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ON A NEW CLASS OF STRUCTURED MATRICES RELATED TO
THE DISCRETE SKEW-SELF-ADJOINT DIRAC SYSTEMS∗
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Abstract. A new class of the structured matrices related to the discrete skew-self-adjoint Dirac

systems is introduced. The corresponding matrix identities and inversion procedure are treated.

Analogs of the Schur coefficients and of the Christoffel-Darboux formula are studied. It is shown

that the structured matrices from this class are always positive-definite, and applications for an

inverse problem for the discrete skew-self-adjoint Dirac system are obtained.
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1. Introduction. It is well-known that Toeplitz and block Toeplitz matrices are
closely related to a discrete system of equations, namely to Szegö recurrence. This
connection have been actively studied during the last decades. See, for instance, [1]–
[5], [12, 25] and numerous references therein. The connections between block Toeplitz
matrices and Weyl theory for the self-adjoint discrete Dirac system were treated in
[11]. (See [26] for the Weyl theory of the discrete analog of the Schrödinger equation.)
The Weyl theory for the skew-self-adjoint discrete Dirac system

Wk+1(λ) −Wk(λ) = − i

λ
CkWk(λ), Ck = C∗

k = C−1
k , k = 0, 1, . . .(1.1)

was developed in [14, 18]. Here Ck are 2p × 2p matrix functions. When p = 1,
system (1.1) is an auxiliary linear system for the isotropic Heisenberg magnet model.
Explicit solutions of the inverse problem were constructed in [14]. A general procedure
to construct the solutions of the inverse problem for system (1.1) was given in [18],
using a new class of structured matrices S, which satisfy the matrix identity

AS − SA∗ = iΠΠ∗.(1.2)
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Here, S and A are (n+ 1)p× (n+ 1)p matrices and Π is an (n+ 1)p× 2p matrix. The
block matrix A has the form

A := A(n) =
{
aj−k

}n

k,j=0
, ar =


0 for r > 0
i

2
Ip for r = 0

i Ip for r < 0

,(1.3)

where Ip is the p× p identity matrix. The matrix Π = [Φ1 Φ2] consists of two block
columns of the form

Φ1 =


Ip

Ip

...
Ip

 , Φ2 =


α0

α0 + α1

...
α0 + α1 + · · · + αn

 .(1.4)

Definition 1.1. The class of the block matrices S determined by the matrix
identity (1.2) and formulas (1.3) and (1.4) is denoted by Ωn.

Notice that the blocks αk in [18] are Taylor coefficients of the Weyl functions and
that the matrices Cn (0 ≤ n ≤ l) in (1.1) are easily recovered from the expressions
Π(n)∗S(n)−1Π(n) (0 ≤ n ≤ l) (see Theorem 3.4 of [18]). In this way, the structure of
the matrices S determined by the matrix identity (1.2) and formulas (1.3) and (1.4),
their inversion and conditions of invertibility prove essential. Recall that the self-
adjoint block Toeplitz matrices satisfy [15]–[17] the identity AS−SA∗ = iΠJΠ∗ (J =[

0 Ip

Ip 0

]
), which is close to (1.2)–(1.4). We refer also to [20]–[24] and references

therein for the general method of the operator identities. The analogs of various
results on the Toeplitz matrices and j-theory from [6]–[11] can be obtained for the
class Ωn, too.

2. Structure of the matrices from Ωn. Consider first the block matrix S ={
skj

}n

k,j=0
with the p× p entries skj , which satisfies the identity

AS − SA∗ = iQ, Q =
{
qkj

}n

k,j=0
.(2.1)

One can easily see that the equality

qkj = skj +
k−1∑
r=0

srj +
j−1∑
r=0

skr(2.2)

follows from (2.1). Sometimes we add comma between the indices and write sk,j .
Putting s−1,j = sk,−1 = q−1,j = qk,−1 = 0, from (2.2) we have

sk+1,j+1 − skj = qkj + qk+1,j+1 − qk+1,j − qk,j+1, −1 ≤ k, j ≤ n− 1.(2.3)
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Now, putting Q = iΠΠ∗ and taking into account (2.3), we get the structure of S.

