z| on C, equation (5.3) implies that gϕ satisfies formula (5.1) precisely
for those values of z for which

ϕ(arg z) = 0. (5.4)

And as ϕ is unbounded on any subinterval of [0, 2π), the set of points where gϕ defies
formula (5.1) is dense in C, thus settling (i). We observe that since our π-periodic
ϕ must satisfy ϕ(rπ) = 0 for every rational number r, (5.4) holds whenever arg z is
a rational multiple of π. Hence, the set of complex numbers where gϕ does satisfy
formula (5.1) is also dense in C.

Finally, we invoke Theorem 2.2(b) of [GL2], by which gϕ is stable on C. Yet, as
established in [G3], the set of complex numbers where gϕ fails to be radially dominant
is dense in C, so (ii) is settled as well. In fact, it was shown in [G3] that the set where
gϕ majorizes the radius r is also dense in C, implying that no inequality between gϕ

and r is possible.
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