Proposition 2.1. Let S ∈ Ωn. Then we have

sk+1,j+1 − skj = αk+1α
∗
j+1 (−1 ≤ k, j ≤ n− 1),(2.4)

excluding the case when k = −1 and j = −1 simultaneously. For that case, we have

s00 = Ip + α0α
∗
0.(2.5)

Notice that for the block Toeplitz matrix, the equalities sk+1,j+1 − skj = 0 (0 ≤
k, j ≤ n − 1) hold. Therefore, Toeplitz and block Toeplitz matrices can be used
to study certain homogeneous processes and appear as a result of discretization of
homogeneous equations. From this point of view, the matrix S ∈ Ωn is perturbed by
the simplest inhomogeneity.

The authors are grateful to the referee for the next interesting remark.

Remark 2.2. From (1.2)–(1.4) we get another useful identity, namely,

S −NSN∗ = Π̂Π̂∗,(2.6)

where

N = {δk−j−1Ip}n
k,j=0 =


0 0
Ip 0

. . .
...

Ip 0

 , Π̂ =


Ip α0

0 α1

...
...

0 αn

 .(2.7)

Indeed, it is easy to see that (I(n+1)p −N)A = i
2 (I(n+1)p + N). Hence, the identity

i(S −NSN∗) = i(I(n+1)p −N)ΠΠ∗(I(n+1)p −N∗)

follows from (1.2). By (2.7), we have (I(n+1)p − N)Π = Π̂, and so (2.6) is valid.
Relations (2.4) and (2.5) are immediate from (2.6).

Proposition 2.3. Let S =
{
skj

}n

k,j=0
∈ Ωn. Then S is positive and, moreover,

S ≥ I(n+1)p. We have S > I(n+1)p if and only if detα0 	= 0.

Proof. From (2.5) it follows that S(0) = s00 ≥ Ip and that S(0) > Ip, when
detα0 	= 0. The necessity of detα0 	= 0, for the inequality S > I(n+1)p to be true,
follows from (2.5), too. We shall prove that S ≥ I(n+1)p and that S > I(n+1)p, when
detα0 	= 0, by induction.

Suppose that S(r − 1) =
{
skj

}r−1

k,j=0
≥ Irp (r ≥ 1). According to (2.6), we can
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present S(r) =
{
skj

}r

k,j=0
in the form S(r) = S1 + S2,

S1 :=


α0

α1

...
αr

 [
α∗

0 α∗
1 · · · α∗

r

]
, S2 :=

[
Ip 0
0 S(r − 1)

]
.(2.8)

By the assumption of induction, it is immediate that S(r) ≥ S2 ≥ I(r+1)p. Hence, we
get S = S(n) ≥ I(n+1)p.

Suppose that detα0 	= 0 and S(r − 1) > I(n+1)p. Let S(r)f = f (f ∈ BC(r+1)p),
i.e., let f∗(S(r) − I(r+1)p

)
f = 0. By (2.8), we have S1 ≥ 0, and by the assumption of

induction, we have S2 − I(r+1)p ≥ 0. So, it follows from f∗(S(r) − I(r+1)p

)
f = 0 that

f∗S1f = 0 and f∗(S2 − I(r+1)p

)
f = 0. Hence, as α0α

∗
0 > 0 and S(r − 1) > Irp, we

derive f = 0. In other words, S(r)f = f implies f = 0, that is, det(S(r)−I(r+1)p

) 	= 0.
From det(S(r) − I(r+1)p

) 	= 0 and S(r) ≥ I(r+1)p, we get S(r) > 0. So, the condition
detα0 	= 0 implies S(n) > I(n+1)p by induction.

Remark 2.4. Using formula (2.5) and representations S(r) = S1(r) + S2(r)
(0 < r ≤ n), where S1(r) and S2(r) are given by (2.8), one easily gets

S = I(n+1)p +


α0

α1

...
αn

 [
α∗

0 α∗
1 · · · α∗

n

]
(2.9)

+


0
α0

...
αn−1

 [
0 α∗

0 · · · α∗
n−1

]
+ · · · +


0
...
0
α0

 [
0 · · · 0 α∗

0

]

= I(n+1)p + VαV
∗
α , Vα :=


α0 0 0 · · · 0
α1 α0 0 · · · 0
...

...
...

...
αn αn−1 αn−2 · · · α0

 .

Here, Vα is a triangular block Toeplitz matrix, and formula (2.9) is another way to
prove Proposition 2.3. Further, we will be interested in a block triangular factorization
of the matrix S itself, namely, S = V −1

− (V ∗−)−1, where V− is a lower triangular
matrix.

Similar to the block Toeplitz case (see [13] and references therein) the matrices
S ∈ Ωn admit the matrix identity of the form A1S − SA1 = Q1, where Q1 is of low

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 17, pp. 473-486, September 2008

http://math.technion.ac.il/iic/ela



ELA

On a New Class of Structured Matrices 477

rank, A1 := {δk−j+1Ip}n
k,j=0 = N∗ and N is given in (2.7). The next proposition

follows easily from (2.4).

Proposition 2.5. Let S ∈ Ωn. Then we have

A1S − SA1 = y1y
∗
2 + y3y

∗
4 + y5y

∗
6 , A

∗
1S − SA∗

1 = −(y2y
∗
1 + y4y

∗
3 + y6y

∗
5),(2.10)

where

y1 =


s10
s20
...
sn0

0

 , y3 = −


0
0
...
0
Ip

 , y5 =


α1

α2

...
αn

0

 , y6 =


0
α1

α2

...
αn

 ,(2.11)

y∗2 =
[
Ip 0 0 · · · 0

]
, y∗4 =

[
0 sn0 sn1 · · · sn,n−1

]
.(2.12)

Differently than the block Toeplitz matrix case, the rank of A1S − SA1 is in general
situation larger than the rank of AS − SA∗, where A is given by (1.3). (To see this
compare (1.2)–(1.4) and (2.10)–(2.12).)

3. Transfer matrix function and Weyl functions. Introduce the (r+ 1)p×
(n + 1)p matrix

Pk :=
[
I(r+1)p 0

]
, r ≤ n.(3.1)

It follows from (1.3) that PrA(n) = A(r)Pr . Hence, using (1.2) we derive

A(r)S(r) − S(r)A(r)∗ = iΠ(r)Π(r)∗ , Π(r) := PrΠ.(3.2)

As S > 0, it admits a block triangular factorization

S = V −1
− (V ∗

−)−1,(3.3)

where V ±1
− are block lower triangular matrices. It is immediate from (3.3) that

S(r) = V−(r)−1
(
V−(r)∗

)−1
, V−(r) := PrV−P ∗

r .(3.4)

Recall that S-node [21, 23, 24] is the triple
(
A(r), S(r), Π(r)

)
that satisfies the

matrix identity (3.2) (see also [21, 23, 24] for a more general definition of the S-
node). Following [21, 23, 24], introduce the transfer matrix function corresponding to
the S-node:

wA(r, λ) = I2p − iΠ(r)∗S(r)−1
(
A(r) − λI(r+1)p

)−1Π(r).(3.5)
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In particular, taking into account (3.4) and (3.5), we get

wA(0, λ) = I2p − 2i
i− 2λ

β(0)∗β(0), β(0) = V−(0)Π(0).(3.6)

By the factorization theorem 4 from [21] (see also [23, p. 188]), we have

wA(r, λ) =
(
I2p − iΠ(r)∗S(r)−1P ∗(PA(r)P ∗ − λIp

)−1(
PS(r)−1P ∗)−1(3.7)

×PS(r)−1Π(r)
)
wA(r − 1, λ), P = [ 0 · · · 0 Ip ].

According to (1.3), we obtain

(
PA(r)P ∗ − λIp

)−1 = (
i

2
− λ)−1Ip.(3.8)

Using (3.4), we derive

PS(r)−1P ∗ = (V−(r))∗rr(V−(r))rr , PS(r)−1Π(r) = (V−(r))∗rrPV−(r)Π(r),(3.9)

where (V−(r))rr is the block entry of V−(r) (the entry from the r-th block row and
the r-th block column). In view of (3.8) and (3.9), we rewrite (3.7) in the form

wA(r, λ) =
(
I2p − 2i

i− 2λ
β(r)∗β(r)

)
wA(r − 1, λ),(3.10)

β(r) = PV−(r)Π(r) = (V−Π)r, 0 < r ≤ n.(3.11)

Here, (V−Π)r is the r-th p × 2p block of the block column vector V−Π. Moreover,
according to (3.9) and definitions (3.6), (3.11) of β, we have(

PS(r)−1P ∗
)− 1

2
PS(r)−1Π(r) = u(r)β(r),(3.12)

u(r) :=
(
PS(r)−1P ∗

)− 1
2
(V−(r))∗rr , u(r)∗u(r) = Ip.

As u is unitary, the properties of
(
PS(r)−1P ∗

)− 1
2
PS(r)−1Π(r) proved in [18, p.

2098] imply the next proposition.

Proposition 3.1. Let S ∈ Ωn and let β(k) (0 ≤ k ≤ n) be given by (3.3), (3.4),
(3.6) and (3.11). Then we have

β(k)β(k)∗ = Ip (0 ≤ k ≤ n),
det β(k − 1)β(k)∗ 	= 0 (0 < k ≤ n),
det β1(0) 	= 0,

(3.13)

where β1(k), β2(k) are p× p blocks of β(k).
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Remark 3.2. Notice that the lower triangular factor V− is not defined by S

uniquely. Hence, the matrices β(k) are not defined uniquely, too. Nevertheless, in
view of (3.12), the matrices β(k)∗β(k) are uniquely defined, which suffices for our
considerations.

When p = 1 and Ck 	= ±I2, the matrices Ck = C∗
k = C−1

k (i.e., the potential
of the system (1.1)) can be presented in the form Ck = I2 − 2β(k)∗β(k), where
β(k)β(k)∗ = 1. Therefore, it is assumed in [18] for the system (1.1) on the interval
0 ≤ k ≤ n, that

Ck = I2p − 2β(k)∗β(k),(3.14)

where β(k) are p×2p matrices and (3.13) holds. Relation (3.14) implies Ck = UkjU
∗
k ,

where j =
[ −Ip 0

0 Ip

]
and Uk are unitary 2p × 2p matrices. The equalities Ck =

C∗
k = C−1

k follow. Consider the fundamental solution Wr(λ) of the system (1.1)
normalized by W0(λ) = I2p. Using (3.6) and (3.10), one easily derives

Wr+1(λ) =
(
λ− i

λ

)r+1

wA

(
r,
λ

2

)
, 0 ≤ r ≤ n.(3.15)

Similar to the continuous case, the Weyl functions of the system (1.1) are defined via
Möbius (linear-fractional) transformation

ϕ(λ) =
(W11(λ)R(λ) + W12(λ)Q(λ)

)(W21(λ)R(λ) + W22(λ)Q(λ)
)−1

,(3.16)

where Wij are p× p blocks of W and

W(λ) = {Wij(λ)}2
i,j=1 := Wn+1(λ)∗.(3.17)

Here, R and Q are any p× p matrix functions analytic in the neighborhood of λ = i

and such that

det
(
W21(i)R(i) + W22(i)Q(i)

)
	= 0.(3.18)

One can easily verify that such pairs always exist (see [18, p. 2090]). A matrix
function ϕ(λ) of order p, analytic at λ = i, generates a matrix S ∈ Ωn via the Taylor
coefficients

ϕ
(
i
1 + z

1 − z

)
= −(α0 + α1z + · · · + αnz

n) + O(zn+1) (z → 0)(3.19)

and identity (1.2). By Theorem 3.7 in [18], such ϕ is a Weyl function of some system
(1.1) if and only if S is invertible. Now, from Proposition 2.3 it follows that S > 0,
and the next proposition is immediate.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 17, pp. 473-486, September 2008

http://math.technion.ac.il/iic/ela



ELA

480 B. Fritzsche, B. Kirstein, and A.L. Sakhnovich

Proposition 3.3. Any p× p matrix function ϕ, which is analytic at λ = i, is a
Weyl function of some system (1.1) on the interval 0 ≤ k ≤ n, such that (3.13) and
(3.14) hold.

Moreover, from the proof of the statement (ii) of Theorem 3.7 in [18], the Corollary
3.6 in [18] and our Proposition 3.3, we get:

Proposition 3.4. Let the p×p matrix function ϕ be analytic at λ = i and admit
expansion (3.19). Then ϕ is a Weyl function of the system (1.1) (0 ≤ k ≤ n), where
Ck are defined by the formulas (1.2)–(1.4), Π = [Φ1 Φ2], (3.3), (3.11) and (3.14).
Moreover, any Weyl function of this system admits expansion (3.19).

4. Schur coefficients and Christoffel-Darboux formula. The sequence
{αk}n

k=0 uniquely determines via formulas (1.2)–(1.4) or (1.3), (1.4), (2.4) and (2.5)
the S-node

(
A, S, Π

)
. Then, using (3.3), (3.11) and (3.14), we uniquely recover the

system (1.1) (0 ≤ k ≤ n), or equivalently, we recover the sequence {β∗
kβk}n

k=0, such
that (3.13) holds. By Proposition 3.4, one can use Weyl functions of this system to
obtain the sequence {αk}n

k=0.

Remark 4.1. Thus, there are one to one correspondences between the sequences
{αk}n

k=0, the S-nodes
(
A, S, Π

)
satisfying (1.2), the systems (1.1) (0 ≤ k ≤ n) with

Ck of the form (3.14) and the sequences {β∗
kβk}n

k=0, such that (3.13) holds.

Next, we consider a correspondence between {β∗
kβk}n

k=0 and some p× p matrices
{ρk}n

k=0 (‖ρk‖ ≤ 1). Notice that 0 ≤ β1(k)β1(k)∗ ≤ Ip, and suppose that these
inequalities are strict:

0 < β1(k)β1(k)∗ < Ip (0 ≤ k ≤ n).(4.1)

In view of the first relation in (3.13) and inequalities (4.1), we have detβ1(k) 	= 0 and
detβ2(k) 	= 0. So, we can put

ρk :=
(
β2(k)∗β2(k)

)− 1
2
β2(k)∗β1(k).(4.2)

It follows from (4.2) that

ρkρ
∗
k =

(
β2(k)∗β2(k)

)− 1
2
β2(k)∗

(
Ip − β2(k)β2(k)∗

)
β2(k)

(
β2(k)∗β2(k)

)− 1
2

= Ip − β2(k)∗β2(k).(4.3)

By (4.2) and (4.3), we obtain

[ρk (Ip − ρkρ
∗
k)

1
2 ] = ukβ(k), ‖ρk‖ < 1,(4.4)

where

uk :=
(
β2(k)∗β2(k)

)− 1
2
β2(k)∗, uku

∗
k = Ip,(4.5)
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i.e., uk is unitary.

Remark 4.2. Under condition (4.1), according to (4.4) and (4.5), the sequence
{β∗

kβk}n
k=0 is uniquely recovered from the sequence {ρk}n

k=0 (‖ρk‖ ≤ 1):

β∗
kβk =

[
ρ∗k

(Ip − ρkρ
∗
k)

1
2

]
[ρk (Ip − ρkρ

∗
k)

1
2 ].(4.6)

By Remark 4.1 this means that the S-node can be recovered from the sequence {ρk}n
k=0.

Therefore, similar to the Toeplitz case, we call ρk the Schur coefficients of the S-node(
A, S, Π

)
.

Besides Schur coefficients, we obtain an analog of the Christoffel-Darboux for-
mula.

Proposition 4.3. Let S ∈ Ωn, let wA(r, λ) be introduced by (3.5) for r ≥ 0 and
put wA(−1, λ) = I2p. Then we have

n−1∑
k=−1

wA(k, µ)∗β(k + 1)∗β(k + 1)wA(k, λ)

=
(2λ− i)(2µ + i)

4i(µ− λ)

(
wA(n, µ)∗wA(n, λ) − I2p

)
.(4.7)

Proof. From (3.10) it follows that

wA(k + 1, µ)∗wA(k + 1, λ) − wA(k, µ)∗wA(k, λ) =

wA(k, µ)∗
((

I2p − 2i
2µ + i

β(k + 1)∗β(k + 1)
)

×
(
I2p +

2i
2λ− i

β(k + 1)∗β(k + 1)
)
− I2p

)
wA(k, λ).(4.8)

Using β(k)β(k)∗ = Ip, we rewrite (4.8) in the form

wA(k + 1, µ)∗wA(k + 1, λ) − wA(k, µ)∗wA(k, λ)

=
4i(µ− λ)

(2λ− i)(2µ + i)
wA(k, µ)∗β(k + 1)∗β(k + 1)wA(k, λ).(4.9)

Equality (4.7) follows from (4.9).

5. Inversion of S ∈ Ωn. To recover the system (1.1) from {αk}n
k=0, it is con-

venient to use formula (3.11). The matrices V−(r) (r ≥ 0) in this formula can be
constructed recursively.
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Proposition 5.1. Let S = V −1
− (V ∗

−)−1 ∈ Ωn. Then V−(r + 1) (0 ≤ r < n) can
be constructed by the formula

V−(r + 1) =
[

V−(r) 0
−t(r)S21(r)V−(r)∗V−(r) t(r)

]
,(5.1)

where S21(r) = [sr+1,0 sr+1,1 . . . sr+1,r],

t(r) =
(
sr+1,r+1 − S21(r)V−(r)∗V−(r)S21(r)∗

)− 1
2
.(5.2)

Proof. To prove the proposition it suffices to assume that V−(r) satisfies (3.4) and
prove S(r + 1) = V−(r + 1)−1(V−(r + 1)∗)−1. In view of Proposition 2.3 and (3.4),
we have sr+1,r+1 − S21(r)V−(r)∗V−(r)S21(r)∗ > 0, i.e., formula (5.2) is well defined.
Now, it is easily checked that S(r + 1)−1 = V−(r + 1)∗V−(r + 1) (see formula (2.7) in
[17]).

Put T = {tkj}n
k,j=0 = S−1,

Q̂ = {q̂kj}n
k,j=0 = TΠΠ∗T, X = TΦ1, Y = TΦ2,(5.3)

where tkj and q̂kj are p× p blocks of T and Q̂, respectively. Similar to [15, 16, 20, 22]
and references therein, we get the next proposition.

Proposition 5.2. Let S ∈ Ωn. Then T = S−1 is recovered from X and Y by
the formula

tkj = q̂kj + q̂k+1,j+1 − q̂k+1,j − q̂k,j+1 + tk+1,j+1,(5.4)

or, equivalently, by the formula

tkj = q̂kj + 2
n−k∑
r=1

q̂k+r,j+r −
n−k∑
r=1

q̂k+r,j+r−1 −
n−k+1∑

r=1

q̂k+r−1,j+r,(5.5)

where we fix tkj = 0 and q̂kj = 0 for k > n or j > n, and

Q̂ = XX∗ + Y Y ∗.(5.6)

The block vectors X and Y are connected by the relations

n∑
r=0

(Xr −X∗
r ) = 0,

n−k∑
r=0

Xn−r =
n−k∑
r=0

q̂k+r,r (k ≥ 0),

n−k∑
r=0

X∗
n−r =

n−k∑
r=0

q̂r,k+r (k > 0).(5.7)
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Proof. From the identity (1.2) and formula (5.3), it follows that

TA−A∗T = iQ̂,(5.8)

where Q̂ satisfies (5.6). The identity TA−A∗T = iQ̂ yields (5.4), which, in its turn,
implies (5.5).

To derive (5.7), we rewrite (5.8) in the form(
A∗ − λI(n+1)p

)−1
T − T

(
A− λI(n+1)p

)−1(5.9)

= i
(
A∗ − λI(n+1)p

)−1
Q̂

(
A− λI(n+1)p

)−1
,

and multiply both sides of (5.9) by Φ1 from the right and by Φ∗
1 from the left. Taking

into account (5.3), we get

Φ∗
1

(
A∗ − λI(n+1)p

)−1
X −X∗(A− λI(n+1)p

)−1Φ1

= iΦ∗
1

(
A∗ − λI(n+1)p

)−1
Q̂

(
A− λI(n+1)p

)−1Φ1.(5.10)

It is easily checked (see formula (1.10) in [17]) that

(A− λI(n+1)p

)−1Φ1 =
( i

2
− λ

)−1

col[ Ip ζ−1Ip · · · ζ−n Ip ],

Φ∗
1

(
A∗ − λI(n+1)p

)−1 = −
( i

2
+ λ

)−1

[ Ip ζIp · · · ζnIp ],(5.11)

where col means column,

ζ =
λ− i

2

λ + i
2

,
i

2
− λ =

iζ

ζ − 1
, − i

2
− λ =

i

ζ − 1
.(5.12)

Notice that we have

Φ∗
1TΦ1 = Φ∗

1X = X∗Φ1,(5.13)

which implies the first equality in (5.7) . Multiply both sides of (5.10) by λ2 + 1
4 and

use (5.11), (5.12) and the first equality in (5.7) to rewrite the result in the form

i

ζ − 1

(
[ (ζ − 1)Ip (ζ2 − 1)Ip · · · (ζn − 1)Ip ]X

+X∗col[ 0 ζ−1(ζ − 1)Ip · · · ζ−n(ζn − 1)Ip ]
)

= i[ Ip ζIp · · · ζnIp ]Q̂ col[ Ip ζ−1Ip · · · ζ−nIp ].(5.14)

The equalities for the coefficients corresponding to the same degrees of ζ on the left-
hand side and on the right-hand side of (5.14) imply the second and the third relations
in (5.7) .
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6. Factorization and similarity conditions. The block matrix

K =


K0

K1

...
Kn

 ,(6.1)

where Kj are p× (n + 1)p matrices of the form

Kj = iβ(j)[β(0)∗ β(1)∗ · · · β(j − 1)∗ β(j)∗/2 0 · · · 0 ],(6.2)

plays an essential role in [18]. From the proof of Theorem 3.4 in [18] the following
result is immediate.

Proposition 6.1. Let a (n+ 1)p× (n+ 1)p matrix K be given by formulas (6.1)
and (6.2), and let conditions (3.13) hold. Then K is similar to A:

K = V−AV −1
− ,(6.3)

where V ±1
− are block lower triangular matrices.

Proposition 6.1 is a discrete analog of the theorem on similarity to the integration
operator [19].

Remark 6.2. Note that V −1
− can be chosen so that

V −1
−

 β1(0)
...

β1(n)

 = Φ1.(6.4)

Moreover, V −1
− is a factor of S, i.e., S = V −1

−
(
V ∗
−

)−1 ∈ Ωn. Any matrix S ∈ Ωn can
be obtained in this way.

An analogue of Proposition 6.1 for the self-adjoint discrete Dirac system and block
Toeplitz matrices S follows from the proof of Theorem 5.2 in [11].

Proposition 6.3. Let a (n+ 1)p× (n+ 1)p matrix K be given by formulas (6.1)
and

Kj = iβ(j)J [β(0)∗ · · · β(j − 1)∗ β(j)∗/2 0 · · · 0 ], J =
[

0 Ip

Ip 0

]
,(6.5)

where β(k) are p × 2p matrices. Let conditions β(k)Jβ(k)∗ = Ip (0 ≤ k ≤ n)
hold. Then K is similar to A: K = V−AV −1

− , where V ±1
− are block lower triangular

matrices. Moreover, V− can be chosen so that S = V −1
−

(
V ∗
−

)−1 is a block Toeplitz
matrix.
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[14] M.A. Kaashoek and A.L. Sakhnovich. Discrete skew self-adjoint canonical system and the

isotropic Heisenberg magnet model. J. Functional Anal., 228:207–233, 2005.

[15] A.L. Sakhnovich. A certain method of inverting Toeplitz matrices. Mat. Issled., 8:180–186,

1973.

[16] A.L. Sakhnovich. On the continuation of the block Toeplitz matrices. Functional Analysis

(Uljanovsk), 14:116–127, 1980.

[17] A.L. Sakhnovich. Toeplitz matrices with an exponential growth of entries and the first Szegö
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